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Using time-independent perturbation theory, the energy eigenvalue equation for a free-electron gas in

the presence of a dc magnetic field g is solved. The energy-band structure applied here is supposed to
be the Cohen nonellipsoidal nonparabolic modeL Then the longitude& lmear and nonlinear conductivity
tensors are calculated by using the quantum-mechanical treatment which is valid in the high-frequency
region. It is found that these conductivity tensors for ultrasound propagating parallel to the dc
magnetic field depend upon the magnetic field and sound frequency. Some oscillations and
discontinuities in these conductivity tensors are observed. This can be explained by the fact that the
linear and nonlinear conductivity tensors have the logarithmic singularities of a purely quantum origin
related to the degeneracy of the electron gas. We also present some numerical calculations of the
absorption coefficient and change in sound velocity in bismuth. It is found that the absorption
coefficient and change in sound velocity oscillate with the dc imq~etic field and sound frequency when

the ultrasound propagates parallel to the magnetic 6eld.

I. INTRODUCTION

The constant energy surfaces in wave-vector
space for real solids differ considerably from the
simple spherical surfaces of the degenerate elec-
tron gas. The effects of the nonparabolicity of the
conduction band in solids have been investigated by
several authors. ' There exist some materials
in which the energy surfaces are much more com-
plicated. Bismuth, for example, is a semimetal
with highly anisotropic Fermi surfaces. Some re-
cent works '3 have shown that the magnetic field
dependence of some physical phenomena in a semi-
metal like bismuth can be explained by a two-band
model for the energy bands. From theoretical cal-
culations and experimental results, ' ' it has been
pointed out that the energy band in the bismuth
structure is the Cohen nonellipsoidal nonparabolic
(NENP) model. The purpose of this paper is to
present a detailed calculation of the longitudinal
linear and nonlinear conductivity tensors by con-
sidering the spin-splitting effects for the NENP
model as the energy-band structure of bismuth.
These longitudinal components of the linear and
nonlinear conductivity tensors play the dominant
roles in determining the absorption coefficient and
second-harmonic generation of ultrasonic waves
in semiconductors and semimetals. ' ' '6 There-
fore, we shall study these conductivity tensors for
a system in which the Fermi surface is assumed
to be the NENP model. Furthermore, we apply
our results to discuss the effects of the NENP band
structure on the ultrasonic absorption in bismuth.

In Sec. II the Schrodinger equation for an elec-
tron gas in a dc magnetic field 8 is solved by using

time-independent perturbation theory. In Sec. III,
the longitudinal linear and nonlinear conductivity
tensors are obtained by using a quantum-mechani-
cal treatment which is valid at high frequencies
and in strong magnetic fields. Since this kind of
treatment is valid for high frequencies such that

t q I l » 1, where q is the wave vector of the ultra-
sound and l is the electron mean free path, there-
fore the effect of collisions on the electrons is ne-
glected. In Sec. IV some numerical calculations
for a semimetal like bismuth are given. We also
have a brief discussion about these numerical re-
sults.

II. SOLUTION OF ENERGY EIGENVALUE EQUATION

For convenience, we shall first consider the
case without including the electron spin-splitting
effect. In the NENP model, the relation between
the energy and momentum of an electron gas in the
absence of the dc magnetic field is assumed to be'4

Z~ 2m &
2m 2, E m2 2m'

4m, m,'Z, '

From the experimental results, '"'~ it has been in-
dicated that the difference between ms and ma is
quite small, i. e. , m2=m2. Thus the term in the
squarebrackets of Eq. (1) canbe considered constant.
For the sake of convenience, some parameters are
defined as follows:

a, = m/m„

az = (m/mz) [1+(8/Z~)(1 —m~/m~)] = m/mz,
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a, = m/m, , (2) Ho(l + Ho/E~)gf„= (1/2m)[aq p, + as(p —eBx/c)

and + ns p,'+ n4( p, —eBx/c)'] gf,„
= E;.(1+E;./E, )C-, (3)

where m is the mass of the free electron.
We now introduce a dc uniform magnetic field of

induction 8 directed parallel to the z direction,
then the vector potential in the Landau gauge can
be expressed in the form Ao= (O, Bx,0). The energy
eigenvalue equation can thus be written as

where E„-„ is the true energy of the system defined
by Hogg„=E~&g„, and E, is the energy gap between
the conduction and valence bands. Then, by con-
sidering H =(a4/2m)(p, —eBx/c) as a perturbation
term, the eigenfunctions and eigenvalues up to
first order for Eq. (3) are given by

g„-„(r ) = e'+~" ~'ttP (x —xo) + (6/168'+, ) [n(n —1)(n —2)(n —3)] $„4(x—xo)

+ (6/4k', ) [n(n —1)] (2n —1)$„2(x —xo) —(6/4h&u, ) [(n + 1)(n+ 2)] (2n+ 3)P„,s (x —xo)

—(6/16hu, )[(n+1)(n+2)(n+3)(n+4)] Q 4(x —xo)j

E„-„=—s E (1 -(1+(4/E~)[(n+ 2)hu, +k' k, /2m + 26(n +n+ 2)]} ),

where ~, = ( l el B/mc)(a~as)', 6 = (a,a4/aa)
&&(esB A2/2mc ), xo= Ack, /eB, m~ = m/n3, and

p„(x) is the harmonic-oscillator wave function.
If the electron spin-splitting effect is taken into

account, the eigenfunctions become

(1+s

0;.,(r)= 1 ti;.(r),
2

(8)

where g„-„(r) are given by Eq. (4) and s=+1.
Similarly, the eigenvalues of the system are given
by

Eg„,= ——,'E, (1 -(1+(4/E, ) [(n+ —,')@co, +-,'sh(u,

+ k k, /2 m* + (36/2)(n + n + ~z) ]} ),
where ~, is defined by &u, =

I elB/m, c, and m, is
the spin effective mass which has a relation with
the spin-splitting factor g such that m, /m =2/g.
For bismuth, the spin effective mass is equal to
the cyclotron mass, ~o '8 '9 i. e. , m, = m/(nuns) '~.

Therefore ~, = ~, in pure bismuth.

III. LONGITUDINAL LINEAR AND NONLINEAR
CONDUCTIVITY TENSORS

To second order in A, the Hamiltonian for an elec-
tron in the presence of the dc magnetic field B and
self-consistent field is

H= Ho+Hg+H~ .
Here, Ho is the Hamiltonian of an electron in the
dc magnetic field B and is given by the relation

E(I„,t „P,) = H, (1 + H, /E,-}
= (1/2m)[a, P„+n2(P, —eBx/c)

+ n, p', + n4( P, —eBx/c)'] + tq C

(8)
where C is the deformation-potential tensor for one
type of carrier being dominant, and $ = )0 exp(iq ~ r
—i&et) is the displacement of atoms in solids. The
first-order Hamiltonian due to the self-consistent
field, H&, is given by

H& = — — 1+ o
A&& + 4&& ~ 10

The second-order Hamiltonian due to the self-con-
sistent field, H~, is given by

The calculation of the longitudinal linear and
nonlinear conductivity tensors follows the same
procedure as that described in an earlier paper. "
The interaction of the conduction electrons with
the ultrasound can be taken into account via the
vector potential A, =A»exp(iq r isn't) whic—h arises
from the self-consistent field accompanying the
ultrasonic wave. It is also assumed that the defor-
mation-potential coupling dominates the interaction.

A),. + A~,. Aqj + Aq~ . 11

Using the gauge where the scalar potential is zero,
the relation between the self-consistent field K and
the vector potential A, is found to be

E = (ice/c)A, . (12)

Following the same method of quantum treatment
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as our previous papers, we obtain the current
density expressed in the form

a C,„ C)
Ey — "Sr~ +~&ye Eq ————

Srm
~x; e ag~

where C, is the deformation potential tensor and

S;& is the strain tensor. From Eq. (13), one can

find the linear and nonlinear conductivity tensors
as functions of the ultrasonic wave vector q and

frequency ~. It has been shown that the longitu-
dinal magnetoacoustic phenomena and acoustic flux
in the second harmonic depend upon the longitudinal
components of the linear and nonlinear conductivity
tensors v„and T„,. ' ' Therefore, in our pres-
ent case, the only components of the conductivity
tensors of interest are a„and 7„,. It can readily
be found that

ir„(q, id) = . na Z f„-„,8a„, —(ciak /4m) Z ""' """' "' ' '" ' (2k, + q, ) N„.„(q„,q„O)N„.„( q„,q„O-)
4micono p7nn's EP+q, n's Ep7ns

(14)
and

~.„(q,~)=- ""; ' Z f„-„,8'„-„,— ", ' Z "' """""' """"(2k,+q, )N„„(q„q„,o)N„,„(-q„,q„O)
g+0 kns + +0 knn' s p7+q, n's kns

+ Z ""' "' " ' ""' "' '" '(k, +q, )N„,„(2q„2q„,O)N„,„(-2q„2q„,O)
Penn's ~R+2q, n's ~fns

—(h n /a2 )mZ F(k, k+2q, k+q;n, n, n;s)8~, 8„;a;„,,8a;; „,
penn'n" s

&& (2k, + q, )(k, + q, )(2k, + 3q, )N„.„-(q»q»0)N„„(q»q, O)N;„( 2q„2q, O)-, (15)

where id' = (4aniis /m)'" is the plasma frequency of
the free electron with the mass m and e~, is given

by

F(k, k+2q, k+q;n, n, n; s) are defined as follows:

N„„(q„q„x,) = J„iTi„(x—x') e"""qi„(x—x,) dx, (1'T)

8~, = (1+2Ea„,/Ea)

The functions N„,„(q„,q„xii) and

(16) where xii=ck, ff/eB, and xiI=cK,h/eB for Z, = k, +q,
or Q +2qy

F(k,k+ 2q, k +q;n, n, n; s)

=
[fiT+aq, n's(EiT+ pTn "s Eon, s )aid ) fiT+rT, n~a (Ei+a Ti, n' g EiTns 2k~) +fiTns(EK+a T, n's Ea~a, n "s ~~ )l

[(Ea,a; „., —E„-„,—2hid)(Ea, a,.„., —Eg„„,—)lid )-(E„;;„N, —Ea„,—Kd )] (18)

IV. NUMERICAL RESULTS AND DISCUSSION

In our present case we are interested in an
acoustic wave propagating parallel to the dc mag-
netic field, i.e. , q„= q, = 0, and q = qz. The dis-
tribution function of electrons in a semimetal like
bismuth is represented by the Fermi-Dirac sta-
tistics. The interesting temperature is assumed
to be very near absolute zero. Consequently, the
eigenvalues of the system in Eq. (7) can be ex-

panded as

(19)

where

a„,= (1 + (4/E )[(na+ a)km, + ,'skid, + a 5(n + n—+a)]P

(2O)

Using Eqs. (6) and (19) in (14) and (15), we obtain

. -a( 2&2 (+E E 51/2

a ( )= ( *)' avYs~Z(~E )'"
~

-(E)'"Ztan-'
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(mn) Es 2 q (d (mn) g, m*a„,Ez uP(m*} g,
2

4(d2(mn)2$ (&E»} +qk/2'(m") —(d(mn) /2a /v2 q

q
n' ' (/2E ) +qI/f2 )(2(m n) —(d(mn) a /&2q

(aE„,) —qh/2W2(m*) —(o(m*) a„,/W2q
(aE )"'—qk/2 (m')'" (u(m')"'a /v 2q

[(dEn„) +qk/u 2(mn) ] + 2/2nsEs 0 q 2m*a„, qEz (d (ms) (2„,
[ (d, E )1/2+ q}f/~2(mn)1/2]2+ le2 E (mnE )1/2g 4 Z2 qg2

and

4( mn)' „('2. E'z 4~'(mn)'a„'. Ez, , 2~2m„,(~E„,Ez)", 2V 2 a„,(/2. E„,Ez)'/2
qa' q'}f' a'„,E, —2(d, E„,) a'„, —2(nE„,)+ q2a'/mn

2(~;)'eqn + (~E„,)'"(5+6' E„./g. E,)
221/m (d'E g (~E )'" & (I + 2~E /g E )'

(21)

((ds) 8}f 2)[2 a (/2E E )
/

2W2a„,(b. E„, E) 1 2)/ 2 a„,(n E„,E )
z-q(z„z, )+q Iq / " "' ' „,z —q(zz„,)+qq z / )

(d E„,} + qff/2~~ { *} — { *} (2n, /
—(d.E )'"+q}f/2v 2 (m*)'" —(d(m*)'"a„ /W2q

(«„,)1/2-q}f/2~2(m*)l/2 —.(m )1/2~. Hrq
ns qq(d (gE )1/2 }I/2V) 2 (mn)l/2 (mn)1/2e /~2q

+F ( (o)ln
(/2~„,)' /+2qZ/&2(m*)'/2 ((dm—) 1/a2„, /~2q

ns Iq (d E )1/2 + qjf/~Q{ m)1/s2 (mn)1/2(2 /)/ 2 q

( )
(aE„,)'/2 —q}f/V 2 (m*)"' —(d(m*)l/2(2„, /v 2 q

n, 4& (dE )1/2 qk/~2(mn)1/2 ~(mn)l/2a /W2q

[(d,E„,)'"+qa/&2(m*)'"]'+ —,'s„.E,
[-(zz )'" z//2( *)'"]'+-' z }
[(/) E„,)'"+ v 2 qtf/(mn) '

] + 'a„,E, —

[-(zz )'" /q z/( ')"']' ~ -' z }
&4~~( ')' 2.E.'(«..)'" ~,-, (( ")'.'&,'(«..)'" (22)

where (dsn = (41/n()e /m*)"2 is the plasma frequency
of the electron with the effective mass m*, and
DEns ——Es(I + E /E /q)

—(ssl+ s)k(q), —22ff(q)s —2/](n + n
+ -', ). The functions A„,((I, (d), B„,((I, (d), C„,(j, (d),

D„,{(I,&o), E„,(ci, (o), F„,((I, (u), G„,(j,(d), H„,(q, (u),

f„,((I, (d), Z, ((I, (d}, and I{'„,((I, (()) are given in the
Appendix.

As a numerical example for bismuth, the rele-
vant parameters are~ no=2.75X10' cm, ~, =172,
o,3=0.8, e, =88.5, E,=0.0153 eV, 8„=0.0276 eV,
and v, = 10' cm/sec. The numerical results for

I

the conductivity tensors cr„and 7„,as functions of
sound frequency ~ are shown in Figs. 1 and 2. It
can be seen that both Re [o„]and Im[- (/„] decrease
with increasing the sound frequency. We can also
see that some oscillations and discontinuities appear
in the microwave region. In Fig. 2, it is shown that
the absolute values of Re[a„,] is much larger than
those of Im[r„,]. Moreover, there is a minimum
point of Re[1„,] in the neighborhood of ~=4x1012
rad/sec. It has been shown that the acoustic flux
in the second harmonic is proportional to IT„,I .'
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and C is the deformation potential. Since the ratio
of the sound velocity to the velocity of light is
about 10 5, therefore the absorption coefficient due
to the longitudinal-induced field is much larger
than that due to the transverse-induced field. '
This means that the longitudinal component of the
conductivity tensor plays the dominant role in de-
termining the dispersion and absorption of ultra-
sounds in the presence of the longitudinal dc mag-
netic field in solids. The change in the sound ve-
locity due to the interaction between the conduction
electrons and the ultrasound is also related to the
ac conductivity tensor cr„(q, cu):

(24)

The numerical values of C, &, and d for bismuth
may take C = 10 eV, & = 10, and d = 9.8 g/cm'.
The results for the absorption coefficient and the
change in sound velocity as functions of magnetic
field are shown in Figs. 5 and 6. It is shown that
both the absorption coefficient and change in sound
velocity oscillate with the magnetic field and some
discontinuities can be observed. These oscilla-
tions and discontinuities appear considerably more
by increasing the magnetic field. However, these
oscillations will be diminished with increasing the
sound frequency. In Fig. 5, we can see that the
absorption coefficient increases slowly with the
magnetic field even though it will vanish in some

10

B (kG)
20

FIG. 5. Absorption coefficient a(i as a function of dc
magnetic field & for NENP model in bismuth. Broken
lines indicate that somewhere the absorption coefficient
nii will vanish.

-3
10
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Q3 = 5X10 ra

10
0 10

8 (kGj
15 20

FIG. 6. Change in sound velocity 4v~/v~ as a function
of dc magnetic field B for NENP model in bismuth.

regions of the magnetic field. In Fig. 6, it is
shown that the change in sound velocity oscillates
with the magnetic field, but does not change its
order of magnitude. This result for the change in
sound velocity being oscillatory with magnetic field
is quite different from our previous result in the
case of a degenerate semiconductor like n-type
InSb, 23 in which the change in sound velocity was
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shown to be independent of the magnetic field. %e
have also plotted the absorption coefficient and
change in sound velocity as functions of sound fre-
quency as shown in Figs. 7 and 8. It shows that
the absorption coefficient increases with the sound
frequency. The change in sound velocity increases
very rapidly with the sound frequency and some
oscillations can be observed in the region of strong
magnetic fields. However, when the sound frequen-
cy is higher than w =2 &10" rad/sec, the oscilla-
tions will be washed out due to the breakdown of
screening in solids.

From the results of our calculations presented
here, it is shown that both the absorption coeffi-
cient and change in sound velocity of the longitu-
dinal ultrasound travelling parallel to the dc mag-
netic field exhibit oscillations as functions of the
magnetic field and sound frequency. Since we are
interested in the frequencies in the microwave re-
gion such that (q )l »1, therefore these oscillations
can be interpreted as the so-called "giant quantum
oscillations. "~ ~6 These oscillations occur in a
degenerate electron gas in the case when the elec-
tron level is near the Fermi surface and the sound
wave vector q has a component along the dc mag-
netic field. However, in our previous works, it
was found that the giant quantum oscillations occur
only in the absorption coefficient as functions of
the sound frequency and magnetic fieM. In the

10

10

Q3 ( rod/sec )

I

2X10

FIG. 8. Change in sound velocity &v~/v~ as a function
of sound frequency ~ for NENP model in bismuth.

present case, owing to the nonlinear effect of the
energy surface of NENP model in bismuth, the
change in sound velocity will depend upon the mag-
netic field and sound frequency. Furthermore,
some oscillations and discontinuities in the change
of sound velocity can be observed. The nonlinear
factor 5, which is proportional to the square of the
dc magnetic field, will contribute to the energy
level of electrons in bismuth. And this factor is
included in the parameter a„,. Thus the parameter
a„, is a function of magnetic field due to the con-
tribution of these parameters ~„~„and 5. This
effect of NENP model in the band structure of
bismuth is to introduce an energy, and therefore,
a magnetic-field-dependent effective mass for the
electrons. This effective mass for electrons in an
energy level of quantum number n and spin quantum
number s is m*a„,. Consequently the effective mass
of electrons defined by m*a„, depends strongly upon
the magnetic field.

It can also be found that some discontinuities in
the absorption coefficient are shown to vanish ow-
ing to the real part of the longitudinal conductivity
tensor being zero. This means that no energy can
be transferred between the conduction electrons
and ultrasound in bismuth in some regions of mag-
netic field and sound frequency. It was found that
the real part of the conductivity 0„ in bismuth is
not continuous. " This can be explained by the fact
that the conductivity O„has the logarithmic singu-
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larities of a purely quantum origin related to the
degeneracy of the electron gas. ' Vfhen the sound
frequency increases, the screening effect will be
diminished. At high frequencies there is no longer
any screening of the electron-phonon interaction
in solids, therefore the change in sound velocity
does not depend upon the longitudinal conductivity. 6

Since bismuth is a semimetal with highly anisotrop-
ic Fermi surfaces, the oscillations and discon-

tinuities in the attenuation of ultrasound in bismuth
depend upon the magnetic field owing to the nonel-
lipsoidal nonparabolicity of the energy levels.
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APPENDIX

Functions A„,((1,0)), B„,(q, 0)), C„,(q, (0), D„,((l, &u), E„,(q, (d}, F„,(j, (d}, G„,(q, (d), H„,((l, (d), I„,(q, (d), J„,(j,01},
and K„,((l, (d) in Eq. (22) are given as follows:

s ( )= ( ')'4 z r("''z'.~ 4 's' z)" '"'" — '"' — +' ' — '"' ' )=
4 2 (E)1/2 ™)q ( 2h2a~ q q q

I'm+ )I23 3 3 )I24 5 E 3 )I23 5"-s z"'z, '"z' ~ 'a z " '"' ' — '"' — s' — '"
)g 2iV + g/ II 4g 3 4 3@5 4 5@7 4 3@7q q

)I&3 4 5/2

(- llm»a„, q h EQ)+4m» a„,EzP, +12m/», qh E P2 —3q h P2

—8m»2a„, E,Q) —2n)»g, q h2E Q2
—llm»a„, q~h EzR1+ 4m*a„,E R1 —12m»a„, qh E R2+3q h R2},

(A1)
)I23 3 3 )I22 3 z.

z ' '= Hz'L "* — "' *' }iq j™ ns g 1 5g7 2 g5 3g7q q q

~ )I23 4 5/2
(4m* a„+~P6+ m*a„,Ez q h P)+22m*a„,Ez q h Q1 —8m* a„,EzQ1 —24m»a„, Ez qh Q2

+6q h Q2+22m*a„,E q O'
Q6

—&m» a„,E Q6
—&q h Q6+24m»a2 E q@2Q6

+ 4m* a„,EzR)+ m»a„+z q h R)), (A2)

)I23 3 3/2 m)I2 3a4 5/2

C„,(q, (0) = 6"', ' ' (m* a„,(()' —q h+m»a„', q E',) — ~";0' (- 11m*a E q h' P, +4m* a„',E,'P,
4q h

+3q h P6 —12m»a E qh P6 —11m*a„,Ezq h R6+4m" a„,E R6 —3q h R6+12m*a„,E qh R6), (A3)

q h 2q h

+ 4m* a„,(d Q0
—m»a„, (dq h R6 —3m* ass(d q @R6 2n)* a„,(u R6), (A4)

2 g7/2 4 31&7/2 5 3

E-((1 (d)= —
2@6 2 Sh)0 (n2 a„(dq h P6 m a (d q hP6

rn a„,~ I-& ~n a„,E, ~ 4 2 ~22 2 2

q h 2qh

+ 2m» a„s(d Pz —2m»azs(0q h Q6 —&m» „aqs(h()Q6 —41)(» „,aQ(d)), 6 (A 5)

(A6)
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mgV/2 4 mgV/2 5

2q k 4q 5

my V/2 4 my V/2g5 3

H»(q, u)= —
e&e

—
8 e@e '(q I P4+4m a„,E/4+Sq 5 Q, —24m*a„,EeqQ, —22q 8 Qe
&q 0

+6m*/, E Qe+Sq b Qe —24m~/, EeqQe+22 qk Qe-Sm*cP„,EeQe —q Ie R4-4m~tP„, EeR4),

mdiv/2 4 g L mdiv/2 5 g3ns s e a» i( 3epep
4 2&8 & 2&8 q 5 ™q & 5

q q

—llq b Pe+4m*a„+ Pe —3q 5 R 4+12 mea„, qE+ e+llq beRe —4me44+ Re),

(A7)

(A8)

(AQ)

J»(g, &u) = Pq+Pe+Pe+P7+Pe —2Q~ —2Qe —2Qe —2' —2Qe+R~+Re+Re+Re+Re, (A10)

4m'a E,
K„,(q, ) =

~
(-P —P -P +2Q +2Q +2Q -R -R -Re)

where

4m~a„,& 4m~ca„, (ge
+ "' (-Pz —2Pe+2Qe —2Qe+% 2+R )e+ e

e"' (Pe+Pe —2Q& —2Q +Q+R )8 q 8 8 8

+11q P,-12qP2+3q P3-4qP4+3q P5+4qPe+Sq'Pv+6q PB

- 6q Q& + 16qQ2+ 2q Q3 - Gq Q5
- 16qQB+ 11q Rj + 12qR2+ 3q R3+ 4qR4+ 3q R5 - 4qRB

+3q Re+Sq Re, (A 11)

and

q me tP~(o me(PQ~ m+V»(g
4 qh 8 8 J

(A12)

(A13)

The parameters P, , Q„and R„ i=1, 2, 3, ... , &, are the solutions of the equations

Xg+X3+X5+Xv+ XB = 0,

—2qX~ + Xe —qXe+ X4+ Xe —(b+ 2q)X7 —(c+2q)Xe = 0, (A15)

(bc —6bq —Scq)X&+ (b+ c —Sq)Xe+ (bc —5bq- 5cq —5q )X,+ (b+ c- 4q)X4

+ (bc —4bq —4cq —Sqe)X, + (b+ c —2q)Xe+ (a —Scq)Xe+ (a —6bq)Xe = 0, (A16)

[-6bcq+(b+c)(13q +2a) —Sq(2q +a)]X&+(bc —6bq-6cq+13q +2a)Xe

+[-Sbcq+2(b+c)(4q +a) —2q(2q +3a)]Xe+ [bc —4q(b+c)+4q +2a]X4

+ [-4bcq+(b+ c)(5q +2a) —2q(q +3a)]Xe+[bc-2q(b+ c)+q +2a]Xe

+ [-12q(q +a)+ c(3a+13q )]X&+[-12q(q +a)+b(3a+13q )]X4=0, (A17)

[bc(2a+13q ) —Sq(2q +a)(b+ c)+(q +a)(4q +a)]X4+ [-Sbcq+ (b+ c)(2a+13q ) -Sq(2qe+a)]Xe
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+[2bc(4q +a) —2q(2q +3a)(b+c)+a(8q +a)]XB+[-4bcq+2(2q +a)(b+c) —4qa]X4

+[bc(5q +2a) —2q(q +3a)(b+ c)+a(5q + a)]X&+ [-2bcq+(q +2a)(b+c) —2aq]X4

+ [4q4+18aq +3a —12cq(q +a)]XV+ [4q +18aq +3a —12bq(q +a)]X4= 0,

[(b+c)(q +a)(4q + a) —6bcq(2q +a)]X&+[bc(13q +2a) —6q(2q +a)(b+c)+(q + a)(4q +a)]XI

(A18)

+[-2bcq(2q +3a)+a(b+c)(8q +a) —aq(4q +a)]X4+[2bc(2q +a) —4qa(b+c)+a(4q +a)]X4

+[-2bcq(q +3a)+a(b+ c)(5q +a) —2aq(q +a)]X&+ [bc(q +2a) —2qa(b+c)+a(q +a)]X4

+[-6aq(2q + a)+ c(4q +18q a+ 3a )]XV+[-6aq(2q +a)+b(4q +18q a+ 3a )]X4=0, (A 19)

bc(q +a)(4q +a)X|+ [(b+ c)(q +a)(4q +a) —6bcq(2q +a)]X2

+ [abc(8q +a) —aq(b+c)(4q +a)]X&+[-4abcq+a(b+c)(4q 4+a)]X4

+ [abc(5q + a) —2aq(b+ c)(q + a)]X&+[-2abcq+ a(b+ c)(q + a)]X4

+ [a(q +a)(4q +a) —6acq(2q +a)]X7+[a(q +a)(4q +a) —6abq(2q +a)]X4=0, (A20)

bc(q +a)(4q + a)X4 —abcq(4q +a)X&+abc(4q + a)X4 —2abcq(q +a)X&

+abc(q +a)X4+ac(q +a)(4q +a)X7+ab(q +a)(4q +a)X4=1. (A21)

The solution in Eqs. (A14)-(A21) is X&=P, , i=1, 2, 3, . . . , 8 with a=(m*g,E /h ), b= —q —(m*a„,&u/qh),
and c= —

~ q —(m*a„,&u/qb); X, = Q;, i=1, 2, 3, . . . , 8, with a= (m~a„,E /l4 ), b= —
2 q —(m*a„,&/qh), and c

= —(3q/2) —(m~a„,&u/qh); X; =R&, i=1, 2, 3, . . . , 8, with a= (m~cP„,E~/h ), b=q —(m*a„,&u/qh), c= (q/2)
—(m*a„,~/qk), and q being changed to —q in Eqs. (A14)-(A21).
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