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Self-consistent band structure of ordered P-brass*
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A comparison of self-consistent charge distributions and density of states for elemental bcc copper and
zinc and ordered Cuzn shows that in the compound, a net flow of electronic charge from zinc to
copper occurs and a 3d-band narrowing of a factor of 2 results from the decrease in overlap between
like atoms.

I. INTRODUCTION

The state of the art in band calculations has
progressed to the point where self-consistent
charge densities and band energies can be routine-
ly generated. Closure of the self-consistency loop
removes many of the obscuring uncertainties and

permits detailed studies of Fermi surfaces' and

photoemission of elemental solids. This paper
represents the extension of the same physical
model and computational techniques to the cesium
chloride structure. The study of P-brass (GuZn}
is motivated by the existence of (i) earlier non-

self-consistent band calculations, (ii) photo-
emission measurements which clearly display the
location in energy of the Cu and Zn d bands, ' and

(iii) optical measurements.
In this paper, we report the results of four in-

dependent self-consistent band calculations. Two
CuZn calculations were done in order to study the
"ffects of small changes in the muffin-tin radii of
the constituent atoms. Two additional calculations
were made, one for bcc CuCu and one for bcc ZnZn

with the same lattice spacing as CuZn in order to
have a basis fo r comparison of the crystal charge
distributions and the density of states. These two

latter calculations allow us to study difference in
charge distributions and in density of states be-
tween hypothetical elemental solids and the com-
pound. We find that, in the compound, there is a
net flow of electronic charge from thqouterregions
of the zinc atoms to the outer regions of the cop-
per atoms and there is a considerable narrowing
of the copper and zinc 3d bands.

This paper is organized as follows. In Sec. II,
we review the computational techniques used in the
calculations and identify the fundamental assump-
tions and approximations made. Section III gives
our results for the band energies and compares
these results with those of several other calcula-
tions. In Sec. IV, we present our density-of-
states results showing band narrowing and we
compare these with photoemission measurements.
Finally, in Sec. V, we present evidence to show

that considerable charge redistribution occurs in

the compound and we present our over-all con-
clusions of considerable spillover of excess mobile

charge from the outer portion of the zinc atom to
the outer portion of the copper atom.

II. CALCULATIONS

The band calculations use the Green's function
method of Korringa, Kohn, and Rostoker' (KKR),
which has been made fast enough' to permit self-
consistent treatment of compound structures.
Both potential and charge densities are assumed
to have the "muffin-tin" form, i. e. , spherically
symmetric within the nonoverlapping spheres as-
sociated with each constituent and constant in the
interstitial regions. This assumption, which is
used extensively in band calculations, s known to
be approximately valid for closely packed struc-
tures. The exchange and correlation contributions
to the potential are obtained as in the Xn method'

but with the scaling parameter e determined by an
empirical fit to the Fermi surface of elemental
copper. ' This value (n=0. 77) is somewhat larger
than the theoretical value (n =0.71}found by
Schwartz' for atomic copperby fitting Hartree-
Fock total energies. Although we have no empiri-
cal value for zinc, theoretical estimates of the
atomic-number dependence of n suggests similar
values for copper and zinc. We therefore used the
empirical value a = 0.77 throughout. The starting
point of the calculation is a superposition of Her-
man-Skillman" copper and zinc atomic-charge
densities. This charge density (or the crystal
charge density during the iteration to self-consis-
ten"y) is spherically averaged in each atomic muf-

fin tin, and is replaced by a constant, chosen to
make the unit cell neutral, in the interstitial re-
gion. The Coulomb potential due to this charge
density can be regarded as the sum of the poten-
tials of neutral, spherically symmetric, charge
distributions in each muffin tin, and the potential
due to nuclei of reduced charge embedded in a
constant negative background. The former poten-
tials are obtained by straightforward integration
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of Poisson's equation in each muffin tin, and the
muffin-tin average of the latter potential involves
only two lattice sums, which can be related to sim-
ilar sums for the simple cubic and body-centered-
cubic lattices. Values for these have been given
by Coldwell-Horsfall and Maradudin. '~ The ex-
change potential, which is a simple function of the
charge density in the Xa. method, is added in and
finally the interstitial average of the resulting po-
tential is subtracted in order to make the final po-
tential zero in the interstitial region.

The wave functions and band energies are found

by the KKR method on a uniform k-space mesh
corresponding to 203 points in the irreducible ~4' th
wedge of the Brillouin zone. A generalization of
the method of Gilat and Raubenheimer" is used to
determine the density of states and to locate the
Fermi energy.

The new crystal charge density p found by sum-
mation over occupied one-electron orbitals is then
compared with the input charge density p'. For
self-consistency, we require that

4s J, " r' dr
~

p' (r) —p(r)
~

& 0.005

for each muffin-tin sphere, where R~ is the ap-
propriate muffin-tin radius. If the self-consis-
tency criterion is not satisfied, a linear combina-
tion of p and p' is used to construct a new potential
for the next iteration and a complete KKR band
calculation is carried out with both core and va-
lence states free to readjust. Self-consistency is
usually achieved in about 30 iterations and yields
band energies stable to within 0.01 eV.

Two complete self-consistent band calculations
using the measured CuZn lattice parameter,
a = 5. 5819 a. u. , were done. In one case the po-
tential was constructed using muffin-tin spheres
with equal radii (2. 4170 a. u. ), while in the second
case, muffin-tin spheres of unequal radii (2. 3771
a. u. for copper and 2.4569 a. u. for zinc) were
used. The muffin-tin radii for the second calcu-
lation were determined by considering a superpo-

TABLE I. Band energies relative to Ez in eV.

Band index

12
11
10

9
8
7
6
5

3
2
1

-2.254
—3.115
-3.541
—3.541
—4.009
—5.272
—5.907
—8.427
—8.623
—8.623
-8.854
-8.919

&1.193
—3.048
—3.048
—3.048
—3.937
-3.937
—8.425
—8.425
—8.425
-9.003
—9.003
-9.878

-1.694
—1.694
-2.854

3~ 217
—3 ~ 217
—3.736
—4.834
—8.220
—8.614
—8.614
—8.833
—9.069

&1.193
&1.193
—2.835
-2.835
—4.414
—4.414
—4.414
—8.210
-8.210
—8.869
—8.869
—8.869

sition of Herman-Skillman atomic potentials for
copper and zinc and finding the radial position of
zero derivative.

The two calculations yield almost idential ener-
gy bands with the copper 3d bands and the s and p
bands agreeing to within 0.01 eV throughout the
Brillouin zone. However, the unequal radii cal-
culation gives a constant downward shift of about
0.07 eV for the zinc 3d bands. Although the dif-
ferences are all small, we note that they are con-
sistent with our experience in band calculations,
The zinc 3d bands, which are very narrow and lie
about 10 eV below the Fermi energy E~, are very
sensitive to computational details.

III. COMPARISON

Since our two calculations yield almost identical
results, we concentrate on the unequal-radii cal-
culation. The energy bands along the symmetry
directions of the Brillouin zone are shown in Fig.
1 and listed, for the symmetry points X, 1', M,
and R, in Table I in order of decreasing band in-
dex such that there is a direct correspondenc. e be-
tween the band plot and the table. Coming up from
low energies up, we see (i) a low-lying s band near
I', (ii) a zinc 3d band centered near —9.5 eV and
approximately 1.0-eV wide (all energies are rela-
tive to the Fermi energy), (iii) a mixture of s- and
p- plane-wave-like states, and (iv) a copper 3d
band approximately 1.5-eV wide just below the
Fermi energy. The copper and zinc 3d-band
widths, at the symmetry points of the Brillouin

0
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Skriver and
Christensen

A r ling haus

TABLE II. 3d-band widths in eV.

X I

Cu Zn Cu Zn Cu Zn Cu Zn

0.85 ~ ~ ~

0.88 0.53
0.89 0.42 0.90 ''' 1.54 0.53
0.95 0.46 1.00 0.66 1.61 0.54

0.89 0.49 0.89 0.58 0.88 0.85 1.58 0.61

FIG. l. Band energies for ordered P-brass. Reference 4. 'Reference 2.
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TABLE III. Edge of copper 3d band relative to E& in
eV.

—2.84—3 ~ 22—3.05This work
Skriver and
Christensen —3.12 —3.09 —3.32 —2.89

PHOTOEMSSlON

zone, are listed in Table II along with the corre-
sponding widths as calculated by Arlinghous and

by Skriver and Christensen. 4 As Table II shows,
we find slightly wider zinc 3d bands than Arling-
haus (except at X where they are nearly equal)
and copper 3d-band widths which agree with Skriv-
er and Christensen to within 0.04 eV. In Table III
we compare the top of our copper 3d bands with
the Skriver-Christensen results and again see good

agreement.
The most striking difference between our calcu-

lations and those of Arlinghaus and of Skriver and
Christensen is the existence of an s band at I
which extends well below the zinc 3d bands. The
source of these differences in detail must be either
in the different treatment of exchange (they use
full Slater exchange while we use an empirical ex-
change with a =0.77) or must be a consequence of
self-consistency.

Except for small differences in detail, we find
remarkable over-all agreement with the non-self-

~DOS

-8 0
ENERGY {eV)

FIG. 3. Density of states with (m/m*) —1 = 0. 08 and
high-energy photoemission.

consistent results of the comparison calculations.
This supports the general lore that non-self-con-
sistent band calculations using full Slater exchange
can approximate the results of self-consistent cal-
culations using more reasonable (either theoretical
or empirical) exchange.

IV. DENSITY OF STATES AND PHOTOEMISSION

ZnZn
The density of states N(E) for CuZn, CuCu, and

ZnZn (i.e. , bcc, Cu, and Zn with the same lattice
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FIG. 2. Density of states for CuZn, CuCu, and ZnZn,

all with the same lattice.
FIG. 4. Difference in 4~r p between a copper atom in

CuZn and in CuCu.
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theory indicates Cu d bands -2 eV wide and -4 eV
below E~, and Zn d bands -1eV and -9.5 eV below
E~. The greatest deviation from experiment lies
in the width of both sets of d-bands. We suspect
that the photoemission data contain broadening,
perhaps due to disorder in the crystal, not ac-
counted for in our density of states. Our suspicion
of experimental broadening is based in part on the
complete absence of internal structure in the mea-
sured d bands. In particular, we note that there
is no experimental indication of our "zone-face"
bands whose existence should be insensitive to the
details of the theory.

V. CHARGE REDISTRIBUTIONS

FIG. 5. Difference in 47(.r p between a zinc atom in
CuZn and in ZnZn.

as CuZn) are shown in Fig. 2 where in all cases,
the energy values refer to the respective Fermi
levels. At 20k of peak value, a band narrowing
of approximately a factor of 2 is apparent in the
compound for both the copper 3d bands and the zinc
3d bands. In addition, we see the appearance of
two distinct peaks, one on each side of the main
copper peak in CuZn which we identify, by com-
paring with the band plot of Fig. 1, as being due

to band mixing or hybridization near the BriQouin-
zone face defined by symmetry points M, Z, and
R.

The results represented in Figs. 1 and 2 are
ground-state results only and should not be com-
pared directly with experiment. For excited state
properties, it has been shown" that an energy-de-
pendent correction which alters all eigenvalues
according to

n E( ——(E( —EF ) (m/m* —1) (2)

can be used. This has the effect of spreading all bands
relative to Ez by an amount proportional to (m/m*)
—1, the electron-electron effective mass correction.
In the density-of -states curves, the correction
amounts to spreading the curves holding E+ constant.
Our experience with elemental copper indicates that a
value of (m/m*) —1=0.08 gives a reasonable fit to
both e~ and photoemission data. Figure 3 displays
the result of applying the same correction to the
density-of-states curve of CuZn along with the
photoemission results of Nilsson and Lindau. ' The

The electronic charge distribution associated
with a given atom in a solid depends upon the atom-
ic environment. In Fig. 4, we describe the dif-
ference between copper in CuZn and copper in bcc
CuCu by plotting

&(4&& P)c„)—= ( ~& Pcu)cuz n (4& Pcu)cucu

vs r' . Figure 5 is the corresponding curve for
zinc. From these curves, we see that in CuZn,
there is a net buildup of charge around the copper
atoms and a net depletion of charge around the zinc
atom relative to the bcc elemental structures with the
same lattice constant. We take this as evidence
of charge transfer from zinc to copper in forming
the compound. We make no attempt to calculate
the total charge transfer because this would re-
quire a precise definition of the spacial boundaries
associated with each atom.

Figures 4 and 5 show that the charge redistribu-
tion is concentrated in the outer regions of the
atoms. Since the core regions (r'~' 1.0) show
only slight changes, we conclude that the core
charges do not contribute to the charge transfer.
That is, the total core charge does not change ap-
preciably.

The error limits shown are based on our self-
consistency requirement as expressed in Eq. (1),
assuming a constant error throughout the spatial
extent of the charge distribution. The apparent
core oscillations are therefore seen to be some-
what greater than the errors in our calculations.
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