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Using time-independent perturbation theory, the energy eigenvalue equation for a free-electron gas in
the presence of a dc magnetic field B is solved. The energy-band structure applied here is supposed to
be the Cohen nonellipsoidal nonparabolic model. Then the longitudinal linear and nonlinear conductivity
tensors are calculated by using the quantum-mechanical treatment which is valid in the high-frequency
region. It is found that these conductivity tensors for ultrasound propagating parallel to the dc
magnetic field depend upon the magnetic field and sound frequency. Some oscillations and
discontinuities in these conductivity tensors are observed. This can be explained by the fact that the
linear and nonlinear conductivity tensors have the logarithmic singularities of a purely quantum origin
related to the degeneracy of the electron gas. We also present some numerical calculations of the
absorption coefficient and change in sound velocity in bismuth. It is found that the absorption
coefficient and change in sound velocity oscillate with the dc magnetic field and sound frequency when

the ultrasound propagates parallel to the magnetic field.

I. INTRODUCTION

The constant energy surfaces in wave-vector
space for real solids differ considerably from the
simple spherical surfaces of the degenerate elec-
tron gas. The effects of the nonparabolicity of the
conduction band in solids have been investigated by
several authors.!™® There exist some materials
in which the energy surfaces are much more com-
plicated. Bismuth, for example, is a semimetal
with highly anisotropic Fermi surfaces. Some re-
cent works®!® have shown that the magnetic field
dependence of some physical phenomena in a semi-
metal like bismuth can be explained by a two-band
model for the energy bands. From theoretical cal-
culations!? and experimental results,'®!3 it has been
pointed out that the energy band in the bismuth
structure is the Cohen nonellipsoidal nonparabolic
(NENP) model. The purpose of this paper is to
present a detailed calculation of the longitudinal
linear and nonlinear conductivity tensors by con-
sidering the spin-splitting effects for the NENP
model as the energy-band structure of bismuth.
These longitudinal components of the linear and
nonlinear conductivity tensors play the dominant
roles in determining the absorption coefficient and
second-harmonic generation of ultrasonic waves
in semiconductors and semimetals.’ %516 There-
fore, we shall study these conductivity tensors for
a system in which the Fermi surface is assumed
to be the NENP model. Furthermore, we apply
our results to discuss the effects of the NENP band
structure on the ultrasonic absorption in bismuth.

In Sec. II the Schrddinger equation for an elec-
tron gas in a dc magnetic field B is solved by using
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time-independent perturbation theory. In Sec. III,
the longitudinal linear and nonlinear conductivity
tensors are obtained by using a quantum-mechani-
cal treatment which is valid at high frequencies
and in strong magnetic fields. Since this kind of
treatment is valid for high frequencies such that
IqlZ>>1, where q is the wave vector of the ultra-
sound and [ is the electron mean free path, there-
fore the effect of collisions on the electrons is ne-
glected. In Sec. IV some numerical calculations
for a semimetal like bismuth are given. We also
have a brief discussion about these numerical re-
sults.

II. SOLUTION OF ENERGY EIGENVALUE EQUATION

For convenience, we shall first consider the
case without including the electron spin-splitting
effect. In the NENP model, the relation between
the energy and momentum of an electron gas in the
absence of the dc magnetic field is assumed to be'#
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From the experimental results,'®!" it has been in-
dicated that the difference between m, and m, is
quite small, i.e., my¥m;,. Thus the term in the
squarebrackets of Eq. (1) canbe considered constant.
For the sake of convenience, some parameters are
defined as follows:

Q1= m/ml,

az = (m/my)[1 +(E/E,)1 — m, /my)] = m/my ,
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az= m/ms s (2)

and
m

a = ————
47 2mymyE,’

where m is the mass of the free electron.

We now introduce a dc uniform magnetic field of
induction B directed parallel to the z direction,
then the vector potential in the Landau gauge can
be expressed in the form K(,: (0,Bx,0). The energy
eigenvalue equation can thus be written as
J
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Hy(1+Hy/E g, = (1/2m)[ay p2 + ay(p, — eBx/ c)?
+agp?+aslp, - eBx/ )| ¥,

= Eg(1 + Eg, / E )i » (3)

where Ejy, is the true energy of the system defined
by Hyi, = Eg,Yz,, and E, is the energy gap between
the conduction and valence bands. Then, by con-
sidering H = (ay/2m)(p, - eBx/c)* as a perturbation
term, the eigenfunctions and eigenvalues up to

first order for Eq. (3) are given by

Yo T) = etk o (x = x) + (6/16Kw,) [n(n = 1)(n - 2)(n = 3)]26,,_4(x = xp)
+(5/4hw, ) nl = 1)]122n = 1)¢,5(x = x) = (6/ 47w, )[(1n +1)(n +2)]"4(21 + 3) 0 (x = %)
- (6/16kw,)[ (1 + 1) +2)(n+ 3) (1 + 4)]*2,,, o(x = x,)} (4)

and

Eg==3 B ~{1+(4/E)[(n+ Ditw, + B2K; /2m* + 26 (n* +n + 1) ]}?) (5)

where w, = (lel B/mc)(aia;)%, 6= (a104/as)

x(e2B?1%/2mc?), xo="Fck,/eB, m*=m/a;, and
¢,,(x) is the harmonic-oscillator wave function.

If the electron spin-splitting effect is taken into
account, the eigenfunctions become

l+s
) 6)
1-s kn ’

2

Yins(T) =

where ¢;,(T) are given by Eq. (4) and s=+1.
Similarly, the eigenvalues of the system are given
by

Egpe=—3E,(1 ={1+(4/E,)[(n + 3w, + 3shw,

+ 2R /2m* + (36/2)(n? +n+ 3)]}2), (7)

where w, is defined by w,=|el B/mc, and m; is
the spin effective mass which has a relation with
the spin-splitting factor g such that m,/m=2/g.
For bismuth, the spin effective mass is equal to
the cyclotron mass,!*'81% § e, m_=m/(a a,)%.
Therefore w = w, in pure bismuth.

III. LONGITUDINAL LINEAR AND NONLINEAR
CONDUCTIVITY TENSORS

The calculation of the longitudinal linear and
nonlinear conductivity tensors follows the same
procedure as that described in an earlier paper.!®
The interaction of the conduction electrons with
the ultrasound can be taken into account via the
vector potential A, = A, exp(id- ¥ - iwt) which arises
from the self-consistent field accompanying the
ultrasonic wave. It is also assumed that the defor-
mation-potential coupling dominates the interaction.

r

To second order in Kl the Hamiltonian for an elec-
tron in the presence of the dc magnetic field B and
self-consistent field is

H=Hy+H,+H, . (8)

Here, H,is the Hamiltonian of an electron in the
dc magnetic field B and is given by the relation

F(pxspyspe) = Ho(l + Hy/E,)
=(1/2m)[ a1 p2 + ap(p, — eBx/c)?

+agpt+ayp, - eBx/c)*]+i-C-E,
_ ©)
where C is the deformation-potential tensor for one
type of carrier being dominant, and £ = £,exp(iq- T
- iwt) is the displacement of atoms in solids. The
first-order Hamiltonian due to the self-consistent
field, H,, is given by

(e ?ﬁn( OF  OF )
H = (ZC>(1+E ) Ay TR Ay ) . (10)

(4
The second-order Hamtltonian due to the self-con-
sistent field, H,, is given by

(2 )( _z_fzg)[ o°F _1__( 2_{1&)
Hz‘(zcz 1+%, ) opop, 4~ 2\ " E

4 £

aF OF oF 9F
X(Ali a + aAli)(Alja—pj + a Alj)] . (11)

Using the gauge where the scalar potential is zero,
the relation between the self-consistent field E and
the vector potential A, is found to be

E = (iw/c)A, . (12)

Following the same method of quantum treatment
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as our previous papers,®®!¢ we obtain the current
density expressed in the form

8 (Cim 9 (Cim
J; =0'“[EJ- - 5‘;}' (e;sm)] +Tisn [Ej - E)—Jc:(—el—_sm)]

(o))

where C,,, is the deformation potential tensor and
S;; is the strain tensor. From Eq. (13), one can

|

i n's)efnsei'OE,

find the linear and nonlinear conductivity tensors
as functions of the ultrasonic wave vector q and
frequency w. It has been shown that the longitu-
dinal magnetoacoustic phenomena and acoustic flux
in the second harmonic depend upon the longitudinal
components of the linear and nonlinear conductivity
tensors o,, and 7,,, . !%1® Therefore, in our pres-
ent case, the only components of the conductivity
tensors of interest are o,, and 7,,, . It can readily
be found that

2 -~
2 [013 Z;ffnsefns - (a%h’z/4m) .E (fk"s
kns Enn’s

Uzz(a; (U) = 47n'wno

and

Eiﬁ,n‘s = Egys ~ nw

(ffns "ffﬂ?, n's)efnseiva,

= (Zkz + qz)an‘n(qx’ qy)O)Nn’n(_ Gxs sto)]

(14)

- 3waeq!ﬁa§ 3 wiehial
Tnz(Q; w)= £ Effnsg'k'ns -2 - [k_E
nn’ s

4TmWE Ny s 8mwngm

+ E (fins "f'k'+2&', n’ s)ek'nsg'ﬂﬁ,
Knn's Ei+2i. n's = Efns = 27w

Ek'+a, n's — Ens — nw

n's (zkz + (It)Nn'n(qxs 4y O)Nn’n(_ Qx’qyao)

ns (kz + q,)N,,',,(Zq,,qu,O)N,,,,,(— 2¢q,, qu,O)

- (R2as/2m) 2 F(E,E+2q,E+(I;n,n',n";s)G;,,sG;,za',,.seg,;'".s

-
knn’n’s

X (Zk, + qz)(kz + (],)(Zk, + Sq:)Nn’n”(qx, qyﬁo)Nn"n(qx, Qys O)Nn'n(_ qu’ 2qy) Oﬂ ’ (1 5)

where w, = (4mnge?/m)"? is the plasma frequency of
the free electron with the mass m and 6, is given
by

0= (1+2Eg,,/E,)" . (16)

The functions N,.,(g,,q,,%,) and

Fli,k+2q,k +qn,n',n";s)

T
F(k, k+2q, K +q;n, n',n"; s) are defined as follows:
Nn'n(q;n dys xo) = f.:’ ¢>,,:(x - Xé,) eiq"xd),,(x - xo) dx, (1 7)

where x,=ck,%/eB, and x,= cK,i/eB for K,=k, +q,
or k,+2q,,;

= Lfk'+2&', n's(E'k'wI, n"s — Efns - ﬁw) _fk’ea,n's(Ezwza,n's - El?ns - Zh_w) +fk‘ns(Ef+2&', n's Ek’ﬂf. s = h_w)]

X [(Ek'+25,n's ~Egs— zﬁ‘-’-’)(El?)«zE, n's Ef-ra,n"s - h—w)(Ei&E,n"s - Eins - ﬁw)]-l . (18)

IV. NUMERICAL RESULTS AND DISCUSSION

In our present case we are interested in an
acoustic wave propagating parallel to the dc mag-
netic field, i.e., ¢,=¢,=0, and 3=gz. The dis-
tribution function of electrons in a semimetal like
bismuth is represented by the Fermi-Dirac sta-
tistics. The interesting temperature is assumed
to be very near absolute zero. Consequently, the
eigenvalues of the system in Eq. (7) can be ex-

J

[

panded as
Egns=— %E:+%Eeans+ﬁzkﬁ/2m*ans, (19)
where

ans={1 +(4/E,) [(n+3)Fiw, +ssThiw,+ 36(n® +n + HHe.
(20)
Using Eqs. (6) and (19) in (14) and (15), we obtain

0."(&’(”) - i(w;)z (aﬁnwz (AE"S)I/z.)-1 (_ (E‘)lla Z tan‘l (zﬁans(AEnsEg)Uz)

afsE: - Z(AEns)
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and
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(21)

 Gw)em 3w eqh 5 (AE )!7%(5 +8AE, /&2 E,)
eee W 32ﬂm*w2Exzn.s(AEns)“2 ns ans(l +2AE"3/ SEl)z

(w:)zeh. Z) [Ans(ar CL’) tan" (2\/-2— au(AE €')1 /2)

" T6VZ 1im*Y, (BE, )"

n,s

2V2 a,(AE, E )"

+ B,,(d,w)tan™ (T

q -1
AnsEe = Z(AE,,S) + qzﬁz/m* > + Cns(qy w)tan (

a,E, - 2(AE,,)

2V2 a,(AE, E,)"? )
aEIE, - 2(AEns) + 4q2h—2/m*

+ D, (d, w) 1n<

(AE, )2 + qli/2V2 (m*)V2 - w(m*)“zau/\/-z_i>
“(AE, )+ qi/2V2 (m*) 72 = o(m*) 2, /N2 q

+Fog(@,w)ln
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where w} = (4mnye?/ m*)!/2 is the plasma frequency
of the electron with the effective mass m*, and
AE, = Ep(1 +Ep /E,) - (n+$)hw, - 3shw,— 35 +n
+3). The functions A,,(§,w), B, (@ w), Cpd,w),
Dns(as w)’ Eus@} w)s Fns(a’ (.U), G,,,(‘,w), Hns(q, w),
Ins(a: w), ‘Ls(a, w), and Kns(a: w) are given in the
Appendix.

As a numerical example for bismuth, the rele-
vant parameters are® n,=2.75x10"" cm™, «,=1172,
@,=0.8, a3=88.5, E,=0.0153 eV, E.=0.0276 eV,
and v,=10° cm/sec. The numerical results for

(4

)4 5 3 1/2
m*) a"g‘% 5;[AE,,,) )Kns(a,w)], (22)

—
the conductivity tensors o,, and 7,,, as functions of
sound frequency w are shown in Figs. 1 and 2. It
can be seen that both Re[o,,] and Im[-0,,] decrease
with increasing the sound frequency. We can also
seethat some oscillations and discontinuities appear
in the microwave region. In Fig. 2, itis shownthat
the absolute values of Re[r,,,] is much larger than
those of Im|[r,,,]. Moreover, there is a minimum
point of Re[r,,.] in the neighborhood of w=4x10!°
rad/sec. It has been shown that the acoustic flux

in the second harmonic is proportional to [7,,,12.18
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FIG. 1. Real part and imaginary part of the longi-
tudinal linear conductivity tensor o,, as a function of

sound frequency w for nonellipsoidal nonparabolic band

structure in bismuth.

Consequently, the real part of 7,,, will dominate
the second-harmonic generation and the acoustic
flux in the second harmonic will have a minimum
value in the neighborhood of w=4x10!° rad/sec in
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FIG. 2. Real part and imaginary part of the longi-

tudinal nonlinear conductivity tensor 7., as a function of
sound frequency w for nonellipsoidal nonparabolic band
structure in bismuth.
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bismuth. The imaginary part of 7,,, oscillates

with the sound frequency in the microwave region.
As the magnetic field and sound frequency increase,
these oscillations will be diminished and washed
out in the region of very strong magnetic fields and
high frequencies. The magnetic field dependence of
the linear and nonlinear conductivity tensors is
shown in Figs. 3 and 4. It can be seen that the
real part of o,, increases with the magnetic field.
However, these curves are not continuous. The
imaginary part of o,, oscillates considerably with
the magnetic field in the region of strong magnetic
fields. These oscillations will also be washed out
when the sound frequency increases above the
microwave region. Therefore the effect of screen-
ing will be broken down in high frequencies. 1t is
also shown that the imaginary part of 7,,, oscil-
lates with the magnetic field. However, the real
part of 7,,, is almost independent of the magnetic
field.

It has been assumed that the interaction between
the conduction electrons and the ultrasound in semi-
metals is via deformationpotential coupling. Then
the relation between the absorption coefficient and
the ac conductivity tensor o,,(q, w) for one type of
carrier being dominant in the presence of a mag-
netic field is given by

€ _[{w\/CV 470, \!
w = ga(a) (5) m(-Tm) . e

where d is the density of the material, € is the
static dielectric constant, v, is the sound velocity,

10

Reld,, ) (sec")
Im(-0,,] (sec")

L L 10*

0 5 10 15 20
B (kG)

b

FIG. 3. Real part and imaginary part of the longi-
tudinal linear conductivity tensor 0,, as a function of dc
magnetic field B for nonellipsoidal nonparabolic band
structure in bismuth.
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FIG. 4. Real part and imaginary part of the longi-
tudinal nonlinear conductivity tensor T,,, as a function of
dc magnetic field B for nonellipsoidal nonparabolic band
structure in bismuth.

and C is the deformation potential. Since the ratio
of the sound velocity to the velocity of light is
about 1075, therefore the absorption coefficient due
to the longitudinal-induced field is much larger
than that due to the transverse-induced field.!®
This means that the longitudinal component of the
conductivity tensor plays the dominant role in de-
termining the dispersion and absorption of ultra-
sounds in the presence of the longitudinal dc mag-
netic field in solids. The change in the sound ve-
locity due to the interaction between the conduction
electrons and the ultrasound is also related to the
ac conductivity tensor a,,(d, w):

R O O

v, 8mdiE\v, ) \e

The numerical values of C, €, and d for bismuth
may take®® C=10 eV, €=10, and d=9.8 g/cm?,
The results for the absorption coefficient and the
change in sound velocity as functions of magnetic
field are shown in Figs. 5 and 6. It is shown that
both the absorption coefficient and change in sound
velocity oscillate with the magnetic field and some
discontinuities can be observed. These oscilla-
tions and discontinuities appear considerably more
by increasing the magnetic field. However, these
oscillations will be diminished with increasing the
sound frequency. In Fig. 5, we can see that the
absorption coefficient increases slowly with the
magnetic field even though it will vanish in some

9
~ ’Vr‘\ d
- v v
BN v
~ ~ N4
10 r M."‘, Y
-.l""" .
e W =10"rad/sec "
J - f
’ :
o)/ |
— ~n
€ N |
{’ 1 = [ | ~~ !
a A ‘\\ :
z o~ VA
p— A Al \ :
= ,gid! -
3 -\," 1 W = 5x10°rad/sec
! 1
‘A
i h
’I
-1
o't
1 1 1
0 5 10 15 20

B (kG)

FIG. 5. Absorption coefficient &, as a function of dc
magnetic field B for NENP model in bismuth. Broken
lines indicate that somewhere the absorption coefficient
a, will vanish.

regions of the magnetic field. In Fig. 6, it is
shown that the change in sound velocity oscillates
with the magnetic field, but does not change its
order of magnitude. This result for the change in
sound velocity being oscillatory with magnetic field
is quite different from our previous result in the
case of a degenerate semiconductor like n-type
InSb,2? in which the change in sound velocity was

10° +
&3 =10"rad/sec
o) -4
'«2!3” or W = 5%10"°rad/sec
10‘5 1 1 1
5 10 15 20
B (kG)

FIG. 6. Change in sound velocity Avg /v, as a function
of dc magnetic field B for NENP model in bismuth.
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shown to be independent of the magnetic field. We
have also plotted the absorption coefficient and
change in sound velocity as functions of sound fre-
quency as shown in Figs. 7 and 8. It shows that
the absorption coefficient increases with the sound
frequency. The change in sound velocity increases
very rapidly with the sound frequency and some
oscillations can be observed in the region of strong
magnetic fields. However, when the sound frequen-
cy is higher than v =2x10!! rad/sec, the oscilla-
tions will be washed out due to the breakdown of
screening in solids.

From the results of our calculations presented
here, it is shown that both the absorption coeffi-
cient and change in sound velocity of the longitu-
dinal ultrasound travelling parallel to the dc mag-
netic field exhibit oscillations as functions of the
magnetic field and sound frequency. Since we are
interested in the frequencies in the microwave re-
gion such that | |7> 1, therefore these oscillations
can be interpreted as the so-called “giant quantum
oscillations.”?*"2® These oscillations occur in a
degenerate electron gas in the case when the elec-
tron level is near the Fermi surface and the sound
wave vector q has a component along the dc mag-
netic field. However, in our previous works,?? it
was found that the giant quantum oscillations occur
only in the absorption coefficient as functions of
the sound frequency and magnetic field. In the

10
10°
13
(8]
N -
Q.
z
3 1 F
;
»
/
1027 7
/
!
~
) ! | 1 |

1

0 10 2x10"

W (rad/sec)

FIG. 7. Absorption coefficient o, as a function of
sound frequency w for NENP model in bismuth. Broken
lines indicate that somewhere the absorption coefficient
a, will vanish.
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10°F 7 . . B=10kG
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1
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10"5 : 1 1 1 1
0 10" 2x10"

W (rad/sec)

FIG. 8. Change in sound velocity Avg /vs as a function
of sound frequency w for NENP model in bismuth.

present case, owing to the nonlinear effect of the
energy surface of NENP model in bismuth, the
change in sound velocity will depend upon the mag-
netic field and sound frequency. Furthermore,
some oscillations and discontinuities in the change
of sound velocity can be observed. The nonlinear
factor 6, which is proportional to the square of the
dc magnetic field, will contribute to the energy
level of electrons in bismuth. And this factor is
included in the parameter a,,. Thus the parameter
a,s is a function of magnetic field due to the con-
tribution of these parameters ., w, and 6. This
effect of NENP model in the band structure of
bismuth is to introduce an energy, and therefore,

a magnetic-field-dependent effective mass for the
electrons. This effective mass for electrons in an
energy level of quantum number » and spin quantum
number s is m*a,,. Consequently the effective mass
of electrons defined by m*a,, depends strongly upon
the magnetic field.

It can also be found that some discontinuities in
the absorption coefficient are shown to vanish ow-
ing to the real part of the longitudinal conductivity
tensor being zero. This means that no energy can
be transferred between the conduction electrons
and ultrasound in bismuth in some regions of mag-
netic field and sound frequency. It was found that
the real part of the conductivity o,, in bismuth is
not continuous.?” This can be explained by the fact
that the conductivity o,, has the logarithmic singu-
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larities of a purely quantum origin related to the
degeneracy of the electron gas.2®2® When the sound
frequency increases, the screening effect will be
diminished. At high frequencies there is no longer
any screening of the electron-phonon interaction

in solids, therefore the change in sound velocity
does not depend upon the longitudinal conductivity.®
Since bismuth is a semimetal with highly anisotrop-
ic Fermi surfaces, the oscillations and discon-
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tinuities in the attenuation of ultrasound in bismuth
depend upon the magnetic field owing to the nonel-
lipsoidal nonparabolicity of the energy levels.
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APPENDIX

Functions A,,q,w),

and K, (d,w) in Eq. (22) are given as follows:

- 9 -
Ans(qyw): 442 (Z )[72 +(m*)2aﬁsE:/2Ll(qzhz+4m*aﬁsEl) l(m
ns\Log

%k
+nz*aaﬁsEﬁ’aLz(qzﬁ2+m*af,sE,)'I('—“—m el

4p3

m*3q 3 4 ES/Z

an(ay w), Cns@,w), D,.s(a,w), En.s(a;w)’ Fns(ﬁ, CU)’ G,.s(a,w), Hn@ w),

Ins(a’ w), Jns@ w),

*aqwg  2m*%ad w® 87;1*‘:(_1115?E‘o.>3 8m*3a} E w)
253 1]371'g q°’r en'
m*ad w®  m*tay Ew® m*aa,,sEﬁw)
4q°n 4°n" 44°n"

‘L}’?“’"( 11m*a@2, PHPE Py + 4m*%a} E Py +12m* &, qh*E, P, - 3¢°1 *P,

- 8m*2a} E,Qy — 2m* &y FH2E,Qy - 11m* 2, @HPE Ry + 4m*ay EER, — 12m* a2 qh%E R, + 3¢°H *Ry),
(A1)
- 2 m* 2m*%a3 E
B, (G,w) = m*? 2E3’2L1(—1n—5——4}‘— ___nss_zq;; w M_&

77‘1*3614 E5/2
44n'0

+6¢°n*Q,+22m* & E, 1% Q5 - 8m*?al,

¥ WEYRL
Cos(@yw) = —Ts";z_%)—‘——a-(m*a 2w = ¢*n + m* &, PE,) -

+3¢°1*Pg = 12m*a%E, qhi*Pg — 11m* B E,* i Rs + 4m*2a} ERs — 3¢° 1 *Rg + 12m* o

2m* "2t WERL, wm*"3g

(4m*2ap E2Py+ m* & E, 2Py + 22m* a2 E, #1%Q, - 8m*2a) EQ, - 24m* i E, qh%Q,

E2Qs — 64 °1*Qg + 24m* a?, E,qi%Qq

+ 4m*2at B2 Ry + m* & E, ¢*H°Ry), (A2)

Ln——%‘-—( 11m* @2 E, 72 Ps+4m*2at B2 Py

<E.qn%R,), (A3)

a’ E?
D, (q,w)= PR + 2057 (2m*a,swq H2Qq — 6m*2ad w2qPHQy
+4m* 33 w3 Qp — m* a, wq 2 Ry — 3m*2ad WP qPHRy — 2m*3ad W Ry) (A4)
- 2 x1/2 4 EZL *7/2 8 E3
Ens(Q9 w)= Léfgﬂs&)—‘_l_ - Wqu h’a (nz*aﬂswq4th8 - 37n*2aﬁsw2qzﬁpe
+2m*3a3 W Py — 2m* a,qwq Qg — 61*2aE (WP HQy — Am*3ad w°Q,), (A5)
/2 4 1725
m*"2q; wESL,
Fps(@,w)= 2;:6 -n—lz—rﬁ-ﬁE‘ m* 5w q* 2Ry — 4m**ad wR,), (A6)
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|

" m*1/2 4 VE? m*v/z 5 E
Gra(@y) = - 2Bl qu;fe-‘ (1 ang0q 1% Py = 4m*°a;0°Py)

N m*7/2a4 szL
Hns(q’w) == =

+8m* 2 E,Q, +6¢° 112 Q5 — 24m* &2 ,E,qQs + 224° % Qg — 8m* a2 E, Qs — #N°Ry — 4m* & E,Ry),

x1/2 4 X172 5 18
LGw)= - e MG 352p, L 12mrd?, gE, Py
4q°n 8qn
- 112n%R + 4m* @ E, Py — 3¢°H2Rs + 12m* a2 gE [R5 + 11¢* 12 Ry — 4m* & ER,) ,
Jos(@,w) =Py + Py+ P5+ Py + Py —2Q, = 2Q3 - 2Q5 —2Q; = 2Q3 + Ry + Ry + Rs+ Ry + Ry,
m*a2E
K, @, w)= _"zm—‘( Py~ P3—P5+2Q,+2Q;+2Q; = R, — Ry~ Rs)

4>
+ mh_a w(-P7'2P8+2Q7-2Qa+Rﬂ+2Ra)+%&(Pv"}’a"zQ'I_ZQS*R'J'RS)

+11¢%P,~12¢P, +3q2P;~ 4qP,+3q%Ps+4qP¢+3¢%P, +64%P,
- 6q2Q1 +169Q, + 2(12(;)3 - 6q2(,)s -169Q¢ + llqul +12¢R, + 3q2R3+ 49R, + 3q2R5 -49Rg

+3¢2R, +64°R,,

where
[( é‘ m* F’E“) m*%? w] !
and
m*2 w2 m*ac E,\¥ 4m*%a?w?]!
L,= I:(qz.,_?%au__,__h?eu_z ___;?_ms_
The parameters P;, @;, and R;, i=1,2,3,...,8, are the solutions of the equations

X+ X3+ X5+ Xq+X3=0,

—2¢X,+ X5 = qXs+ X4+ Xg = (b+29) Xy = (c+2¢) X =0

(bc - 6bg—6cq)X,+(b+c-6q) Xy +(bc—5bg=5cqg—5¢3)X;+(b+c—-4q)X,
+(bc—4bg —4cq-8q?) X+ (b+c-2¢)Xs+(a-6cq) Xy +(a-6bg)X;=0,

[-6bcg+ (b +c)(13¢% +2a) - 64(2¢% +a)] X, + (bc — Bbg — Bcg +13¢% +2a) X,
+[=5bcq+2(b+c)(4g2+a) —2q(2¢2 + 3a)]X; + [bc - 4¢(b + c) + 4¢% + 2a]X,
+[-4bcqg+(b+c)59%+2a) —2q(g? +3a)]Xs+[bc = 2q(b+ c) +q% +2a] X,

+[=12¢(g? +a) + c(8a+13¢?)] X, +[- 12¢(g% + a) + b(3a+13¢?)] X, =

[bc(2a+13¢) - 6¢(2¢2 +a)(b+ ¢) + (g +a)(4g% +a)] X, + [- 6bcg + (b + c)(2a+13¢?) -64(2¢4% + )] X,

*7/2 5 13
————g“——LLq P - %ﬁg‘g‘(qzﬁzP4 + 4m*a,2,sE,P4 +64°%%%Q, - 24m*a,2|3E,qQ1 - 22q2h’2Qz

3345

(A7)

(A8)

(A9)

(A10)

(A11)

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)
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+[2bc(4g® +a) - 2¢(2¢% +3a)(b+ c) + a(8q? + )| X3 +[ - 4bcq +2(2¢ % + a)(b + ¢) - 4qa) X,

+[bc(5q2 +2a) - 2¢(g?+3a)(b+c) +a(5q% + a)| X5+ [- 2bcq + (g% +2a)(b + c) — 2aq] X,

+[4g*+18aq® +3a® - 12¢q(q® + a)] X7 + [4q* +18aq?® + 3a® - 12bq(q% + a)] X, =0, (A18)
[(5+c)(g?+a)(4g% +a) - 6bcq(2q® +a)]X, +[bc(13g2 +2a) —69(2g% +a)(b + c) + (¢% + a)(4q? + a)] X,

+[=2bcq(2q® +3a) +alb+c)(8g% +a) — ag(4q® + a)| Xs + [2bc(2q% +a) - 4g alb + ¢) + a(4q?® + a) ] X,

+[=2bcqlg®+3a) +alb+c)(5¢% +a) - 2aq(q® + a)| X5 + [bc(g? +2a) - 2qalb +c) + alg? + a)) X,

+[~6aq(2¢g®+a) + c(4¢* +18g%a + 3d?)| X, +[- 6aq(2q® + a) + b(4q * +18g2a + 34%)] X3 =0, (A19)
belg? +a)(4g2+a) X, + [(b + c)(q? + a)(4q? + a) - 6bcq(2¢2 + a)] X,

+[abc(8g® + a) — ag(b + c)(4q? + a)| X3+ [- 4abcq + alb + ¢)(4g® + a)] X,

+[abe(5q® + a) = 2aq(b+ c)(q? + a)) X5 + [ - 2abcg + a(b + ¢)(g? + a) | X,

+[alg®+a)(4q® +a) - 6acq(2q® + a)) X, +[alqg?® + a)(4g® + a) - 6abq(2¢% + a)] X, =0, (A20)
belg? +a)(4g%+a)X, = abeq(4g® +a)X;+ abe(4q® + a)X, - 2abeq(q? + a) X

+abc(g? +a)Xg+ac(q® +a)(4q® + a) Xy + ablg® + a)(4g® + a) Xz =1 . (a21)

The solution in Eqs. (A14)- (A21) is X;=P;, i=1,2,83,.

and ¢=-1 g - (m*a,w/qh); X;=Q;, i=1,2,3,.
:—(3(]/2)’(7” a,.sw/qh_), X;= R{) i=1,2,3,..

., 8, with a=(m*d2E, /i?),
.,8, with a= (m*d2E,/#?), b=q - (m*a,w/qh), c=(q/2)

., 8 with a= (m*@EE, /k?), b=—q-(m*aw/qh),
b=-3q- (m*a,.w/qk), and ¢

- (m*a,sw/qk), and q being changed to — ¢ in Eqs. (A14)-(A21),

*Partially supported by National Science Council of the
Republic of China.
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