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%e modify Friedel s discussion of the elastic model of alloys by showing that "impurities" of difFerent

sizes can attract each other when the strains involved are very large. This fact has applications in

various physical phenomena. An example is the metal-insulator transitions of SmS, SmSe, and SmTe
under pressure. Our theory explains why the transition in SmS is much less continuous than that of
SmSe and SmTe. Other applications are also discussed.

I. INTRODUCTION

This paper is an attempt to explain a variety of
physical phenomena in terms of the interaction of
atoms via anharmonic strain effects. For exam-
ple, recently' it w'as discovered that Sm in SmB6
exists as a mixture of Sm ' and Sm' ions in a ra-
tio of 40 to 60. In this mixed-valence state, it
seems to undergo a metal-insulator transition,
with properties we do not attempt to discuss here.
Various other Sm compounds undergo more or less
gradual metal-insulator transitions apparently in-
volving valence changes as well. There are also
a number of Fe compounds which undergo gradual
transitions from Fe" to Fe"' or from high to low

spin under pressure, as described by Drickamer
and Slichter.

The classical theory of metal alloys, due to
Friedel, ' discusses the elastic interaction between
atoms of different sizes in an elastic medium. The
major component of this is the elastic energy of
interaction between volume defects, which has two

properties that are rather unique: (i) the interac-
tion between like defects is necessarily attractive;
(ii) the force is the only interaction known which is
truly infinitely long range. This follows from the
fact that a volume change in a perfectly elastic lat-
tice leads to a uniform dilatation when surface ef-
fects are included. But an attractive force leads
to a tendency to segregate, as for instance in Frie-
del's' well-known discussion of Hume-Rothery's
rule that metals of sufficiently different atomic
sizes will not dissolve in each other. That is, such
a force will lead, in a compound with components
l and 2: (l)„(2)„,(x, + xa = l) to an energy like
—c(x, —xa), which is never a minimum at any in-
termediate concentration x& 41 or 0. Thus this
force tends to make all alloys segregate. If we

suppose that different valence states of the same
atom have the character of different volume de-
fects, this would also tend to make all transitions
between valence states be first order at low tem-
peratures and would be expected to prevent mix-
tures of valences at low temperatures in all crys-
tals.

The experimental data on the Sm and Fe com-
pounds require a rePulsive force, i.e. , with Posi-
tive curvature in the Sm ' concentration, so that
the mixture can be in equilibrium. The infinite-
range character of the elastic force is, however,
ideal: no ordering takes place experimentally, as
would have been expected from most types of re-
pulsive forces, such as Coulomb or exchange re-
pulsion, or the Friedel-oscillation forces discussed
by Blandin and Deplante. ' It is also suggested that
the phenomenon of mixed valence takes place most
clearly in the elastically rigid hexaboride lattice.
We are proposing here thai consideration of the
ankarmonic effects of substituting atoms of differ-
ent sizes can reverse the sign of the Friedel poten-
tial. This amounts essentially to taking into ac-
count in the interaction the change in elastic con-
stants caused by a substitution as well as the vol-
ume defect. We show that this can be estimated
to be of the right order and that it explains much
of the data, at least qualitatively.

II. MODEL

We shall use a model in which holes of volume
V„have been scooped out of an anharmonically
elastic medium, and into them are put spheres of
the same material but of size V„+~V. The sphere
that we are putting into the hole mill be our impu-
rity of "wrong" valence; e. g. , in the case of SmB6,
we shall take the medium as Sm'Bs; scoop out a
Sm ' and put back in a Sm '. We then try to com-
pare the energy of the two situations. Of course,
it might be a simpler model if the inserted sphere
and the medium were not allowed to be of the same
elastic constant, but the above model has the at-
tractiveness of being simple and not too far from
reality. We emphasize that we must use an anhar-
monic medium because substitution of a different
atom or valence state is by no means a small per-
turbation. In Sec. III we shall try to evaluate the
total elastic energy U&„t involved, viz. ,
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+ — C""' e;, e„,e dv (2. 1)

p. V u+ (A. + p) v(V ~ u) =0 (2. 2)

In writing (2. 2) we have made the simplifying a.s-
sumption that the elastic medium is isotropic and
the stress can be expressed in terms of the strain

P;„=Xemm5i;+ 2p e

where the C's are the elastic constants and the e's
are the strains produced by inserting the spheres
into the holes. The stress p;; is defined as BU/

ae;, . In writing (2. 1) we have used the notation
of Brugger. ' The reader is referred to Ref. 5 for
further discussion of these elastic constants.

In this section we shall try to find out what the
strains are when the impurities are put in. Call-
ing the displacement from equilibrium u and using
the fact that the divergence of the stress tensor is
zero, one has, in the pure harmonic (Hooke's law)
case,

two impurities are present, the total u should be
u&+ u~+ Au, causing a strain e&+ e&+ ~K

If the impurities are not very dense, u decreases
to zero fairly rapidly with distance from an im-
purity. When u, is large, u& is small; thus 4u,
produced by u, ~ u2, is small compared with u,
and hence also u, + u, . Careful investigation (see
Appendix B) shows that indeed the contribution of
4u to the interaction energy is not important.

The net result of these two approximations and
the model is that the calculation of interactions
is very simple, because it amounts to assuming
that each impurity displaces the lattice just as it
would if the lattice were uniform and the elasticity
linear, and only the final calculation of the energy
brings in the anharmonic terms. This is a rea-
sonably good approximation, in addition to giving
us a very simple physical picture of the phenomena.
Let the volume density of impurities be n. Con-
centrate on a pa, rticular impurity, say the one
nea, rest the origin, and call it S; the total dis-
placement can approximately be written as

We shall continue to make the assumption of isot-
ropy in what follows. Cubic a.nisotropy does not
lead to long-range effects of the Friedel type. The
solution with only one impurity is (the case for
more than one impurity can be obtained by super-
position because of linearity)

(2 8)

3
7l' Cpnyr —us

+ vCon(y- I) r,
r& rp
r& rp

~zu=u +u

~C 4 1
u

, r+ —
mCO

—(y —1)r, r&ro

ar, r& rp

(2. 5)

(2. 6)

(2. 7)

where 4mC, = n U/y, y = (Sk+ 4p)/Sk, and k is the
bulk modulus. u' is the so-called image term and
comes from the fact that the stress at the boundary
of the medium is zero. When anharmonic effects
are included, Eq. (2. 1) is changed to a, corre-
spondingly complicated form. The spherically
symmetric case is discussed in Appendix A. In
that case, the displacement u, is given by Eq.
(A6') where f(r) = u(r):

Here u is the strain due to the Sth impurity and
u is that due to the other impurities; n is the
concentration of the impurities. Equation (2. 7)
for u is analogous to Eshelby's' Eq. (8-16) a.nd

neglects the granular nature of the impurities.
The exact solution should have in addition to (2. 7)
small ripples separated by the interimpurity dis-
tance. As discussed in Appendix A, (2. 7) is a good
approximate solution to the elastic equation (A5).

III. INTERACTION ENERGYc„
3gpf1

+u p

r& vp

(2. 4) From (2. 1) the interaction energy between two
systems S and 7' can be written as (e = e + e )

Here the C„'sare given by Eqs. (A8) and (A15); a
is given by Eq. (A19). For our applications of
interest u, is not very much different from the
ha. rmonic values u„,i.e. , the first term in the
series dominates.

When more than one impurity is present in the
anharmonie ease the solution can no longer be
superimposed linearly (in principle); thus when

+e;e, e, + e;e, e, +e;e;e„)dvT S S T T S T S T (3.1)

where the Voigt notation has been used for the
indices, i. e. , 1 stands for xx, 2 for yy, 3 for zz,
and 4 for yz, etc. Transforming into spherical
coordinates and with u„=f(r), u8 =u„=0,u„g(r), =

and uz =u„=Q, we obta, in

~in't = dv ~ g+ f) C+M +~ f' + f + 2f'fg+2 ) e+d)

+ —(fZ" + 2ff'a+2gf'I'+ gf') ('d)+ ' C (f"a''+ g'f')
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where e, d, and C are elastic constants as de-
fined in Appendix A, and primes denote differen-
tiation. Taking u and u as defined in (2. 6) and

(2. 7), the total interaction energy of a system of
n impurities is thus

what is happening, and we do not hope for quanti-
tative results.

Writing

g 3 mCnyx, r& xp

2nU' =Ui (3 3)
r& rp

We shall confine our interest to terms in U, that
are of the order n because (i) in some applica. -
tions, n is small; (ii) the contribution to the n3

term contains the quartic harmonic terms and we

do not have any physical feeling for these; (iii) the
n term gives us enough qualitative insight into

u' =fe„
then

g=g ffor-r&ro (3.4)

Collecting terms of UI that are of the order n, we

obtain

2 1 1 2, , 1
LJ, =2n — dv g —,0+3 +~ g'+2 ' g e+d + —2 f'g'+f' g 2 +2 C ''g'

1
p

~dP

dvf d —(C 3d) ~(f d' ~ 2f'fd)( d) ~ —(2ff'd'+f' d), d C(f' d')) . (3. 5)

Substituting f and g we have

--.n (g+~9v)
V

(&-I)1 aV'
(3. 6)

The superscript a indicates the anharmonic con-
tribution to the interaction energy. The symbols

5, v, and $ are elastic constants. Their relation-
ship to the symbols C and d, etc. are given in Eq.
(A5). The second term on the right-hand side of

(3. 6) has a simple physical interpretation. It is
just the modification of the self-energy of the im-
purities when anharmonic effects are included. In

fact, from Appendix C, f++v is just dk/dv. Note

that because g, g, and v are in general negative,
the U, that we have calculated in positive if & V/ V

is positive.

IV. APPLICATIONS: METAL-INSULATOR TRANSITION IN

SmSe, SmTe, and SmS

The first application is to investigate the insula-
tor-metal transition of SmS, SmSe, and SmTe
under pressure. ' It was found that as pressure
is increased SmS goes through a discontinuous
transition at P = 6. 5 kbar; SmSe, a continuous
transition around I' = 30-60 kbar. According to
the conventional idea of the Mott transition the in-
sulator-metal transition should be first order. The
reason can be seen more clearly than in the usual
discussion simply by considering the energy of the
electron-hole gas of a metal as a, function of its
density, i. e. , of the number of excited electrons
in bands. This may be written' as

E=E(T)n —E,„(n)n '+ E„(n)n' + Ezn + ~ ~ ~ 5 (4. 1)

E(T) represents the band gap and E), represents

the kinetic energy. Here at high densities E
„

is
just the standard exchange energy (equal to -1/r,
per particle, x, being the conventional dimension-
less volume parameter in the free-electron-gas
problem), but even at low densities one may give
excellent arguments that the exchange-correlation
term is of similar form, i. e. , singular (by singu-
lar we mean it has a, branch point) as n-0, a,nd is
negative. That it is not possible for dielectric ef-
fects due to reduced gaps to modify this result is
shown by Anderson, Chui, and Brinkman, ' who

point out that even where no free electrons and
holes are present, the dielectric effects of the ex-
citons themselves lead to a negative (attractive)
interaction term; i. e. , even E2 is likely to be
negative (and even neglecting molecular binding
forces).

While the interactions caused by strains are al-
ways of the form n and thus contribute only to E2

(and thus cannot outweigh the exchange attraction,
which is singular as a function of n, at low enough

densities), they may turn out to be considerably
larger for reasonable densities of carriers, and

thus may, except for very precise measurements
at very low temperatures, effectively control
whether the metal-insulator transition is first or-
der or gradual. Very simply, if the dominant term
beyond the linear one is negative (attractive), the
transition must be of the first order, since states
with finite n will first have lower free energy than
those with n=0; and vice versa for repulsive
forces.

Let us call the anharmonic contribution to the
n term E4n, and the harmonic one E3n . If E4
is sufficiently positive, then, we go towards a,

more continuous transition. The more deformed
the elastic medium, the larger are E4, E3, and
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E4/E3. As it happens SmS has a rather small band

gap -0. 1 eV, "so the transition occurs at a small-
er pressure and hence smaller volume deforma-
tion, the anharmonic term is not large enough, and
a first-order transition results. SmSe and SmTe
have a. much larger band gap (-0. 5 eV), ' so the
transition occurs at a higher pressure and larger
volume deformation, anharmonic terms dominate,
and a more continuous transition results.

We feel that the question of whether the mixed-
valence transition and the metal-insulator
transition are the same is a very complicated one,
involving such complicated possibilities as heavy
excitons (by that we mean the hole mass is very
heavy) in the case of the Sm compounds. We are
here merely trying to identify an important com-
ponent of the interactions which works in the cor-
rect direction. In Table I is listed the zero-pres-
sure Sm-X'ionic separation, the ionic radius of
the cation, the ionic radii of Sm ' and Sm', and
the Sm-anion distances when the transitions occur.
We have decided to use ionic radii because we be-
lieve the bond is mainly an ionic bond. In Table
II is listed the "natural" Sm"'-X distance before
compression and the volume compression when the
transition occurs. The hole size of our model
should be that for Sm ' at zero pressure. At high-

TABLE I. Various distances of interest concerning
the summarium salts, that are used in the calculation
in Table II.

TABLE II. The volume mismatches. See Sec. IV.

"Natural" interionic distance (in A)
for Sm 'X and Sm 'X

R (Sm ') + R (S=) = 1.143 + 1.84 = 2.983
R(Sm ') + R(Se=) = l.143+1.91 = 3.053
R (Sm ') + R (Te=) = 1.143 + 2. 11= 3.253

R(Sm ') + R(S=) =0.964+1.84= 2.804
R(Sm ') +R(Se=)= 0.964+1.91=2.874

R(Sm ') +R(Te=) = 0.964+2. 11=3.074

"Real" interionic distance (in A)
for Sm X and Sm3'X at transition

R(SmS) = 2 ~ 9307
R(smse) = 2.9459
R(Sm Te) = 3.139

Volume mismatches at transition

2.983 —2. 9307 = 0. 053
2.983

3' 053 2' 9459 = 13.073
3.253 —3.139

3.253

(~v/v), 2. 804 —2. 9307
2. 804

2. 874 —2.9459
2.874

3.074 —3.139
SmTe: 3 &&

= -0.063

'The index 1 stands for Sm 'X; index 2 stands for
Sm3'X.

Ionic radii of various ions of interest

(A) Sm'

1.143

3+

0.964

s=

1.84

Se=

1.91 2.11

(A) Sm-S
2. 99

Sm-Se
3.1

Sm-Te
3.3

P=0

Interionic distance in SmX compounds at zero pressure~

er pressure both Sm ' and Sm ' will not fit into the
hole. In order to compare the situation of the
Sm "s the strain energy for both valences is cal-
culated and compared. The volume mismatches
for both the 2+ and the 3+ valences are also listed
in Table II. The harmonic strain energy to order
n, n being the volume density of the 2+, is2

Change in SmX distance (dA/R) at transition

g (sm-s)

0. 01982

q(sm-se)

0. 0497

g (Sm-Te)

0.0488

'The ionic radii is obtained from A. Iandelli, in Rare
Earth Research, edited by E. V. Kleber (MacMillan,
New York, 1961), p. 40.

The interionic distance is obtained from data of A.
Jayaraman et al.

'By at the transition point, we mean 6.1 kbar for SmS
(right before the discontinuous transition takes place),
40 kbar for SmSe, and 45 kbar for Sm Te; for these two
latter substances, because the transition is continuous
it is difficult to judge exactly where the transition starts
and where it ends. A point midway between was chosen.
A slight change of the deformation should not change the
result qualitatively.

——n —$+— —+ g+- 'V& Vz

X (4. 3)

where the 2+-2+, 2+-3+, and 3+-3+ interactions
are included. The index 1 refers to the Sm 'X;
index 2 refers to the Sm 'X. Similarly the an-
harmonic term is
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TABLE IG. Numerical evaluations for the quantities
g and y in Eqs. (4.4) and (4.5).

SmS
SmSe
SmTe

-0.0084973
-0.0139412
—0.01417

—0.0018404
0.0019279
0.0020621

=xg Kn Vj Vg y(y- 1)

E4 = anharmonic term

(4.4)

Since the $'s are negative, it is at once obvious
that the anharmonic term is positive for SmSe and

Sm Te, whereas it is negative in the case of the
sulyhide. We have no exact experimental informa-
tion on the elastic constants, so further numerical
comparison is difficult. An order-of -magnitude
estimate can be made, however. According to
Slater, ' if we write (A V/ V) =aP+ bP, then b/a ~

= 2. 5 for nearly all materials. Inverting, we find

5 ]2 5 oo ~ 4 6

so that (f+ +& v) = —2. 5.
Empirically we find $

-
P,
"so that the factor in

the square brackets in Eq. (4. 5) is —5. Thus E,
= E4 (see Table III) in the case of the selenides and
the tellurides, and the anharmonic term can in-
deed overwhelm the harmonic term. This is not
the case in the sulphides. Because we can not
make detailed calculations, we shall remark here
that an estimate shows that E&' is of the same
order of magnitude as E3 and E4.

V. HEXABORIDE

As is mentioned in Sec. I, our problem here is
to explain why the system prefers to remain in a
mixed-valence state. We believe that because of
the rigidity of the hexaboride lattice and the large
size of the Sm ions, the Sm '(Bs) state is not

stable, as one would naively expect from the cal-
culation of Longuet-Higgins and Roberts. ' (For

These formulas are obtained by expanding the en-
ergy as E, e + E&(l —n) + E,n(1 —n) and by collect-
ing the n' term.

When the numerical values for & V&/ V&, etc. ,
are plugged in, we find the result listed in Table
III. The x and y are defined as follows:

E3 = harmonic term

a more detailed description of the properties of
8mB~, the reader is referred to an article by
Nickerson ef al. "and reference therein. ) In
SmB6, the Sm ion sits at the center of a cube, at
each corner of which are octahedras of B atoms.
One might argue that as the electrons are re-
moved from the Sm ' ion, the size of the cation in-
creases and this would squeeze back on the Sm '
ion itself and thus there is no net gain in strain
energy. However, as the electrons are squeezed
out of the Sm ', at least for small n, the local in-
crease in size is very small so that one would ex-
pect that this would not affect the strain energy
very much. In fact, the band electrons occupy
both sites in mRnown ratios. It is irrelevant
whether the band electrons are considered to be
partially covalent; the resulting energies will vary
smoothly with Sm'/Sm ', and will not change the
qualitative picture that we are going to propose.
We believe that because of the strain energies dis-
cussed in Sec. IV, when Sm ' ions are put into the
hexaboride lattice some electrons will be squeezed
out.

The electronic structure and metal-insulator
transition in Smas is a very complex subject, and
we feel new ideas beyond the scope of this work are
necessary for their understanding. What is strik-
ing, however, is that according to various rather
sound experimental arguments (chemical shifts,
steric, etc. ) the ratio Sm'/Sm ' does not change
while the transition is taking place. This seems
to us to be strong evidence that some extra forces
are overwhelmingly large and enforce a fixed ratio,
and the best candidate for such forces is the strain
energy discussed in Sec. IV, since the hexaborides
are elastically very stiff. We assume, then, that
whatever purely electronic energies are involved
are relatively small.

Since we do not know the numerical value of the
third-order elastic constant and since we do have
a very clear picture of the electronic structure of
the hexaborides, we shall not attempt a calculation
that would give us the 2+, 3+ mixture in the cor-
rect ratio. Instead, we shall just indicate how the
anharmonic force can be repulsive in the case of
the hexaborides. The metallic radii of Sm ' and
Sm' are 2. 1 and 1.8 A, respectively. '~ (We be-
lieve that a metallic radius, rather than an ionic
radius, would be more appropriate here. ' )

& V/ Vo = 0. 588 = [(2.1)' —(1.8)s]/(I, 8)~

the magnitude of the ratio of the harmonic to the
anharmonic term Es/E4 is given by
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The system thus will not segregate. One can also
assume that since the system likes to stay as a
mixture with a ratio 4f: 4f =40: 60, the "natural"
hole radius is not that of Sm' but is 0.4 Sm '+ 0.6
Sm'. In this case, the volume mismatch between
the Sm2' ion and the natural hole (AV/V)' is 0. 32
and E3/E4 is 1/1. 5; one still has a mixture.

we have

e„,=f '+ —,
' (f ')'

eye =rf+ zf1 P

e, „=r(sin'8) f+ —,
' (sin'8) f' (A3)
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APPENDIX A

In this appendix we shall first derive the equa-
tion for the anharmonic strain, solve it, and then
try to fit the boundary conditions. We shall use the
model as discussed in Sec. II and shall not repeat
its description here.

When nonlinear effects are included, the equa-
tions are in general very difficult to solve. We

pick the case of spherical symmetry which roughly
approximates the situation of interest and use
spherical coordinates. Then

(A 1)

f f f ff+(-,'e+ p) —+A —yB +C =0r r' (A4)

where +=&+2p, ,

all other components of e are zero.
The anharmonic C's in Eq. (Al') can be ex-

pressed in terms of three independent elastic con-
stants $, &, and v in the case that the medium is
isotropic. We shall make this simplifying assump-
tion in what follows. These constants are given
by Eq. (14-14) of Ref. 2. (Similarly, the har-
monic C's can be related to two parameters & and

v. )

Restricting our attention to the i = r component,
which, as it turns out, is the only component that
gives interesting information, one has

of+ 2a — + (—,C+ —,u)(f' )'+-f '. . .~, 8d f'f '

C=2$+4g, d =2/, e =2/ —2)+ v

where l j denotes covariant differentiation with
respect to x& (sum over j is implied for repeated
indices). The stress p'~ is obtained from the en-
ergy whose anharmonic component is given by

A = (- 6C —6d+ 4e) 8, B = (- 2d+ 6C),
C= (- 4d+ 8e)&

Assuming

(A6)

1
U2 =

6
Z C&yaimn eo eu e (A 1') (A6')

e„=-,'(u l, +u, l, +u") u„l,) (A2)

Assuming that the displacement from equilibrium
is u„=f(r), u~ = 0, and u„=0,with the strain e 8

defined by

we have, with

d'=~ d

e =3e+p+3d
(A 7)

C„„(2(3x 2") [C'(3 x 2"—1)2 —d' (3 x 2"—1)+ e' J+ A+ B {3x 2" —1 ) —(3 x 2" —1 ) C)
C„ o (3 x 2"' —3) (3 x 2"') (A6)

The radius of convergence R of (A6 ) is given by

6C'+ 3a

I

sphere. Inside the sphere, the solution is

u=fe„=—ar {A11)

As will be shown, 4n Co is of the order of (&V).
If we further assume that (see Sec. IV) &- $-2. 5n,
then

where a is an arbitrary constant.
The full solution is obtained if we further re-

quire that the outside surface of the medium is
free. This produces an image volume b, V given by

R-26r- 5 ro (A 10) 1
&V =, (fp;qx;dS, ) {A12)

where ro is the radius of the impurity sphere.
Thus our solution is valid outside the impurity where the prime on the bulk modulus E is to draw
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Kl (AI2)

(As discussed in Sec. IV, this is a result of the
work of Slater and is due to the fact that the lattice
is anharmonic. ) To obtain a better approximation,
one has to solve Eq. (A 1) better; but for reasons
mentioned in the text, we are content in obtaining
qualitative results, and the above approximation is
then adequate. The total volume change is thus
AV=4myCO= V „,where

3K'+ 4p.
Y 3Kl (A14)

Co is determined by observing (as in Ref. I, p.
115) that the total volume change should be zero;

mis'=
4~y

(A15)

a is next determined from the observation that the
pressure exerted by the medium on the impurity
is equal to that by the impurity on the medium.
With the volume of the impurity given by

4 V) ———ar04m'3

and that of the medium by

n V2
—- 4vCO+ 4mC, /ro

(A15a)

(A15b)

(we neglect all higher powers in 1/r). We have

attention to the fact that it is the average bulk mod-
ulus in the compressed state. We shall approxi-
mate it by

-( )„~(~~vCony) Co/r'
r2 (Bl)

where n denotes some sort of an average of the
coefficients multiplying the linear terms in (A4)
and C denotes the average of the coefficients of the
anharmonic terms. From the discussion in Sec.
IV we expect the ratio of these two numbers to be
about 2. 5; that is,

C C'4
(~ )-+ = — c~)6 3

APPENDIX B

In this appendix we shall show that for the appli-
cations we have in mind, linear superposition is
really not a bad approximation, even in the an-
harmonic case.

Suppose we denote by u& and u2 the displacement
due to a particular impurity and the rest of the
impurities, respectively, as given approximately
by (2. 6) and (2. 7). When both u, and uz are pres-
ent, the true solution should be u, +u2+ M. We
want to show u&+u2» M for all values of r. As a
side remark, we want to point out that 3 m C~yr
and u, both satisfy Eq. (A5) and the true solution
for r &ro should be +s vConyr —u, +(hu). That (hu)
is small follows from the same kind of reasoning
that we are going to present belav .

First, for r &ro, we find M =0, as is obvious
by substituting u, +u2 into Eq. (A4). For r &ro,
the order of magnitude of 4u is estimated from
(A4) as

KbV, 1 —2 5 ' =K~V2 1- 2 5

(A 16)
If we call 6V~ [1—2. 5A V2/ Vo] = 5, then

Av, = g Vo{I—[1+ (6/Vo)10]'~ ]

c~ (c (av))

1——(u, +u, )

(B2)

(=5 when 6/Vo is small) .

5 can be obtained from (A15b); in fact,

AVIV, =4vCJV, =I/10

(A 17)

(A18)

In going from (Bl) to (B2) we have made the ap-
proximations that n-1/2VO (we assume an impurity
concentration of 5&%), 4vC, -AV/y, and Av/V-~o.

and hence 5 = —', Vo. From (A17) we finally have

a = p5/ Vo = 4

A form for u can also be written: It is just

~ v(II V) (y 1)r—
V being the volume of the medium. It satisfies Eq.
(A6'), produces the right volume change Av~, and
thus is our candidate.

Finally, it should be remarked that our solution
[Eqs. (AB), (Al), and (A20)] is unique, because of
the uniqueness theorem' of an ordinary differen-
tial equation.

APPENDIX C

We would like to show that

dK—=&+—v
dV

From Ref. 5, for uniform strains g,
g3 3 &, the third-order change in energy u

is given by

u = —,'6 (g++v)

This should be equal to —,'(d&/dV) 5', thus

dK/d V = f+ +~ v



3236 P. W. ANDERSON AND S. T. CHUI

~Also at Cavendish Laboratory, Cambridge, England.
E. E. Vainshtein, S. M. Blokhin, and Yu. B. Paderno,
Fiz. Tverd. Tela 6, 2909 (1964) tSov. Phys. -Solid
State 6, 2318 (1965)]; R. L. Cohen, M. Eibschutz, and

T. H. Geballe, Phys. Rev. Lett. 22, (1969).
'2H. G. Drickamer, C. W. Frank, and C. P. Slichter,

Proc. Nat. Acad. Sci. 69, 933 (1972); C. P. Slichter
and H. G. Drickamer, J. Chem. Phys. 56, 2142 (1972).

3J. D. Eshelby, Solid State Phys. 3, 79 {1956);J.
Friedel, Adv. Phys. 3, 446 (1954).

4A. Blandin and J. L. Deplante, Metallic Solid Solutions,
edited by J. Friedel and A. Guinier (Benjamin, New

York, 1963), Vol. IV, pp. 1-10.
D. C. Wallace, Solid State Phys. 25, 306 0.970); K.
Brugger, Phys. Rev. 133, A1611 (1964).

W. Voigt, I ehrbuch der KristallPhysik (Teubner,
Berlin, 1938).

?A. Jayaraman, V. Narayanamurti, E. Bucher, and R.
G. Maines, Phys. Rev. Lett. 25, 368 (1970).

8A. Jayaraman, V. Narayanamurti, E. Bucher, and R.
G. Maines, Phys. Rev. Lett. 25, 1430 (1971).

N. F. Mott, Philos. Mag. 6, 287 (1961).
P. W. Anderson, S. T. Chui, and W. F. Brinkman,

J. Phys. C 5, L119 (1972).
E. Bucher, V. Narayanamurti, and A. Jayaraman, J.
Appl. Phys. 42, 1741 (1971).
J. C. Slater, Phys. Rev. 57, 744 (1940).

'3Landolt-Bornstein, Numerical Data and Functional Re-
lationshiP in Science and Technology (Springer-Verlag,
Berlin, 1961), Group IV, Vol. 2, pp. 102-123.
H. C. Longuet-Higgins and M. V. Roberts, Proc. Soc.
Land. 224A, 336 (1954).

5J. C. ¹ickerson, R. M. White, K. N. Lee, R. Bach-
mann, T. H. Geballe, and G. W. Hull, Jr. , Phys.
Rev. B 3, 2030 (1971).

H. Zachariasen (private communication).
This is due to our ignorance of what ionic radii we

should use. Obviously the hexaboride boride structure
is different from the ordinary NaCl-type ionic structure
and there is no reason one should use the ordinary ionic
radii of Sm ' and Sma'. Empirical experience suggest
that the metallic radii is not a bad choice.

'8E. A. Coddington and N. Levinson, Theory of Ordinary
Differential Equation (Wiley, New York 1955), Chaps.
1 and 2.


