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Electronic surface states on (111) aluminum*
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We have calculated the projection of the three-dimensional energy bands of aluminum onto the

two-dimensional Brillouin zone (BZ) of the (111) face. Using a pseudopotential constructed in the same

way as that in our publications on the (001) and (110) faces, we have calculated eigenvalues and

eigenfunctions at high-symmetry points of the two-dimensional BZ for (111) thin films. Unlike

Boudreaux who found surface states only in the gap around 1, we find surface states exist in all the

energy gaps of the projected bands at the I', N, and K symmetry points of the two-dimensional BZ.
We conjecture that surface states always exist in the projected energy gaps of low-index surfaces of
simple metals. For the first time we find a surface eigenfunction which decays inwardly from one

surface toward the other; heretofore all surface states we have found decay inwardly from both surfaces

toward the center of the film.

In this paper we apply to the (111)face of alumi-
num our method of projecting the two-dimensional

energy bands which we have previously applied to
the (001) and (110) faces of aluminum. This pro-
jection shows band gaps throughout most of the two-
dimensional Brillouin zone (2D BZ) in which sur-
face states could occur. Some of the gaps lie above

the Fermi surface, but most occur in ranges of
E&E~. If there are surface states in the gaps be-
low E~ they should be occupied and detectable by
photoemission experiments. ' We have therefore3, 4

performed eigenvalue calculations on thin (111) alu-
minum films using a method which allows the po-
tential to fall off outside the film in a continuous

way. At the high-symmetry points we find surface
states occupying all gaps. This result differs
slightly from that of Boudreaux who reported sur-
face states at and around I', the center of the 20
BZ, but none at g or M. Our results are also in-
teresting in that at Ã we find eigenstates in which
the wave function is localized entirely on one face
or the other of the film. All other surface eigen-
states seen in this and preceding work'* ' have had

large amplitudes on both surfaces of the film. Only

in the limit of an infinitely thick film would even
and odd surface eigenstates become degenerate so
that one could combine them to form eigenstates
localized on one surface or the other.

A semi-infinite (111)aluminum crystal may be

produced by slicing an infinite crystal perpendicular
to the [11)]crystal axis. Since aluminum has face-
centered-cubic structure, this produces layers
parallel to the surface in which the atoms are ar-
ranged with hexagonal symmetry. There are three
types of layers and they repeat in an ABCABC ' ' '

order along the [111]direction. For a thin film
with an odd number of layers, this ordering im-
plies inversion symmetry through one of the atoms
in the central layer. For an even number of layers
the inversion center lies at a point midway between

the two central layers and directly below an atom
of the third type of layer. In this respect the (111)
film is different from the (001) and (110) films
where, for an odd number of layers, there is re-
flection symmetry through the center of the film
and for an even number of layers, a glide plane.
Figure 1 shows the (111)crystal structure. The
planar lattice vectors a and b are of length a/u 2,

0

where a =4. 04 A is the edge length of the aluminum
face-centered cube. The dashed lines indicate the
sides of the planar unit cell. The unit cell for a
film will have these planar dimensions times the
thickness of the film, including a selvage region
in which the potential and charge density fall to
zero. The number of atoms in the unit cell will
equal the number of occupied layers. The distance
between successive layers is a/W3. Layers are
farther apart in (111)films than in (001) or (110),

5l
1

I

FIG. 1. Crystal structure of the (111) face of face-
centered-cubic aluminum. Circles denote atoms in A

layers; squares denote atoms in B layers; triangles de-
note atoms in C layers.
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K, = (2v/a)( —3 3 3) K3 = (2v/a)(3 3 3) . (2)

Figure 2(b) shows the 2D BZ. We adopt the nota-
tion for high-symmetry points which has previously
been used for the surf ace-phonon problem. 7 In the
hexagonal basis (2), I'=(0, 0), M=(3, 0), and K=(3,
3). For comparison, the dashed line in Fig. 2(b)
shows the (333) face of the 3D fcc BZ.

As explained in Refs. 1 and 2 (hereafter called
I and II, respectively), the main features of the 2D

energy bands can be found by projecting the 3D
bands against the 2D BZ. This is most convenient-
ly done by defining an extended-slab-adapted 3D
BZ having the 2D BZ as base. The volume of the
extended-slab-adapted BZ is the same as that of
the usual 3D BZ, so that the two are equivalent.
For the (111)face this means the slab-adapted BZ
extends from —3K3& (2s/a)ke~ 3K3, where

K, = (2w/a)(1, 1, 1). (3)

For an infinitely thick (111)film, the allowed ei-
genvalues at I' are just allowed eigenvalues at the
3D points (k~, k~, k~), for all —3 & k~~ 3. We calcu-
late the 3D eigenvalues from the same superposi-
tion of Heine-Animalu' pseudopotentials as in I and

K,

FIG. 2. (a) Relationship between the rectangular axes
(g, y), the crystal lattice vectors (a, b) and the reciprocal-
lattice vectors (R&, R2), (b) The two-dimensional BZ for
the (111) face of fcc aluminum. Equivalent directions in
the 3D crystal are indicated.

so that the (ill) is the most densely packed face of
the fcc crystal.

In Fig. 2(a) we show the relationship between

a=3a(-1, 0, 1), b=3a(I, —1, 0) (1)

and their two-dimensional reciprocal-lattice vec-
tors
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FIG. 3. Projected 2D energy bands derived from the
3D band structure.

II. Because we have inversion rather than reflec-
tion symmetry in the central plane, there is, for a
general k, no operation which leaves k unchanged
while taking k~ to —k&. Therefore unlike the (001)
and (110) films, eigenvalues for + k& are not gener-
ally equal.

Figure 3 shows the main features of the 2D pro-
jection of the 3D bands. Since we are looking for
surface states, which can exist only within band

gaps, we use crosshatching to show a continuum of
states, and show the band gaps. At I' the gap
comes from a repulsion between kt. = 0. 5 states. In
3D this is just the L point, (3, 3, 3). The inversion
operation takes I" into itself making all Z' eigen-
values twofold degenerate between +0& and —k&

states (except at k& = 0. 5). ' This gap extends not
only along both the 3 and T symmetry directions
but in every direction between k& = 0. 5 states which
we have verified by calculating eigenvalues at a
point of no symmetry about halfway between I' and
the middle of the T' line.

As we move from I' toward M along the Z line,
we calculate 3D eigenvalues at (k~ —3n, k~ —3Q,( 1 1( 1
k&+ 3a), 0—c. —3, and —3 —k&& 3. The degeneracy
between + k~ and —k~ is lost, and the lines diverge
more the higher in energy they are. About 70%%up of

the distance from I" to M the k&= —0. 5 gap is
crossed by states with k& approximately equal to
0. 4 and disappears. At M there is a gap between
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FIG. 4. 3D energy bands from M-A@3 to M+QR3.
These are projected against M to make the 2D bands at
M.

k~ = 0. 5 states above E~. This comes from the 3D
point M s(2m/a)(~, 2, r) =(2w/a}[(- —,', ——,', $)+(—,', r~, ~)]
= (2w/a)(6, —,', —,') or (2n/a)(- 6, ——58, r'), which be-
comes after subtracting a reciprocal-lattice vector,
(2w/a)(6, r', —8}. In Fig. 4 we show the 3D energy
bands along a line from M —(2w/a)(r~, —,, a) to M
+(2m/a)(r~, r~, 2). We note that there is a second gap
in the 3D bands at about k&- 6 not much wider than
the projected gap so that surface states in the M
gap are not expected to fall off like a single expo-
nential. The Q gap pinches off in the Z direction
as the k&= 0. 5 lines are crossed by lines with k& of
approximately 0.2.

Along T' from Q to K we calculate eigenvalues
at the 3D points (k~+ n —3, k~ —n —3 k(+ 9) 0—n
—3 and —&& k& —&. The M gap extends about 3 of
the way toward K as a gap between k&

—-0. 5 states
until it pinches off as states of other k~ cross the
gap. At g there are three different gaps. The
gap between —0. 3 and —0.4 Ry is between k&= 0
states. The narrower gaps about —0. 06 and
—0. 525 Ry come from k~ = 0. 5. All these gaps
pinch off quickly along T'. Note that since E~
= —0. 33 Ry lies near the middle of one gap at K,
there is a possibility that a surface state might ex-
ist below EF at K and cross the Fermi level as we
go away from R.

Along T we calcul. ate eigenvalues at the 3D points
2 1

(k, , k, —n, k, +n), 0~n& & and —r& k& —r. Along
this direction all states are twofold degenerate be-
tween +k& and —k~. The two are related by a two-
fold rotation about the [011]axis, a 3D symmetry
operation. Between K and I', all the K gaps are

pinched off quickly. As indicated above, the gap at
I' extends 75% of the way toward K. The gap pinch-
es off as the two k&=0. 5 states become degenerate
at the 3D W point, i. e. , fK+(2m/a}(~, —,', 2) = (2w/a}
x[(0, —5, 2) + (~a, k, k)] = (2~/s)(a, 0, 1).

In order to do an eigenvalue calculation, we have
generated thin-film potentials from overlapping alu-
minum pseudopotentials. The Lang-Kohn jellium
potential' has been incorporated into the G = 0
Fourier transform of the thin-film potential as in I
and II in order to improve the falloff outside the
film. This is shown in Fig. 5. This figure also
shows that the planar average of the pseudopotential
rises to a peak midway between layers of atoms.
This results from our use of a pseudopotential
which has its minimum closer to the atom than one-
half the (111)interplanar spacing. This effect was
not seen in the G= 0 transforms of the (110) and
(001}potentials where the layers are closer togeth-
er.

The basis functions in which we expand the wave
functions are the same as those used previously. ' '
Plane waves are used to expand the planar part of
the wave function, and the part of the wave function
in the [111]direction is expanded in sines and co-
sines of k~ (k, —= k&2'/n }Valu.es of k& are chosen
so that the wave function is identically zero at the
outer edge of the selvage region. ' In previous
work, reflection symmetry through the center layer
of the film has implied that each irreducible repre-
sentation would contain only sines or cosines of
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FIG. 5. G = 0 Fourier transform of the potential for a
(111) aluminum film of 11 occupied layers and three sel-
vage layers on each side. The potential is shown for
z &0, and the jellium edge is halfway between the last
occupied and the first unoccupied layer. The potential
for jellium of the appropriate electron density is also
shown.
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TABLE I. Character table for the group at I'.

N

C)
O3:

p+

-0.68 Ry'~'J ~VV'

-0.06 Ry

—0.05

+I,
I"-,

I'2+

I'2
+I,

r;

2C)

1
1
1
1

—1
—1

1

1
—1
—1

0
0

2
—2

2C3

1
—1
—1

1
0
0

OD5—
K

2Ry

A B C A B C A B Z

—0. 522 and —0. 064 Ry. Figure 8 shows the I
y

and R, surface states. The decay of the I'& state is
small because of the narrowness of the I' gap.
Furthermore, the decay does not seem to be
smooth. This is because the I', surface states
comes mainly from the three-dimensional I-, states
k=+(2v/a)(~, —,, ~). Since z is in the (1, 1, 1) direc-
tion one sees that k~ changes by m over an inter-
planar spacing. Therefore a maximum or mini
mum occurs for each interplanar spacing. The
crystal, however, is periodic over a distance of
three (111) interplanar spacings and if one ex-
amines every third extremum of the I", surface
state one indeed sees that they decay reasonably
smoothly. The same effect occurred for (001)
and (110) films. " There the crystal periodicity
was over two interplanar spacings so that the max-
ima decayed smoothly as did the minima, but if
one looks at the maxima and minima together one

sees that they do not decay smoothly.
We thus see that in the (111)face of aluminum

all energy band gaps at high symmetry points are
occupied by surface states. This also proved to be
the case for the other two faces of aluminum which
we have studied, and for the (001) face of Li.
Where we have been able to calculate eigenvalues
and eigenfunctions along lines between high-sym-
metry points we have seen that the surface states
extend along the gaps until just before the gap cut-
off. It is our conjecture that surface states exist
in all gaps of any simple-metal low-index surface.
This contradicts the claim of Gurman and Pendry'

FIG. 8. I'& and K~ surface states and their eigenval-
ues. Results are shown for the right-half of a film of 33
occupied layers, which are labeled. There are three sel-
vage layers on each side of the film.

that for gaps at the 3D BZ boundary, the existence
of a surface state depends on the sign of the matrix
element responsible for the gap and therefore there
is only a 5dPo chance of a surface state at the zone

boundary. This result has been shown by one of
us to be true only when the matrix element V(k)
has k along the surface normal. For a model con-
sisting of weak V(k)e' ' potentials superposed in-
side a finite square-well potential, he has shown

a surface state always exists if there are a pair of
degenerate V(k;) and V(k;) such that k;+k, lies
along the surface normal. It seems likely that in
a real metal there are a sufficient number of V(k)
present that one can always satisfy this condition
for low-index surfaces. The effect of having a
smooth potential rather than the discontinuous mod-
el potential is not completely clear. However, the
fact that the model potential result is independent
of where one chooses to put the discontinuity leads
us to believe that the result holds for a realistic
continuous potential.

In this paper, as in our previous work on other
faces of aluminum, we have found surface states
which were not found by Boudreaux in calculations
with a discontinuous potential. It is clear that
there should be effects of this difference in poten-
tials, e.g. , on the decay constants of the surface
states. But considering the results of our calcula-
tion' with discontinuous potentials, it does not
seem that this difference in potentials can cause
the disappearance of the surface states.

APPENDIX: GROUP THEORY

For a (ill) film with either an odd or even num-

ber of layers, there is inversion symmetry through
a point in the central plane. The group for this
film is just the triangle group —C~„(3m)—times the

TABLE II. Character table for the group at M.

M'
1

M'
2

M2
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TABLE III. Character table for the group at K.

K

K)

C3 C

K) 1 1

inversion. The triangle group contains two three-
fold rotations and three reflection lines which bi-
sect the angles at the vertices of the triangle. If
we use II to denote the inversion, and a bar over
an operation to denote the operation multiplied by
II, then the group at I" is just given by the charac-
ter table shown in Table I.

At M we have only four operations, E, 0, o„
that O„plane in which M lies, and O', . The charac-
ter table is given in Table II.

At K there are six operations, E, 2C„and 30„,
and the irreducible representations are given by
Table III.

We list below the S2DPW for those irreducible
representations which have negative energy, in
terms of the nonorthogonal vectors K, =(2w/a)
x( —', , —',, 3) and K2 —-(2/a)(-', , —~, 3). The i 3Pi
I7„and (Kz)z S2DPW are obtained by replacing
sin(k, z) and cos(k z) in I";, Mi, Zi and (Z2), by
cos(k,z) and sin(k, z).

4, =
I 0, 0) cos(k,z),

e, =(I/~6)(I1, 0)+
I
—1, 0)+ lo, —1&+ I0, 1&+

I
—1, 1&+ I1, —1&) cos(ka),

4 =(I/~6)( I1, 0) —
I

—1, 0)+ 10, —1& —I0 I)+
I

—I, » —
I » -»)»n(k"& '

M '
1' 'k = (1/~2( I

-', 0& +
I

- -' 0&) «s(k,z),
~2 = (I/u2)( I 2, 0& —

I
—l, 0&)»n(k~)

~, =(I/~2)(l z, 0&+
I

—z, 0&) cos(".z)

+4 = (I/~2)( I 2, 0& —
I
——,', 0)) sin(k, z),

5
——,(I-„1&+

I
—,', —I&+

I

—2, —»+
I

—z 1&)cos(k~),

+,=-,'(I-.', 1&+ I-,', -1& —l-k, —1& —I--', 1&)»n(k.z),
+,=(I/~2(lk, —1)+

I
-~2, 1))cos(k,z);

~, = (I/WS)(l-. , —.&+ I-. , - -.)+
I

- -. , 3&) o ( . ),
+, (I/u6)(I43, ,&+ I, ,)+ I

~ -t3&+
I
-„,&+ I, , ~&+ I., -', &) cos(k.z&,

+, =(I/W6)(l —,', l&+
I 4, —-', &+

I

—~3 s& —
I

—l, 3& —
I 3, —s& —I-', 3&)»n(k.z&

44=(I/~3(l —-'„3)+
I 3 3)+

I
3 3&)cos(k

(K,),: +, =(~z, )(.I3, 3) —I3, -x&+el-~, 3&)«»(k.z),
=(]/~2)(

I
3 3& I 3 3&) sin(k~),

+,=(~)(-'I ——:,——:&—
I
——:,l)+-'I 3

—3&) «s(k"»
+4=(I/~2(I —~s 3& —

I l, —3&)»n(k&)

e, =(I/us)(l-„.& —.I3, --, & —.I--„-,&+ I--„-.&
--.I-„-~& —.I, 3&) cos(»&

+ = (1/&3)( f
-'„k&—2 I k, ——,) —l f

—-'„-',
&

—
I
—3, 4&+ l

I l, —l & + z I 3, 3 »»n(kz&

+.= l( I l, --'& —
I

--', -') —I-', --'&+ I-' -'»
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Note that the K, surface states which are large on only one of the two surfaces of the film transform ac-
cording to (K,), ,=2 ' [(K,), a(K,),j.
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