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We discuss the free energy of an electron gas with the long-range Coulomb interaction by using the
dielectric-response function which includes the higherwrder exchange processes. Our result reproduces
earlier results of Gell-Mann and Srueckner, ' Nozikres and Pines; Hubbard; Englert and Brout; and.

others as special cases. The longitudinal spin-fluctuation effect is included in the present result, but
its role seems to be significantly different from what is expected in the Hubbard-type model due to
the large cross effect of the spin fluctuation and charge fluctuation even in the paramagnetic state.

I. INTRODUCTION

It is well known that the ground-state energy
(T=O) or the free energy (T&0) of an electron gas
can be related to the dielectric constant of the
electron gas. '~ Recently we studied the dielectric
response of an electron gas including the higher-
order exchange processes. 3 In this paper we dis-
cuss the free energy of an electron gas by using
the dielectric-response function that includes the
effect of the higher-order exchange processes.
One of the principal purposes of this paper is to
expose the nature of the approximation included in
our dielectric -response functions by comparing
the free energy we derive with that of others. We
find that in the zero-temperature limit our result
reduces to the result of Hubbard4 if a correspon-
dence betweenhis screened Coulomb interaction
and our effective exchange interaction is assumed.
Note that if the effect of the higher-order exchange
processes is neglected the result of Hubbard re-
duces to that of Gell-Mann and Brueckner' and
others. The above relation between our result
and that of Hubbard and others seems to clarify
the nature of the approximations contained in our
dielectric response function. Since our discussion
of the dielectric response can be naturally extended
to the ferromagnetic state of the electron gas, we
will be able to calculate the free energy of the
electron gas in the ferromagnetic state in the same
approximation as in the paramagnetic state. 6

Thus the result in the present paper constitutes
an extension of Hubbard's result to the fi.nite tem-
perature. There is, however, one important point
we would like to emphasize in comparing our re-
sult with that of Hubbard. In our discussion we
point out that the effective exchange interaction
V(q) appearing in our dielectric response function
and accordingly in the free energy or ground-state
energy is the same as that which produces the ex-
change enhancement of the paramagnetic suscepti-
bility. This point about V(q) leads us to a very
interesting finding. The effect of the spin fluctua-

II. CALCULATION OF THE FREE ENERGY BY THE
DIELECTRIC FORM ULATION

The Hamiltonian of electrons including the long-
range Coulomb interaction, imbedded in the uni-
form positive-charge background, is

1
+

2
Ds V(K) c&~c&.~s c~ i „~.c~+„~,

l, l', v;
(2. l)

where ct„ is the creation operator of an electron at
the state with energy &, and spin a(=+or —), V(v)
is the Fourier transform of the Coulomb interac-
tion

tion in the strongly exchange-enhanced paramag-
netic metals has been studied for the Hubbard-
type short-range-interaction model and the spin-
fluctuation effect was found to enhance the low-tem-
perature electronic specific heat proportionally
to the logarithm of the exchange enhancement fac-
tor. In this paper we ask, what is the nature of
the spin-fluctuation effect in the long-range Cou-
lomb-interaction model'? There is spin fluctua-
tion in the long-range Coulomb model as well as
in the Hubbard model. This can be seen from the
fact that the paramagnetic susceptibilities of both
models are essentially the same. But in the long-
range Coulomb interaction model the contribution of
the spin-fluctuation effect to the free energy seems
to be significantly modified due to the interference
of the spin fluctuation and charge fluctuation.

In Sec. II we review the dielectric-formulation
method of calculating the free energy of the inter-
acting electron gas. The cha. rge (electron density)
susceptibility including the higher -order exchange
processes required in the calculation of the free
energy is obtained in Sec. III. In Sec. IV the free
energy is explicitly obtained using the result of
Sec. III. Discussions of our results are given in
Sec. V.
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V((() = 4((e'/Qv, (2. 2)

The second term in Eq. (2. 3) is a, constant and the
essential part of the electron interaction is repre-
sented by the last term, which is of the form of
density-density interaction.

Generally if we write the total Hamiltonian,
which is the sum of the one-particle part 3C, and
the interaction X„„asa function of the coupling
strength E,

I(:(h) =30, + ]X„,
= 300+ 30(.((( ) (2. 8)

where 0 is the volume of the system, and the
prime on the summation indicates to exclude v =0
from the sum. It is well known that Eq. (2. 1) can
be rewritten ase

30 = Z e,c'„c„———Z V(q) + —Z V(q)p(q)p(- q),
1 n 1

(2. 3)
where n is the total number of electrons in the sys-
tem and p(q) is the Fourier transform of the elec-
tron density operator,

p(q) =Z (ce,c(, , + c( ce ) . (2. 4)

density linear to the external potential. Thus de-
fined, the charge susceptibility is given by the
Kubo formula' as

00

X„(q, (d) = e' — dte'"'&[p(q, t), p(-q)])
0

t= e Xee(% (d) ~ (2. 1o)

where j, ] is the commutator, ( ~ ) is the therm-
al expectation without the external potential, and

p(q, t) is given in the Heisenberg representation
with the Hamiltonian which includes the electron
interaction but not the external potential. Note
that we can define X„(q, ~)( simply by replacing
( ), in Eq. (2. 10). Then by the fluctuation-dis-
sipation theorem, the correlation of the electron
density is given in terms of the imaginary part of
the dynamical charge susceptibility:

&p(q)p(- q)) = —' coth
Ph(u

27t. „2
x Im Xee(q~ (d + io'), d(d . (2. 11)

Finally the free energy is obtained from Eqs. (2. 8)
and (2. 11) as

&F=—5 V(q) ~ d(d coth P5~
47t 2

1

dE ImX„(q, (d + io')e.
0

the free energy with the full interaction ($ = 1),
F(1), is'

1F(I) =F(o)+ —«...(&)),«.t

In Eq. (2. 6), F(0) is the free energy of the system
without any interaction and (A)( is the thermal
average with the Hamiltonian R($):

(2. 6) (2. 12)

Note that Eq. (2. 12) is an exact expression. Ap-
proximations are introduced only through the ap-
proximate calculation of the linear electron-density
susceptibility X„(q, ~)(. Most of the previous cal-
culation of the ground-state energy or free energy
of the Coulomb electron gas used the ordinary ran-
dom-phase approximation (RPA), which amounts to
neglecting the higher-order exchange processes in
calculating X„(q, ~),. In Sec. III we calculate

X„(q, (d) including the higher-order exchange pro-
cesses.

&A) Tr(e-(Ã((&A)/Trewec(e) (2. '7)

By applying Eq. (2. 6) to the Hamiltonian Eq.
(2. 3) we obtain the expression for the free energy
of the interacting electron gas,

—= F(0) ———Z V(q)+4F.
1n
2Q, (2. 8)

The contribution of the electron interaction to the
free energy AF is given in terms of the electron-
density fluctuation. By the general fluctuation-
dissipation theorem the electron-density fluc-
tuation is related to the imaginary part of the
electron-density response function. Using this
fluctuation-dissipation theorem we rewrite 4I:,
Eq. (2.8), in terms of electron-density response
function.

First, we define the linear response of the elec-
tron density to a wave-number- and frequency-de-
pendent external potential q((q, (d) as

III. DYNAMICAL CHARGE SUSCEPTIBILiTY INCLUDING

EXCHANGE EFFECTS

In calculating the charge susceptibility defined

by Eq. (2. 10) for the Hamiltonian Eq. (2.1) we

note that X„(q, co+ io') is the Fourier transform of
the following retarded double-time Green's func-
tion':

&p(q, t) I p(-q)) =-(t/8)([p(q, t), p(-q)])8(t), (3 I)

where 8(t) is the step function

(3.2)'')= o't o

1 n 1 [ i
F(1)=F(0)———~ V(q)+ —~ V(q)JI dk&p(q)p( q)&(-

X..(q, ~) = ep(q, ~)/q (q, ~),
where p(q, (e) is the expectation of the electron

(2. 8)
A standard way of obtaining the Green's function is
to solve its equation of motion,
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&p(q)IP(-q}&.= J „"&p(q, t}IP(-q)) e df,

the equation of motion can be rewritten as

«&p(q)~p(-q)& = —&[p(q), p(-q)]&

+&Ip(q) K]I p(-q)&.

(3.4)

(s. 5)

Hereafter we investigate on the Fourier-trans-
formed equation of motion, Eq. (3.5).

Corresponding to the following decomposition of
the density operator,

p(q) = p'(q) + p (q)

= ~ [pk(q)+ p,(q)], (3.6)

where

pk(q) = Ckkc~a k, (3 7)

the Green's function can also be decomposed as

&p(q)l p(- q)& =~ [&p'k(q) Ip(- q)& +&pk(q) Ip(- q)& ].
k (s. 6)

Corresponding to Eq. (3.5) we obtain the following
form for the equation of motion:

@or&p'k(q) I p( q)&. =
& -Ipk(q), p(- q)]&

+ ([pk(q) Ko + K.] I p(q)&. , (S.9)

where we put K=Ko+K, , Ko and K, being, re-
spectively, the kinetic energy and the Coulomb
intera, ction in Eq. (2. 1). A similar equation can
be obtained for (p,(q) I p(- q))„.

The commutators appearing in Eq. (3.9) are
easily calculated:

r'fr „—&p(q, f)I p( -q)&= —6(f)&[p(q), p( q)]&

+&[p(q, f) K]lp(-q)& (3 3)

If we define the Fourier transform of the Green's
function as

(CkoCka& nko (3.14)

t—E V(- q}n„c,.c„,,
l, a

t-Z V(K)nk~ck a+aCk+o+q +

r ~V&~ nk„, C'„Ck„,. (s. is)

The principle of the approximation in Eq. (3.15) is
to retain only those terms which contain the diag-
onal number operators, such as ct„ck,„and re-
place the number operator by their thermal expec-
tation nka . As will be seen later, the three terms
on the right-hand side of Eq. (3.15) correspond,
respectively, to the usual RPA term, the ex-
change-scattering term (which gives rise to the
exchange enhancement of the paramagnetic sus-
ceptibility}, and the exchange self-energy (which
is responsible for the spin splitting of the bands in
the ferromagnetic state).

The second term on the right-hand side of Eq.
(3.12) can be approximated similarly to Eq. (3.15)
as

V(K) ~ia~k a +crea, ock a, +
1, K, a

= —Q V(q)nk+aek+cracr+aeko
loa

The last two terms on the right-hand side of
Eq. (3.13) are new Green's functions of more com-
plicated structure than the original one. In order
to reduce these higher-order Green's function to
lower-order ones, we introduce the following ap-
proximations to the first term on the right-hand
side of the commutator, Eq. (3. 12):

tV(K)cr, cg cr „ck
K, laa

[p'k(q) p(- q)] = c' ck. - c',..c ..
[pk(q) Ko] (KkNr Kk) Ck+ Ck a,

[p',(q), K,] = Z V(K)cr~c'„cr „,c~.„.
l, K, a

(s. io)

(3.11)

+Xi V(K)nkeq + +Ck+aCk a+a. +

+Z V(K)n„„,c„c„,, (3.16)

+ Z V(K)Cro Ct+„,Crio ocrHa, . (3.12)
la Kaa

By inserting Eqs. (3.10)-(3.12) into Eq. (3.9) we
obtain

kryo(p'k(q)
~
p(- q)) = (n... , n, ,)-

+ (Kk..—Kk)&p'k(q) I
p(- q)&.

+ Z V(K)(c'„c'„c,„.C„,„,i p(-q))„
l, K, a

+ Z V(K)(cr„crk,„,c„„,ck, ~
p(- q)&„,

(3.13)
where we put

Further, the second terms on the right-hand side
of Eqs. (3.15) and (3.16) can be simplified by intro-
ducing the effective exchange interaction V(q) as
follows:

Z V(K)cr~„,ck,„,= V(q) Kc'„,„,c„„„,. (3.17)
K K

V(q) defined in Eq. (3.17) should depend on k, but
we neglect that dependence in what follows.

Inserting Eqs. (3.15), (3.16), and (3.17) into
Eqs. (3.13) we obtain

(@ro + Kk, —
Kk, .) &p(k)qI p(- q)&

= (n„, , nk, ,) + V(q) (n„-n„, ,)-
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&& [&p'(q)l p(- q)). + &p (q)l p(- q)&.]

—V(q) (n, , —n„„,) &p'(q)
I
p(- q)) ], (3.18)

where we introduced the one-particle energy includ-
ing the exchange self-energy e~

i„,= c„-2 V(~)n,„,. (3.18)

If we divide both sides of Eq. (3.18) and similar
equations for (p„(q) ( p(- q))„by (8&@ + i~ —i&,„,)
and sum over k, we obtain

&p'(q)
I
p(- q)&„=F,(q, cu) —V(q)F, (q, &u)

[& '( )I (- )&..& ()I (- )&.]

+ V(q) F,(q, ~)&p'(q) I
(- q)).,

(3.20)
where F,(q, ~) are the Lindhard functions of s spin
electrons:

quite parallel to the above calculation of the charge
susceptibility. We encounter exactly the same
commutator as Eq. (3.12) and if we employ exact-
ly the same approximation to the commutator as
above, we obtain

( )
2F, (q, (u)+F (q, (u)+4V(q)F, (q, (u)F (q, (u)

1+ V(q)[F, (q, (u)+F (q, u))]

(3.28)
which in the paramagnetic state reduces to the
familiar form'3

2F(q, (u) 3.27xcc(q) ~) p B I v( )F( ) &

that is, the effective exchange interaction V(q) ap-
pearing in the charge susceptibility is the same as
that which appears in the denominator of the para-
magnetic susceptibility. This fact is very impor-
tant in our later discussions.

F,(q, (u) =~
Eq, ~ 6q+& ~+ cu

(3.21) IV. FREE ENERGY OF THE INTERACTING ELECTRON GAS

x,', (q ~)=—x..(q ~)=&p(q)lp(-q)&.

i
( )

F,(q, (u)+i" (q, (u)

1+ v(q) [F,(q, ~) + & (q, (u)]
' (3.22)

where we introduced the exchange-enhanced Lind-
hard function F,(q, ~),

F,(q, (u)

1 —v(q)F, (q, (u) (3.23)

Note that Eq. (3.22) is valid for the ferromag-
netic state of the electron gas as well as for the
paramagnetic state. If we put &v=0 in Eq. (3.22)
it reduces to our earlier calculation of static
charge susceptibility. Essentially the same re-
sult as Eq. (3.22) was also obtained by Rajagopal
et ai. "

For the paramagnetic state Eq. (3.22) is sim-
plified to

2F(q, (u)

1+ [2 V(q) —V(q)]F(q, (u)
(3.24)

where F(q, ~) is the Lindhard function in the para-
magnetic state which is spin independent,

F,(q, (u) =F (q, (u)-=F(q, ~) (3.25)

If we put V(q) =0 in Eq. (3.24), it reduces to the
RPA result. "

In order to illustrate the physical nature of the
effective exchange interaction V(q) let us consider
the longitudinal magnetic susceptibility X„(q, m)

in the present model. If we use the Kubo formula
the calculation of the magnetic susceptibility is

By solving the coupled equation (3.20) we obtain the
charge susceptibility

The V(0) defined in Eq. (4. 1) should depend on k

but we neglect that dependence. Note that the ap-
proximation in Eq. (4. 1) is consistent with that in
Eq. (3.17). If we use the approximation in Eq.
(4. 1), X,', (q, u)& of the paramagnetic state takes the
following simple form:

p ( )
2F(qq (d)

' I+t[2V(q)- v(q)]F(q, ~)
' (4 2)

By putting Eq. (4. 2) into Eq. (2. 12) and carrying
out the integration over $, we obtain the contribu-
tion of the electron interaction to the free energy,

V(q)
"

Ph(uaF =&~ Z
2V(q) V( )

du&coth
2

X Im In{1+ [2V(q) —V(q)]F(q, a + i0')3 . (4. 3)

Let us discuss how our result compares with the
earlier results. If we put V(q) =0 in Eq. (4. 3) it

%e calculate the free energy of the electron gas
by inserting Eq. (3. 22) into Eq. (2. 12). Note that

X,', (q, v), is obtained by replacing V(q) and V(q),
respectively, by t'V(q) and )V(q) in X„(q,u). Since
our charge susceptibility, Eq. (3. 22), is equally
valid for the ferromagnetic state of the electron gas
as well as for the paramagnetic state, we can cal-
culate the free energy for both states by the same
approximation. In the present paper, however, we
will discuss only the free energy of the paramag-
netic state by using the much simpler form of the
charge susceptibility of the paramagnetic state,
Eq. (3.24).

In carrying out the calculation of the free energy,
we introduce the following simplification similar to
Eq. (3.17):

c~ = e~ —Q V(x)n~, „,= e~ —
V, (0) Qn„,„,. (4. 1)



FREE EN ERGY OF THE INTERACTING ELECTRON GAS . . ~ 3311

coincides exactly with the result of Englert and
Brout, which is the finite-temperature extension
of the result of Nozieres and Pines. ' If we let the
temperature go to zero, besides V(q} =0, in Eq.
(4. 3), it reduces to the result of Nozihres and
Pines. Note that the result of Nozieres and Pines
is exactly the same as that of Gell-Mann and
Brueckner' and others.

The inclusion of the higher-order exchange pro-
cesses in calculating the ground-state energy of the
electron gas with Coulomb interaction was first
carried out by Hubbard. 4 At zero temperature our
result coincides with that of Hubbard only if we as-
sume the following form for the effective exchange
interaction V(q):

v(q) = 4''/n(q'+ k~) . (4. 4)

Therefore, our result, Eq. (4. 3), can be regarded
as the finite-temperature extension of the result of
Hubbard.

Finally, let us point out again that we can calcu-
late the free energy of the electron gas in the fer-
romagnetic state in the same approximation as in
the paramagnetic state by using the charge suscep-
tibility of the ferromagnetic state.

V. DISCUSSION: SPIN FLUCTUATIONS AND CHARGE
FLUCTUATIONS

—= Fe(0) + 2 n U+ ~e,
where in the paramagnetic state, the transversal
magnetic susceptibility in the Hubbard model is ob-

The effect of the spin fluctuation on the electron-
ic specific heat in strongly exchange-enhanced
paramagnetic metals has been discussed by using
the Hubbard model or similar models which do not
include the long-range part of the electron inter-
action. The spin-fluctuation effect contribution to
the free energy is most simply reproduced if we
treat the Hubbard model' using the dielectric
fnrmulation:

F„=F„(0}+,'n U —K d&u c-oth-
pk~

271 goal ~QQ 2

1

x — d)lmX'. (q, sr+i0'),

tained by exactly the same approximation we used
in Sec. IQ, as

F(q, (o)

1 —(U/N)F(q, (o)
(s. 2)

v(q) = U/N (5.4)

in Eqs. (3.27) and (5.2). Therefore, there must
be essentially the same spectrum of spin fluctua-
tions in the long-range Coulomb model as in the
Hubbard model. We will show that actually a
spin-fluctuation-effect contribution of the form of
~~ is included in our AF.

The logarithm in the integrand of Eq. (4. 3) can
be expanded and resummed as follows:

In the above U is the repulsion between the elec-
trons of opposite spins at the same atomic site,
n is the total number of electrons, N is the total
number of atomic sites in the system, and the sub-
script H stands for the Hubbard model. By putting
Eq. (5. 2) into Eq. (5. 1) the spin-fluctuation effect
contribution to the free energy is obtained:

~e -——Z dcd coth
phd

2w, 2

xim in[1 —(U/N)F(q, &u+ i0')] . (5. 3)
It was shownthat hF~ gives rise to an enhancement
of the electronic specific heat at low temperatures of
the form y' T, y' being proportional to the logarithm
of the exchange enhancement factor.

We can ask, what would be the corresponding ef-
fect of the spin fluctuation in the long-range Cou-
lomb model'? ~ from Eq. (4. 3), and ~„from
Eq. (5.3}, have quite different analytical structure,
especially for small q. In the following we answer
this question.

According to the general theory of linear re-
sponse, the magnetic susceptibility is determined
from the spectrum of the spin fluctuation of the sys-
tem. Note that the magnetic susceptibilities cal-
culated in the long-range Coulomb model and the
Hubbard model are exactly the same if we identify
the relation

6F =—Qg(q) du coth Im in[1+ 2V(q)F(q, &u+i0')]h
"

p@o
2m ~ 2

+—2 g(q) d&u coth Im in[1 —V(q}F(q, u&+i0')]h P@u

277
Q ~QQ 2

+—gg(q) d&o coth Im[cross terms of V(q)F(q, u+i0') and V(q) F(q, &a+i0')],
2F 2

(s. 5)

where we put

g(q) =- v(q)/[2V(q) —v(q) ]. (s. 7)
Note that q(0) = —,

' and it changes in the range from
q=0 to q-~between-, ' and -1. Thus g(q) is a
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simple numerical factor on the order of 1.
There are three terms on the right-hand side of

Eq. (5.6). The first term reduces to the result
of Englert and Brout' if we assume g(q) = &, that
is, itis the contribution of the charge (electron-
density) fluctuation effect. If we put g(q) = I and
remember the correspondence Eq. (5. 4), the sec-
ond term is exactly the same as nF„, Eq. (5. 3);
that is, the second term on the right-hand side of
Eq. (5.6) represents a contribution from the
spin-fluctuation effects. The third term can be
naturally identified as the cross effects of the
charge and spin fluctuations. As can be seen by

comparing Eqs. (5. 3) with (4. 3), in the long-range
Coulomb-interaction model this interf erence
effect of the spin fluctuation and charge fluctuation
plays a very important role even in the paramag-
netic state and seems to modify significantly the
contribution of the spin-fluctuation effect to the
free energy. Vfe wi11 study this problem further
in a separate paper.
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