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In connection with semiempirical studies of electronic band structures we consider the development of
parametrization schemes based mainly on the logarithmic derivatives L, rather than exclusively on the

tangent of the phase shifts, tang„as was done in an earlier study. Improvements over the earlier

approach are sought in two different approaches considered here for the noble metals. In the first of
these the logarithmic derivatives of the radial wave functions are exclusively treated as the fun~~ental
quantities to be parametrized. For a comparable number of parameters, this scheme gives a small

over-all improvement in the accuracy of fit to the results of several first-principles band calculations as

compared to the fit obtained in the earlier tang, parametrization scheme. The second scheme gives

significantly better fits to the first-principles band-calculation results. This approach obtains these

improved results by adopting a hybrid technique which uses tang, parametrization to treat the resonant

part of the d scattering contribution, while the residual d scattering and the complete s and p
contributions are treated by parametrizing the logarithmic derivatives. The parametrization of the

smoothly varying logarithmic derivatives is done in a uniform and systematic way in terms of
square-well potentials. A simplified version of this scheme is also successful for a "simple" metal as

demonstrated by an application to Al. An advantage of both schemes in an empirical application is

that the goodness of fit is rather insensitive to the energy values used in evaluating the parameters.

Finally, we discuss the relative advantages of the present scheme over others that have been proposed.

I. INTRODUCTION

In an earlier paper' (referred to as I hereafter)
we have given the motivation for, and discussed
the development of, a band-parametrization scheme
based on the Green's-function method (GFM} of
Korringa, Kohn, and Rostoker (KKR). In the GFM,
the dispersion relations for the electronic energy
bands E„(k) are obtained from the determinantal
equations

det[B„,),;,(k, .E)

+E coty, (E)5„,&~~, ] = 0,

where the energy scale is such that the constant
part of the muffin-tin potential V, has the value
zero. All information regarding the lattice struc-
tures is contained in the B», , &,, which can be cal-
culated efficiently and to any desired degree of ac-
curacy. On the other hand, all the dependence on
the crystal potential is contained in the phase shifts
Z, (E) In contrast .to the B,&..,... the effective crys-
tal potential, and thus the q, (E), for a given metal
is not accurately known. This is, in fact, the
limiting factor in the accuracy of the calculation of
E(k}. The aim of the parametrization scheme is to
provide an effective empirical means for determin-
ing the q, (E) over a suitable range of energy

The convergence of the GFM is sufficiently rapid
so that the inclusion of / &2 components in the trial
wave function introduces only small shifts in the
E(k) of interest. These are negligible except for

the P states. ' For an empirical parametrization
scheme, it appears to be both practical and desir-
able to include only the components for E ~ 2. The
problem then is to accurately parametrize these
three phase shifts with a small number of param-
eters. This is the aim of the present work. We
test our schemes by comparing the E(R) corre-
sponding to the parametrized g, against those cal-
culated with the first-principles s, P, and d phase
shifts.

In I, the tang, were chosen as the quantities to
parametrize. Suitable functional forms having the
characteristic energy dependences for these quan-
tities for a family of elements, the noble metals,
were set up; and as an application of the scheme, a
semiempirical band structure was developed for
silver.

The question was raised in I as to whether there
would be an advantage in choosing the logarithmic
derivatives of the radial wave functions,

L,(E,) —=R ', /B, =(,
as the fundamental quantities to parametrize rather
than the tang, 's. Here the R,'s are the radial wave
functions, and the L&'s are related to the tang, by

jL(E'+r) j,(E'+r)L, —
'(E'i'r) —n, (E' 'r)Lg

'

The tang, involves, in addition to the required in-
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formation about the potential. , the energy depen-
dence of the Bessel and Neumann functions. The
latter dominate the energy dependences for the
range E™V„where the tang, are in fact not
smooth. It seemed possible that without the E de-
pendence due to the Bessel and Neumann functions
a simpler and/or more accurate parametrization
of the L, might be possible than for the tang, . The
present paper discusses, on the basis of specific
examples, whether this is the case.

Two different approaches involving parametriza-
tion of the logarithmic derivatives were investi-
gated, and will be discussed here. In the first of
these the parametrization is exclusively in terms
of the logarithmic derivatives. The second scheme
obtains improved results by adopting a hybrid
technique which uses tang, parametrization to treat
the resonant part of the d scattering contribution,
while the residual d scattering and the complete s
and p contributions are treated by parametrizing
the logarithmic derivatives. This combines the
advantages of parametrizing the d-resonance be-
havior in terms of tang2 with the advantages of
parametrizing the logarithmic derivatives, which
vary smoothly with energy, in the nonresonant
regimes of behavior. [It is worth according special
treatment to the tang2 in the d-band region where
the E(R) is very sensitive to the d phase shift. For
example, the shift in the lower L, level produced
by a given percentage change in tang, is about
twenty times larger for the d than for the s com-
ponent. ] The parametrization of the smoothly vary-
ing logarithmic derivatives is done in a systematic
way in terms of square-well potentials. The well
depths prove to be smooth functions of energy and
are readily parametrized.

It should be noted that while the primary effort
in this paper is directed to the noble metals, the
conclusions reached are not limited to that family
of elements. An approach applicable to the noble
metals is also applicable to the d transition metals
(in the paramagnetic state), the bands of which are
rather similar. It would also be applicab?e a
fortiorz to "simple" metals as we will illustrate
with Al.

There has been much interest in recent years in
the development of parametrization schemes for
describing the energy band structures. Efforts in
this area can be divided into two categories. In one
the effort is restricted to fitting the electronic
structures at the Fermi energy. In the other, '
to which the present work belongs, the goal is to
fit the energy bands across a substantial energy
range typically about 1 Ry. Vfe believe that the
present scheme offers advantages over the other
schemes in this category in a number of respects.
These will be enumerated in the conclusion where
a brief comparison will be made.

II. A PARAMETRIZATION SCHEME FOR LOGARITHMIC
DERIVATIVES

Figure 1 shows the logarithmic derivative of the
radial wave functions for the copper "Chodorow"
potential (as used in Segall's'0 first-principles band
calculation), as well as the logarithmic derivatives
of the spherical Bessel functions, with /=0, 1, and
2. In finding appropriate parametric forms of the
R', /R„we were guided both by the behavior shown
in Fig. 1 and by the parametric forms developed
for the tang, in I.

It is clear from Fig. 1 that L, and the free-elec-
tron counterpart (i. e. , j,/j, ) are quite similar to
each other. This led us to adopt a form

f.g(&) =I'&+pa(A'/A) (4)

I I
I

I
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FIG. 1. Logarithmic derivatives of the radial wave
functions as a function of e for the Cu Chodorow potential
and for a free electron. The dimensionless quantities
plotted are given by the lattice constant a times the L,
defined by Eq. (2).

In Eq. (4) and hereafter we use dimensionless
quantities r and &, with x in units of the lattice pa-
rameter a and e =(a/2vao)'E, where ao is the Bohr
radius and E is in rydbergs.

For Lo, there is reasonably close agreement
with jo/j~ for the lower-e part of the e range of in-
terest, but the agreement at higher a is sufficiently
poor to suggest that we not use a form analogous to
Eq. (4). On the other hand, one can use a form
similar to the tango given in Eq. (14) of I. It is
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I/L2(&) = D~/(e ——D2) + D3( j~/j2) + D4 . (8)

The parameters in Eqs. (4)-(8) have been evalu-
ated for two copper' and two silver" potentials
(i.e. , the same potentials treated in I): for L~ by
fitting the first-principles result at one energy at
each end of the range of interest, for L0 by fitting
at one energy at each end and one energy in the
middle of the range of interest, and for 1/L2 by
fitting at one energy at each end and one energy in
the middle of the range of interest, as well as tak-
ing D2 given by the zero of the first-principles L2.
Because one is fitting smooth curves (except near
the singularity of I/Lz) the evaluation of param-

only necessary to remove the &'+ factor which
comes from the low-E behavior of the Bessel func-
tions

Lo(e) = (S, —Sac)/(I+S, c) .
In fact, this trial form gives quite satisfactory re-
sults for the entire E range of interest.

From Fig. 1 it can be seen that the presence of
the singularity corresponding to the d-band "reso-
nance" complicates the comparison to jz/jz. Since
the important d-band states lie in the energy region
around the singularity of L2, v e instead consider
the reciprocal, 1/L„which behaves smoothly
around the singularity. Of course, one "pays" for
this by transforming the zero of L2 into a singu-
larity of I/L~. However, as there are fewer im-
portant d states around the zero of L2, that region
is not as crucial as that around the singularity. As
a trial form, we examined whether Ra/R2 could be
given by the appropriately scaled reciprocal loga-
rithmic derivative for the free-electron wave func-
tion, with a correction for the presence of the sin-
gularity in Rz/Rz. This led us to try and to adopt
a form,

eters and goodness of fit is less sensitive to the
choice of particular e used for the fitting than was
the case for the tang, scheme developed in I.

The values of the parameters giving L0, L„and
L2 for these four potentials are given in Table I.
The band-energy deviations with this scheme at
some high-symmetry points for three of the poten-
tials are shown in Table II. We note that while the
present L, scheme gives only a modest reduction
in the number of parameters required (9 instead of
the 10 employed in I), it also leads to a small over-
all improvement in the accuracy of fit to the first-
principles results.

III. HYBRID SCHEME INVOLVING SQUARE-WELL
PARAMETRIZATION OF NONRESONANT PHASE

SHIFTS

The parametrization scheme developed in Sec. II
can be improved upon in some respects. While the
goal of an 0. 01 Ry maximum error in the E(k) ha.s
been achieved, one can seek even greater accuracy
for a comparable number of parameters. [The ac-
curacies in fitting the three L,'s are not uniform.
The principal contribution to the deviations in E(k)
comes from the l = 2 component which appears to
be difficult to fit accurately over a wide range of E

with only four parameters. ] Also, the approach of
Sec. II lacks uniformity, being different for each l
value.

We, therefore, sought another and more syste-
matic means of relating the L,(e) to relatively
smooth functions of E. A possibility for such func-
tions which occurred to us are the logarithmic
derivatives for the square-well potentials. '

V,(e, r) = —v, (a), r& r;

V, =o

The logarithmic derivatives L, (c) for these square-
well potentials are obtained from Eq. (2) where,

TABLE I. Parameters entering expressions for R~(r~)/
Rl(r~) given by Eqs. (4)-(6) of the text.

R,(r) =j,(K,r) for r& r, ,

with

(8a)

Cu (Chodorow)
Cu (l dependent)'
Ag (Hartree)
Ag (Hartree-Fock)

Cu (Chordow)
Cu (l dependent)
Ag (Hartree)
Ag (Hartree-Fock)

—0.720
0.403

—0.992
—0.646

Di

0.062
0.076
0.078
0.083

S2

4.184
3.816
4.092
4.094

D2

0.144
0.224

-0.038
—0.305

S8

—0. 274
—0.171
—0.258
—0.250

D2

0.520
0.531
0.288
0.360

P1

-0.878
0.186

-0.846
0.167

D4

0 ~ 046
0.038
0.079
0.071

P2

1.085
0.939
1.050
0.902

For Cu with the l-dependent potential, additional pa-
rameters were needed for Rp/Rp and Rf/Rp because of
discontinuities in the l = 0, 1 potentials, introduced in the
original first-principles calculation. The parametric
expressions used were I p(&) = (Sf $2~)/(1+ $3&) + 0.4b,
Lf(&)=Pf+P2gf/gf) —0.066, with 6=0 for && 0.5, 6= 1
for ~& 0.5.

K, = (2v/a)(e+ v, )'+ . (8b)

The procedure for fitting to the first-principles
logarithmic derivatives, then, is to exactly trans-
form the first-principles L, to the equivalent
square-well potential via Eqs. (2) and (8). The e
dependence of this "exact" square-well potential
is then parametrized.

Figure 2 shows the v, (c) for I = 0, 1, and 2, cor-
responding to one Cu and two Ag potentials. The
magnitude of v, (e) reflects the scattering strength
for the Eth partial wave. It can be seen that v0 and

v, for the three potentials are very weak and are
very smooth functions of &, so that they can easily
be parametrized. Over the energy range of interest
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TABLE II. Deviations of E(f) (in 10 Ry) with respect to the first-principles results
for the different parametrization schemes. The tan, L, and e label, respectively, the

tang scheme in I, the L~ scheme in Sec. II, and the hybrid square-well scheme in Sec.
111of the present paper.

Cu (Chodorow)
tan

Ag (Hartree)
tan

Ag (Hartree-Pock)
tan

Al

I'2s

L 1OWeg

I 1OWOf'
3

gQQQOF
3

I llPgNl'
i

XlOWWL' -10

1 0

-3 0

-4 0

—5 0

—3 0

—5 0

~ 2 1

1 0

2 -3
0 -5

0 10

10

1 0

0 0

0 0

4 2

4 0

1 2

-4 —1a

-2 0

X4

4 0 1

-4 1

4 2

1 2

'These values differ from those quoted in I where the comparison was made with the
first principles results which included the effect of l —3 components.

(roughly 1 Ry) they can be accurately approximated
by

vs(e} = sp + spy + sac 2

vi(e) Po+&ie ~

The situation is different for v2. Its magnitude
is large and the variation is great in the region
around the resonance energy. This behavior re-
flects the strong d-resonance scattering that is
important in these materials. Though the energy
dependence of vs(e} is not too radical, we have been
unable with a moderate effort to fit it with a suitable
functional form involving only a reasonable number
of parameters (four or less) which would yield d-
band energies to the same accuracy (i.e. , devia-
tions ~ 2X 10 ' Ry) as that achieved for the sP states
by Eq. (9). An important point is that the d-band
energies are very sensitive to v~ —even more than
they are to tang~. For example, to achieve devia-
tions from the first-principles result of 0. 001 Ry
for a typical d state, v~ must be fitted to an ac-
curacy of d% while a 1% accuracy sufficies for tant)s.

At this point it is useful to consider the physical
nature of the l =2 component. It can be described
as involving two different aspects: the strong reso-
nance scattering and a "residual" —or nearly-free-
electron-like —contribution similar to that expected
in a "simple" metal. It is natural to expect that

the latter would be considerably weaker and smooth-
er than v2. Now, as was found in I, the strong
resonant scattering contribution can successfully
be represented in the tanr)s(e) by the well-known
resonant-pole form" I'(e)/(cd —e). It thus appears
useful to retrench somewhat on the proposal to
base our approach entirely on the logarithmic de-
rivatives. That is, we propose to use the reso-
nance pole form for the resonant contribution to
tang~ and the square-mell-potential approach for
the remainder. To this end we split the tang, into
a resonance and a residual part as follows:

tan'gs(e) =
~

— . K + tangs(e), (10)
1"

s & K j s(Kr()
~d e k d 2 dry

where K=2m' . We note that the e dependence of
I'(e) has been changed from the low-e form - e
(i.e. , K ) used in I to the K[js(Kr, )] form suggested
by Pettifor, ' which gives the same low-& behavior,
but which is more reasonable at large a.

In the present calculations, E, is taken as the E

value for the zero of the cotg2 from the first-prin-
ciples calculations, ' and the width parameter 1"0 is
obtained from I'o = lim, , (s —ed) tant)s. Once cd and
I's are determined, tant)s is obtained from Eq. (10).
The logarithmic derivative Ls(e) and the square-
well-potential depth vs(e) corresponding to tan7),

'

are then readily obtained from Eqs. (3) and (8).
The v~ thus obtained for the three potentials are
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, FIG. 2. Depths of the square-well potentials v&(&) for
the Cu Chodorow, Ag Hartree, and Ag Hartree-Fock po-
tentials used by Segall (Refs. 10 and ll) in the first-prin-
ciples band calculations. The v& in this and the subse-
quent figures are given in the same dimensionless units
as &.

shown in Fig. 3. It is seen that these quantities
are, as expected, quite small and smoothly varying
with «. We note that if «~ and 1"0 are not accurately
determined, the vp(e) will not in fact be very
smooth in the vicinity of the resonance as is the
case for one of the curves for Ag in Fig. 3. This
is not significant in a practical computation since
the resonance term completely dominates the tang~

for «near «~. In fact, v& is only important for «

significantly greater than «~. It thus suffices to
represent v2 by

vp(e} =dp+dge .
The seven parameters in Eqs. (9) and (11) along

with the resonance parameters «~ and I"0 for the
three potentials are listed in Table III. It should
be noted that this scheme uses the same number of
parameters (a total of 9) as used in the approach
of Sec. II. However, there has been considerable
gain in accuracy. This can be seen from Table II,
where the deviations of band energies at high-sym-
metry points are compared for the different
schemes. We see that the hybrid square-well
scheme gives the best results by far, with devia-
tions no greater than 0. 002 Ry. The agreement is

Two different schemes based mainly on the loga-
rithmic derivatives are considered in this paper.

0.4—

I

Cu CHODOROW--—Ag HARTREE—-—Ag HARTREE-FOCK

0—

-0.4
0.4 O. B l.2

FIG. 3. Depths of the square-well potentials v2 cor-
responding to the "residual" scattering described by the

tang& in Eq. (10) for the three potentials considered in
Fig. 2. The values of ez and I'0 used to remove the reso-
nance contribution are listed in Table III.

so good that for all practical purposes we can al-
most consider the resulting phase shifts to be
exact. We note, in fact, that the accuracy far sur-
passes the goal we set in I of a maximum deviation
of 0. 01 Ry.

As noted earlier, an approach which is success-
ful for the noble metals should be applicable to a
"simple" metal. The only change involved is the
simplification effected by the elimination of the @-
resonance contribution. The approach thus reduces
completely to the square-well scheme. We have
tested this assertion using logarithmic derivatives
from a calculation" for Al. The resulting v, for
l =0, 1, and 2 are shown in Fig. 4. With a view
toward encompassing the bands from the bottom of
the conduction band (I',}to above the Fermi energy,
we have used the forms for v, (e) given by Eqs. (9)
and (11). The seven parameters used are given in
Table III; while Table II lists the deviations of the
resulting energies for some high-symmetry states
from those for the first-principles calculation.
The agreement again is excellent with maximum
deviations no larger than 0. Q01 Ry.

As indicated in the introduction, the inclusion of
the l ~ 3 components lowers the P-like L~ and X~
levels. ' If we were to adjust the parameters of the
present scheme so as to fit the energies, as would
be done in an empirical application, the effective
l = 1 logarithmic derivatives [and thus v, (e}]would

be slightly modified for relatively high «. For the
Cu Chodorow potential, for example, the l = 1 well
depth is increased by 0. 006 and 0.015 at the L~
(e = 0.602) and X,' (c = 0. 833) energies, respective-
ly. The v, (e} curves are thus slightly flattened
(and thus easier to fit), although their shape is es-
sentially unaffected.

IV. SUMMARY AND CONCLUSION
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TABLE III. Parameters for the square-well scheme given by Eqs. (9)-(11).

So

Sg

S2

Po
Pf
do

df
ro

Cu
(Chodorow)

0.1513
—0.1341
—0.8652 x10
—0.2279
-0.9114x10 2

—0.4979x 10
—0.1544x 10

0.9190x 10
0.3519

Ag
(Hartree)

0.2014
—0.1809
—0.8201 x 10

0.2529
—0.4479x 10
-0.8419x 10
—0.1790

0.625x 10
0.2503

Ag
(Hartree-F ock)

0.1344
—0.1610
—0.7759 x 10

0.2952 x 10
-0.7912x10 '

0.1960
-0.2299

0.2492x10 4

0.2419 x 10

Al

0.3512
—0.8901x 10
—0.7774 x 10

0.4504
0.6989x 10
0.4972
0.1195

Both schemes required one less parameter and

gave better agreement with first-principles calcu-
lations than did the scheme used in I based com-
pletely on the tanp, . It turns out that the scheme
providing the considerably better agreement is, in
fact, a partial compromise between the L, and

tang, approaches in that the strong d-resonance
scattering contribution is treated by the resonant
pole contribution to tang, . For the remainder of
the l =2 and the complete l = 0 and 1 contribution
square-well potentials of depths v, (e} are defined
which yield the required logarithmic derivatives.
The resulting smooth v, (e) functions prove to be
quantities which are readily and accurately param-
etrized. The accuracy achieved with this scheme
is excellent. With nine parameters a maximum
deviation in E(%}of only 0.002 Ry is found for three
different noble metal potentials over a roughly
1-Ry energy range.

Another virtue of both schemes considered here,
which is important in an empirical or semiempiri-
cal application and which follows from the smooth-
ness of vo, v„and v2 (and their corresponding I, ', s),
is the relative insensitivity of the results to the E's
used to determine the parameters. Indeed the
virtues of the hybrid square-well scheme strongly
indicate that this scheme could provide an excellent
basis for an empirical or semiempirical determina-
tion of the electronic structure of the noble and

transition metals. Such an application is in pro-
gress by two of us. '

It was also shown by a study of Al, that with a
suitable simplification the hybrid square-well
scheme can be successfully applied to a "simple"
metal. The simplification consists of the elimina-
tion of the d-resonance contribution (a reduction of
two parameters) with the consequence that the re-
sults are given entirely by the well depths v, .

In the present study, high accuracy over a large
energy range was stressed. This ultimately af-
fected the number of parameters required. Clearly
there is some flexibility in this matter. Some re-
duction in the number of parameters would result
from reducing the range of E considered and/or the

0.8—

0.6—

Af

&=2

0.4

g=o

I

0.4
I

0.8 l. 2

FIG. 4. Depths of the square-well potentials v&(e) for
the Al potential used by Segall (Ref. 15).

accuracy demanded. We note that the uncertainties
associated with the presently available empirical.
information, e.g. , energy gaps obtained from opti-
cal measurements, is at best 0. 1 eV, which is
substantially larger than the maximum deviations
achieved by the second scheme.

It is useful to briefly compare the present results
with those of several other parametrization
schemes that have been proposed for the noble and
transition metals. One which has received much
attention is the nearly-free-electron-tight-binding
(NFE-TB) interpolation scheme proposed by Hodges
et t2'l. ' and by Mueller. ' The number of adjustable
parameters that were employed to determine the
9&& 9 model Hamiltonian for Cu was 14 and 11, re-
spectively. We also note that the accuracy of those
calculations were not as good as the present one.
Another approach which has been applied to Fe and
Cr by Connollyv is the linear-combination-of -atom-
ic-orbitals (LCAO) interpolation method. To
achieve an accuracy comparable to that obtained
by the present scheme for Cu and Ag, it was neces-
sary for him to employ 27 parameters.

A pseudopotential scheme which also utilizes a
nonlocal d-wave potential has been proposed by
Fong and Cohen and was applied to Cu' and NbN.
The advantage of this scheme appears to be that it
requires a relatively small number of parameters,
essentially the same number as in the present
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work. ' Since a comparison with a first-principle
calculation such as we presented here was not made
in their Cu calculation, a measure of the scheme's
accuracy for the noble metals is not available.
However, such a comparison was made in their
NbN study and the deviations from the first-prin-
ciples results were found to be quite large. A

practical difficulty with the application of their
scheme is that it involves the solution of high-di-
mension determinental equations (e.g. , correspond-
ing to matrices larger than 100x 100 for Cu). Final-
ly we also note that a satisfactory explanation has
not been given for why the scheme with the damped
energy-independent nonlocal potential should be
success ful. '9

It is worth noting that in contrast to the other
schemes, the present scheme parametrizes quan-
tities, namely the L, and the tang„which have a
simple and basic physical significance. The de-
termination of these quantities provides useful in-
formation about the effective potential.

Lastly we consider the work of Pettifor' ' who

showed that the NFE-TB model Hamilton. an can be
obtained from the GFM by suitable approximations
and transformations. As a consequence, all param-
eters entering the model Hamiltonian can be obtained
from the tang, (or L, ) and, in principle, can be
parametrized by the present scheme. However, the

tang, appear in relatively complicated summations, '

and, as a result, an application of this approach is
less convenient than one (such as ours) based on

the standard GFM where the potential dependent

terms are neatly separated out. Furthermore, the
approximations made to obtain the model Hamil-
tonian from the GFM unavoidably reduces the ac-
curacy. Some evidence for this is apparent in the
excited bands (e.g. , the upper X, and L, states) in
Pettifor's" Fe and Cu calculations.

In conclusion, it appears that the present param-
etrization scheme in conjunction with the GFM is
superior to the other proposed schemes because of
its combination of simplicity and accuracy. It
promises to be a useful tool in the empirical and

semiempirical studies of electronic structure.
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