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Electron-spin-resonance (ESR) measurements are reported in the two-dimensional Heisenberg magnet

K2MnF, and compared with a theory developed here. Results are in excellent agreement with

calculated values and, we feel, give strong confirmation of recent theories of spin dynamics. The theory
treats the linewidth hH and line shape in a two-dimensional Heisenberg system by assuming diffusive

motion for the long-time dependence of the time correlation functions. The short-time dependence is

taken to be Gaussian, and the resulting short- and long-time parts are joined together in a manner

siniilar to that used by Gulley, Hone, Scalapino, and Silbernagel. An angular dependence roughly of
the form AH ~ (3cos 8 —1) + (const. ) (8 is the angle of dc field with respect to the perpendicular
to the plane) is observed at high temperature, as predicted by the theory. This angular dependence
cannot be explained by either the secular or nonsecular parts of the second moment. Rather, it is due

explicitly to the dominance of wave-vector q 0 modes in the long-time decay of correlations in a
tw~imensional system. As temperature is lowered toward the antiferromagnetic ordering temperature

T„=45 K, the linewidth initially decreases, passes through a minimum, and then increases rapidly
near TN. The angular dependence is also temperature-dependent such that h,H(8 = %F) becomes less

than ~(8 = 5F} below about 65 K. These features of the temperature dependence are consistent with

the theory. Indeed, we find absolute agreement between theory and experiment to within 20% or better
at all angles over a broad range of temperature. The theory contains no adjustable parameters since
classical dipolar coupling is taken as the sole source of broadening and we use the same exchange
constant J as obtained from susceptibility measurements. The room-temperature line shape, which is

Lorentzian at 8 = 55 and non-Lorentzian at 8 = 90', and the frequency dependence of hH, measured

at 9.8 and 23.4 GHz, are also in agreement with theory. Shift of the resonance field with angle has

been measured as well. This effect can be explained quantitatively by the net dipolar field and, contrary
to the other phenomena, does not, in the main, reflect two-dimensional spin dynamics.

I. INTRODUCTION

The recent discoveries of quasi- one- and two-
dimensional magnetic materials ' have renewed
interest in exchange-narrowed magnetic reso-
nance as a result of an alteration of the basic fea-
tures of linewidth and line shape in less than three
dimensions. The equation originally derived by
Anderson and Weiss3 and by Kubo and Tomita, 4

n ld (dp/QPg ~

(h&u is the linewidth in frequency units, &u~ is the
rms dipolar perturbation frequency or, equivalent-
ly, the second moment of the line shape, and (d,
is the exchange frequency with &u, » u&~) assumes
that the exchange-induced fluctuations are suffi-
ciently rapid to average the dipolar field seen by
a spin to zero in a time 7,= I/&u„which is much
less than the relaxation time I/b, &o. In particular,
validity of (1) requires that the power spectrum
of the time correlation function (u&~(t)&u~(0)) be fi-
nite at frequency ~ =0.

Originally. ' the form
2 2

(~,(t)~,(0)) =(~,') e """ (2)

was adopted as a convenient choice which satisfies

the above conditions.
In the past few years, however, it has been

realized that for long times the temporal correla-
tions are governed by spin diffusion, and thus

Itm&~, (t)~p(0)&" ltl"" (3)
t"&

for d dimensions. The difference between (3) and

(2) is not catastrophic for d =3 since t '~2 is a suf-
ficiently rapid decay to produce a finite value at
&u = 0 for the power spectrum P(ur) given by

P(~) = f dt(~, (t)~,(0)) e'"' (4)

However, a large effect results in one dimension,
since d= 1 in Eq. (3) leads to P(m)~ u '~ for
&u-o, and thus Eq. (1) cannot hold since, as men-
tioned above, it assumes that P(&u = 0) is finite.
The linewidth in this case turns out to be consid-
erably larger than given by (1), and the line shape,
which is Lorentzian if P(&u =0) is finite, is appre-
ciably non- Lorentzian. These effects have been
well documented in one-dimensional compounds. ~'~

For d =3, there is also a divergence of P(~) as
~-0, but it is of the weak form In(1/~) and thus
it is not immediately obvious whether there will
be a great difference between d = 2 and d = 3 in
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practice. In this paper we explore the two-dimen-
sional case in detail both theoretically and experi-
mentally. We find that the logarithmic divergence
is indeed strong enough to produce features pecu-
liar to resonance in two dimensions. The most
notable of these is an angular dependence of 6(d
which is related neither to that of the total second
moment (~~P) nor to that of the "truncated"P second
moment (~~PT) which includes only the secular
(M =0, where M is the change in Zeeman quantum
number) part of the perturbation

The observed dependence is roughly of the form

&v = n+ P(3 cos'8- 1)',

where 8 is the angle between the applied field 8
and the normal to the plane and o. and P are appro-
priate constants. By contrast, both (~~) and (ar~pr)

have a 8 dependence such that they are larger at
8= —,'m than at 8=0, and neither of them possesses
a minimum in the neighborhood of the "magic an-
gle" 8,= cos '(1/W3).

This evidence differs from the situation in either
three or one dimensions where, in the former
case, the angular dependence is that of (&uP-as
long as up«4& (&up is the resonance frequency)—
and in the latter case, it is that of (~~T). The ex-
planation lies in the fact that for d = 1 or 2 the cor-
relation (~~(t)&u~(0)) is dominated by long-spatial-
wavelength fluctuations for the times of interest,
whereas the second moment, which is (&u~(t)&o~(0))

at t =0, contains contributions from all wave-
lengths. In one dimension, however„all wave-
lengths produce the same angular dependence due
to the simple geometry and it is thus adequate to
consider only (&o&'r). For d =2, to the contrary,
there is a sizeable difference between the angular
dependence associated with wave vector q =0 and
with that associated with the sum over all wave
vectors

Experimental data are reported for the two-di-
mensional Heisenberg antiferromagnet K,MnF, at
temperatures above the ordering temperature T„.
Comparison is made with the theory presented
here and very good agreement is obtained for the
angular dependence, absolute value of the line-
width, and the line shape. The agreement is par-
ticularly impressive in light of the fact that no ad-
justable variables are used, the only "free" pa-
rameters in the theory being the strength of the
perturbation-which is given by the classical di-
polar interaction-and the exchange interaction-
which is known from susceptibility measurements.

Our results for K2MnF, are similar to those pub-
lished by Boesch et al. ' on the two-dimensional
compounds (CH, NH, )pMnC1, and (C,H, NH, )pMnC1, .
They observed the same angular dependences, but
did not offer an explanation.

II. THEORY

A. General formalism and qualitative discussion

The absorption y (&u) at a frequency cu of a.n ex-
change-narrowed electron spin resonance (ESR)
line is given by"'

X"(~- ~p) exp —p ~~ dT(t —T)
(d 'Np 0

xgs(T) cosM(dpT (6)

in which g„(T) is a time correlation function relat-
ed to that part of the perturbing Hamiltonian which
induces a change M in total Zeeman quantum num-
ber and ~o is the angular resonance frequency.
The functions g„(T) are related to the total dipolar
correlation function through

2

(u&~(T)sr~(0)) =p g„(T) cosM~pT.
N~O

The symbol F indicates Fourier transform at the
frequency (d. The temperature T is assumed to be
high enough that Sup/ksT«1. All time depen-
dence associated with the Zeeman Hamiltonian is
explicitly contained in cosM(dos, so the time vari-
ation of g„(T) is governed solely by the exchange
interaction. The values of M are restricted to
0, 1, 2 because the perturbation (dipolar+ anisot-
ropy+ hyperfine) in all cases of interest is at most
quadratic in the spin operators.

As noted in Eq. (3), spin diffusion leads to the
result

A consequence""'" of Eq. (7) is that the upper
limit of the M =0 integral in Eq. (6) can be ex-
tended to ~ for three dimensions, but not for one
and two dimensions. This is equivalent to the
statement in Sec. 1 that the spectral density P(w)
diverges for ~-0 in less than three dimensions.
Hence, the line shape is purely Lorentzian (Fouri-
er transform of an exponential decay) only in three
dimensions. The limits of the M = 1 and M = 2 in-
tegrals can be extended to ~ for all dimensions
because of the rapid modulation provided by
cosM~o7. . Thus anomalies associated with less
than three dimensions arise primarily from the
secular {M=0) part.

Before proceeding with a formal analysis, it is
instructive to consider the differences between
the calculation for d = 2 as presented here and for
d = 1 as presented elsewhere. ' '3 There are two
basic points to consider: First, the importance
of the short-time behavior of g„(T) and the contri-
bution of the M c0 terms; and second, the angular
dependence of the linewidth.

In regard to the first point, for one dimension
the linewidth is insensitive to short-time behavior
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and the M w0 terms as long as the M =0 part is
appreciably nonzero. This is because the v ' '
dependence for d = 1 produces a sufficiently strong
divergence of f~(f - 7 )go(v) dr for r ~ that only
the coefficient of the asymptotic form in Eq. (7)
matters. Also, the nonsecular terms are not over-
ly important at high frequencies-except of course
near the magic angle cos ~(l/v 3), where go= 0 for
the dipolar perturbation [see Eq. (14a)]—because,
as mentioned, there is no divergence of the M0
integrals. In two dimensions, the divergence is
only logarithmic so that the asymptotic form is
not as dominant as it is in one dimension; and the
behavior of go(r) before the asymptotic dependence
is reached is thus far more important. An obvi-
ous corollary is that since short-time behavior
has a sizeable influence, the nonsecular (M o0)
terms are also more important in two dimensions.
Hence, a more detailed treatment is required
here than for the calculation of the width h, co in

(CHI)4NMnC13 (TMMC), say, since it does not suf-
fice simply to know the r ~behavior of go(r).

The second point concerns the angular depen-
dence of 6(d. This comes from anisotropy of the
dipolar interaction which enters into the expres-
sion for g„(v) in the general form

g (r)-ZF™F' '~~'(r)
ae'

in which F~~' is a. dipolar factor and 8,'",'(r) is a
time correlation function involving four spin oper-
ators. Complete expressions for the quantities
above are given in Appendix A, but for the discus-
sion at hand it suffices to note that, for example,

F,"'=Z (3 cos'8„- 1)rp, e"'"o,

where e,f is the angle between r, f and the applied
field 5, in which r,z is the displacement between
lattice sites i and j.

Angular dependence for a one-dimensional sys-
tem is quite simple since all vectors r,f have the
same angle e,f. Thus, in particular, for the dom-
inant secular part, we have F,"'~(3 cos'-1) for
all values of q, where 8 is the angle between R
and the chain axis. %e stress the q independence
of this result for a, reason which will become evi-
dent shortly. Since the M wO terms are important
only near the magic angle where 3 cosine- 1=0,
the linewidth is proportional to a power of
I 3 cos 8 —1I, as has been established.

%e discuss angular dependence in a two-dimen-
sional system with the aid of Fig. 1. Spins a,re
located on a plane quadratic lattice perpendicular
to the crystal c axis; the field 5 makes a polar
angle 8 with respect to the c axis and an azimuthal
angle y in the plane with respect to a principal
planar axis e for the tetragonal K~MnF, structure.
The vector r,f is at an angle y',

&
with respect to

FIG. 1. Coordinate system for planar magnet. The
coordinates x, y, z are orthonormal, with y in the plane.
The a axis and the displacement r& also lie in the plane.

the u axis. Thus with respect to the (z,y, z) mag-
netic field axes, the coordinates of r, f are

r„=r„(cos(q '„-rp)cos8, sin(y'„—y),

cos(po —p)sin8) ~

The quantity 3 cos e&f- 1 may be written as

3 cos'8, i —1 = —,'(1 —3 cos 8)

+3[cosm((p', ~
—(p)- —,']sin~8. (10)

Consider now the q dependence of I",' '. For q = 0
we have

F0"' = —,'(1- 3 cos'8) Z &P&,

which reflects the angular dependence which would

be observed if B„,(v) were dominated by q, q'- 0,
which is expected in the 7 —~ limit. This result,
however, is by no means q independent as may be
seen by looking at

X-' Z IF,"'I'=Z r„(3cos'8„-1)'.
j

With the help of Eq. (10) this becomes

~'~ IF,"'I'= -.'[(1- 3 cos'8)'+9 sin'8

x (4 (cos'(q ',
~
—q')) „-1)]

xPr~ . (12)
f

For a continuum, we have (cos (yI& —y))„=—,';
however, for q =0 the value (cos y', ~)„=—,

' is more
nearly correct because this is the case for the
four nearest neighbors when H is in the a-c plane,
and the r,f factor makes nearest neighbors the
most importa, nt. In either event, we find that the
expression (12) is larger at 8= —,'v than at 8= 0.
This is not surprising since on the simplest
grounds one might expect that the secular contri-
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bution would be largest with the field in the plane
since then it is possible to realize (9,~

= 0 at least
for some of the spine. [We do find for the special
case qI = —,'vv, corresponding to 0 in a (110)plane,
that (cos'(qI', I- qI)) =-," so that the 3 cos'8- 1 de-
pendence is preserved. ]

The significance of g, IF,' '
I is that 6'«. (T)CC5«.

at v =0 in the high-temperature limit; so (12) is
related to the angular dependence if the short-time
behavior of the correlation functions were domi-
nant.

The conclusion is that observation of an angular
variation of the form (3 cos 8 —1) for all azimuth-

al angles in a two-dimensional system tells us
more than it does in a linear chain. Not only does
it require that the secular component dominate,
but it further shows the interesting fact that the

long wavelength q-0 modes must make up the
major contribution. This heavy weighting of q-0
is consistent with the asymptotic time dependence
since the low q modes have the longest lifetimes.

The angular dependences of the T-0 parts go(0)

ending„(0)

as given by Eqs. (A15)-(AI7) are shown

in Fig. 2. These represent the secular and com-
plete, secular plus nonsecular, second mo-
ments, respectively. It is clear from Fig. 2 that,
as mentioned above, the observed angular depen-
dence Eq. (5) cannot be accounted for by the short-
time behavior.

B. Calculation of linewidth, infinite temperature

Detailed calculation of the linewidth requires
knowledge of the time correlation functions.
These are not known exactly so that certain ap-
proximations are necessary. The first such ap-
proximation is the, by now standard, decoupling
of the four-spin correlations into products of two-

spin ones. " ' In the notation of Eq. (8) this

SECOND MOMENT

( M = 0,SECULAR PART, ONLY )

0 I0 20 30 40 50 80 70 80 90
I9 {deg)

I"IG. 2. Theoretical second moments (solid curves)
and experimental linewidth (circles) vs angle 8 for H in
a-c plane (100).

amounts to a random'-phase approximation (RPA),

(13)

where

e, (T) = 3(S,*(T)S' )/S(S+ 1)

and isotropic ((S',(T)+ = QS', (T)S,')) correlations
have been assumed. Since there have been, to
our knowledge, no detailed improvements to (13)
suggested in the literature, it is somewhat diffi-
cult to assess the magnitude of the errors which
may be involved in the decoupling approximation.
It does seem, however, that the remarks in Sec.
II A concerning angular dependence are insensitive
to the RPA. This is because, for low-dimensional
systems, we expect that 8,',".'(v) is dominated by
both q and q'-0 in the v —~ limit (see Appendix
B) so that the (3 cos28 —1) dependence of I

FOIO'
I

is preserved irrespective of whether or not (13) is
valid. The same argument has been presented re-
garding angular dependence of linewidth in an anti-
ferromagnet in the critical region. "

Next we adopt a procedure somewhat similar to
that used by Gulley et a/. "whereby the short-time
behavior of g„(T) is approximated by a Gaussian

gv(T) =gII(0) 8 (15)

while the long time behavior is estimated by as-
suming diffusive decay

d), (T) =e o"'

for the long wavelength modes. %e have noted in

the above that @,(0) = 3(S;S' )/S(S+ 1) is unity, in-
dependent of q, in the infinite-temperature limit.
Equation (16) is then used in Eqs. (8) and (13) to
obtain

Ilm gv(T) =gII(0)/II /K(dqT

where

Al
~

FQI I
~

v Q
~

F (N &

~

2

as in (A18) and

K = BIID/u, II, —

in which a is the planar lattice constant. Details
of the derivation of (17)maybe found in Appendix C.

We now seek to describe g„(T) over the whole

range by a function which reduces to Eq. (15) for
short times and which is given by Eq. (17) for
long times. If )„~K/ve, there exists a finite
time v„at which the expressions (15) and (17) are
equal, whereas if f„&K/v"e the asymptotic form
Eq. (1"I) is always greater than e 'tm"" . [K(ve
=3, see discussion following Eq. (C5). ] For &„
~ K/v'e we may therefore match (15) and (17) in a
simple way by going from one form to the other
at the time r„when they are equal. Inspection
of Eq. (A19) shows, however, that values of f„as
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FIG. 3. Matching of short- and long-time portions of
g~{v). (a) Solid curve is Eq. (21). Dashed curves repre-
sent continuations of functions shown for v &v& and 7 &vz.
(b) Alternate matching procedure. Dashed curve is
continuation of gjtl/E~, v' for 7 & v'~.

large as 1V have to be considered; so a raore
careful analysis is required.

%e consider, therefore, the following simple
model which contains the essential physics for
large &„. A Gaussian dependence,

is assumed, from which we estimate" (see Ap-
pendix C)

(20)

for long times. Equation (20) should represent a
considerable improvement over Eq. (1V) for the
important cases of &„&1, and it has the virtue that
it is now possible to find a finite 7„at which the
forms (15) and (20) are equal. Hence, we take the
complete dependence of g„(r) to be

gu(7)=su(0)& ~' ",
(21)

g~ + Kcu~~

where ~„ is the time (7„&0)beyond which (20) is
larger than (15). This is illustrated in Fig. 3(a).

Equation (21) may now be used in Eq. (6) to ob-
tain an expression for the linewidth. %e have,
from (21),

K g xo+go/K
and, for 1li W 0,

ft OO

dT(t —7')g„(v) cosh14&p& t d7'g„(r) cosM~o7
Q

g (0)t (1 )'~ (x„)

x ln '— -0 —0. 5VV
xu+ fu/K

where x„=u, v„. The above equations are valid for
Mqt» xu, Not» 1, and &u, /uo» x„. These condi-
tions are well satisfied in the region of interest for
KzMnF&. For f„«1, the conditions ~,I;«x„and
&u, /&oo» x„break down, but then the logarithmic
terms, in which these approximations are used,
become negligibly small anyway. In arriving at
Eq. (23) the relation

f"(du/u) cosyu = ln(1/y) —0. 5VV
1

for y «1 has been used.
The final evaluation is performed by using Eqs.

(22) and (23), together with values to be found in
Appendixes A and C. For numerical constants we
have taken y= 1.76X10 0 sec ', appropriate to
the free-electron gyromagnetic ratio which is ob-
served for Mn", a= 4. 20 A, 8/kz =4. 15 K (from
Breed ), &uz/2v = 9.3 and 23. 4 6Hz, and S= $. The
half-width at half-maximum in magnetic field units
dd'E is calculated as h,co = YES= tQ', where tQ is the
time at which the function in square brackets of
Eq. (6) has decayed to 1/e of its initial value.
That is, we assume a Lorentzian line shape. At
most a 13% error can be introduced since ydH
= 1.13t& is the calculated value from the line shape
at 8=0 and room temperature (see Fig. V). Re-
sults of the calculation are discussed in Sec. IV
along with the experimental data.

In order to test how sensitive the calculation
might be to the manner in which the long- and short-
time parts of g„(7) are joined together, we have
considered an alternate matching procedure,
sketched in Fig. 3(b). Here we use Eq. (1V) and,
for t„&K/ve, simply choose the time 7„ to be such
that 1„/K~,v„= 1 and assume gu(~)/g„(0) = 1 for

For t„&K/We, T„ is defined as the larger
of the two times for which e "& = g„/K&u, r [see
discussion following Eq. (1V)]. Results obtained
from this approach differ from those using Eq. (21)
by less than 10% at any angle; so we conclude that
the precise manner in which short- and long-time
portions are joined is not overly important.

C. Extension to finite temperature

%e assume that above the ordering temperature
T„ the basic picture of diffusion for the long wave-
lerrgth modes at I;- ~ and a short-time Gaussian



EXCHANGE NARROWING OF E I ECTRON- SPIN RESONANCE IN. . .

decay still holds. Also, isotropy of the correla-
tions is maintained in the model. With these as-
sumptions, the formalism used in Sec. II 8 re-
mains valid except that the quantities D,
and g„(0) now must all be regarded as temperature
dependent. Their temperature dependence is es-
timated as follows.

Since' ' D is proportional to q !&u,') '/(~,'&'

in the limit q- 0, (see also Appendix C) we have

(24)
D(~ ) ( o)ol o ( 4)11o

for the ratio of D at a temperature T to its value
at T =~. The moments (&u, ) and!~, ) are inversely
proportional to the static correlation (S,'S* ), and

thus we may write in the q-0 limit

TN

Ka
5-

I

IOO

(a}

I

200
T(K)

500

~a fo" o ~a~

where f o is the q = 0 correlation!Soso) or, equiva-

lently, XOT normalized to unity at T=~ and where
a high-temperature expansion has been assumed
for the numerators of the moments expression, in

which 5,'"' = 1. Collins has derived general for-
mulas for 5„'~ up to and including ~=3, so that the
second moment!~o) is known to O(T o). He has
also obtained the term 5', ', i. e. , the coefficient
of T for!oo,'). We have therefore constructed
D(T)/D(~) by truncating the series in (25) with the
known coefficients. The normalized yoT is com-
puted from the series coefficients for a classical
two-dimensional Heisenberg magnet as given by
Stanley. It agrees well with the susceptibility of
KzMnF4 measured by Breed. ' The resulting tem-
perature dependence of D, together with that of fo',
is shown in Fig. 4(a).

Temperature dependence of t„and g„(0) may be
related to that of the static wave-vector correlation,

y, (0) = [8/s(s+ 1)](s,'s„)=y
as in Eqs. (A14) and (A18), within the decoupling
approximation. Lee and Liu ~ have performed a
Green's-function calculation for a two-sublattice
antiferromagnet above T„. Their result may be
expressed in the form

(26)

fo+~ Y, -fo)(I —y. )
1+x(I -y,')

where

y, = Z 'Pe"'&& = —,'!cos4„a+c~sq,.a)

for a system with Z neighbors j coupled to & by the
exchange interaction, the latter equality holding for
the two-dimensional system of interest. The quanti-
ty f, is the normalized value of y, T, where y, is the
staggered susceptibility, and it is evident that (27)
reduces to the correct values at zone center (y, = 1)
and zone boundary (y, = —1). In Ref. 25 the param-

, T.' T IOO
N

I

200
T(a)

300

FIG. 4. Theoretical temperature dependence of pa-
rameters needed for linewidth calculation. (a) Diffusion
coefficient D and (XOT) where Xo is uniform susceptibili-
ty, both normalized to unity at T= ~. (b) Inverse cor-
relation length f( in units of a.

eter A is given by

&=- '~f fo) ~f80

however, we find it convenient to choose X in terms
of f, and fo so as to satisfy the sum rule

N 'Z.f, = 1 (28)

for T & T~.
The assumed f, in (27) reduces to the familiar

Qrnstein-Z ernicke

1
fq~ 2 2 (28)

for q =q, -qnear zero [qo is the reciprocal-lattice
vector (o/a, o/a)]. The inverse correlation length
~ is related to X by za = (2/y)' and is shown in
Fig. 4(b) for the values of a which satisfy (2V) and
(28). It is known that (29) cannot be correct for a
two-dimensional system in the immediate vicinity
of i „, atlu. experin. ents ' oil ~~~i~ii, rla~e verified
this by showing the exponent g to be about 0.4 at
T„. The same data, though. ~how g = 0 for T/T„
—1 &0. 08, so that Eq. (27), which is consistent with

q = 0, should be reasonable except quite near T„.
The qua, ,;tity f, may be obtained from the high-

temperature-series expansion~3 of the classical
Heisenberg ferromagnet since f,&~ gf gg g)
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fo( f yppomgggot) for classical spins . Near T„we
have extrapolated the series in the manner done
by Lines ' for our calculation of f,.

The computations of g„(0) and &u, are lengthy at
finite temperature because of the presence of the
f, factors. Thus we have restricted the calcula-
tion to 8 = 0, 55' [cos '(1/PS)], and 90' and
adopted the following numerical procedure. At
each temperature X is computed from (2V) and the
sum rule (28). This part of the computation is
quite rapid and highly accurate since the summa-
tion (28) can be converted to a one-dimensional
integral involving the zeroth-order Bessel function
of imaginary argument. The quantities g„(0) and
(d, are computed by summing over 6400 points in
the two-dimensional Bnllouin zone. At each such
q value the dipole sum I", is calculated by sum-
ming over 400 lattice points.

Detailed results are presented in Sec. IV along
with the experimental data. The main features
are that the linewidth passes through a minimum
as T is decreased, the anisotropy &H(8 =0)/
nH(8 = 90') also goes through a minimum, and
there is no longer a minimum in ddI vs. 8 near 8,
=cos ~(1/&3) for T close to T„. These may be
explained qualitatively as follows. Since 4(d is
dominated at high temperatures by the q- 0 modes,
it follows that for an antiferromagnet Egg should ini-
tially decrease as T is lowered. This behavior is
to be contrasted with that of a three-dimensional
system. In both cases, there is an over-all pre-
factor of f0= yoT in the denominator [see Eqs.
(Al)-(AS)]; in three dimensions the sum over all
wave vectors Q, IE,'"'I~[/,' ] tends to be weakly
dependent on T. Thus 4' increases approximate-
ly as ()(,T) ' with lowering temperature. However,
if most of the contribution comes from q= 0, as
is the case in two dimensions, then g, IE," I

x [$,(0)] -
()(OT) and an approximate )foT depen-

dence is expected for ~. Since the relative
strength of q = 0 modes is decreased with lowering
temperature, it follows that the anisotropy will
also decrease because, as has been discussed, the
3cos 8 —1 dependence is characteristic only of
q =0.

That 4+ passes through a minimum and then in-
creases rapidly as T- T„ from above is due to the
large fluctuations at the wave vector qo character-
istic of the staggered susceptibility. In this region
fo «f, and the 8 = 0 contribution is no longer of
much importance. Rather, qo dominates and, as
a consequence, the situation is qualitatively very
similar to that for a three-dimensional antiferro-
magnet. Also, since the q = 0 modes are out of the
picture, the correlation functions g„(r) no longer
have a r ~ tail, and thus both nonsecular (M+ 0) and
secular (M=O) terms are expected to be important.
In this case Huber has shown that the angular de-

pendence of the linewidth reduces to

4' fx: 1+cos~8 (30)

D. Effects of anisotropy and hyperfine couphngs

For completeness, comments are in order re-
garding the contributions of anisotropy and hyper-
fine interactions to the linewidth. Vfe show below
that these are probably negligible.

Single-ion anisotropy is expressed by the Hamil-
tonian

R~=DQ Sf (31)

where z' is the crystalline c axis perpendicular to
the plane. The size of D may be estimated from
sirgle-ion resonance measurementss~ of Mn'+ in
isomorphous K~ZnF„which yield D =+ 35.4X10 '
cm ~. Similar measurements on Mn" in another
isomorph, KMgF4, give D = + 108x 10 cm; how-
ever, comparison of lattice parameters indicates
that the former figure for D found in K~ZnF4 should
be more representative of D in concentrated

so that a minimum is no longer expected near
cos ~(l/&3) for T close to T„.

The calculation is not expected to be valid very
near T„since then anisotropy of the fluctuations~6
must be accounted for. Also, it is questionable
whether the short-time parameter co, can give a
reliable estimate of the zero frequency component
of g„(v) in the region where decay is strongly in-
fluenced by the fluctuations at q, . In fact, we note
that since e, as defined in (Cl) turns out to be an-
gular dependent near TN, the anisotropy expressed
by (30), which neglects any 8 variation of ~„ is
not borne out in our calculations. Rather, we find
near T„b&u(8 =0)/6&@(8 =90') = 2. 5 instead of 2. 0
as predicted by (30). A treatment of 4&@ in terms
of critical exponents for T- T~ has been done else-
where. ' The work presented here is likely to be
meaningful for T/T„—1 &0.1, which corresponds
to T&50 K for KPCnF, .

Qualitative temperature dependence of the line-
width in a two-dimensional ferromagnet is readily
discussed in terms of the preceeding formalism.
For a ferromagnet the q =0 modes grow in strength
as temperature is lowered toward the critical point
T,. Hence, opposite to the case of an antiferro-
magnet, the two-dimensional anomalies become
enhanced as T decreases so that &~ should show
a continuous increase with lowering temperature,
and the angular anisotropy also should become
more pronounced. Once again, this behavior is
unlike that of a three-dimensional ferromagnet
where the main temperature dependence comes
from the XOT denominator, since the long wave-
length modes are not ovexly important, and hence

decreases with decreasing temperature.
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K~MnF4. The pertinent number for the q =0 part
of the dipole interaction is y hag&r, l, =2. 1x10 '
cm

Thus the anisotropy term is only about 2% of the
dipolar one and should be negligible. In any event,
one may show that single-ion anisotropy produces the
same angular dependence of &u as the q=0 part of
the dipolar interaction.

An isotropic hyperfine interaction

x„=ZAI, s, , (32)
t

between electron spin 0; and nuclear spin 1, gives
rise to an isotropic linewidth which may be calcu-
lated'~ in terms of the two-spin correlation function
(Sf(t)S&). The calculation proceeds in a manner
similar to that described for the dipolar interac-
tion. Two simplifications here are that only two-
spin correlation functions are involved and that,
since ~, is a single-ion interaction, the corre-
sponding f~, defined in a manner analogous to Eq.
(A18), is unity. From the measured ~~Mn NMR
frequency in K~MnF„we have" 2/)f=1. 'f3x109
sec '. This leads to DH(hf) =0. 7 Oe in our compu-
tation at infinite temperature and thus the hyperfine
contribution is only about 1k of the dipolar line-
width.

III. EXPERIMENT

Experiments were performed on cleaved sections
of single crystals of K~MnF~ prepared by Ikeda.
The 9.3-GHz spectrometer consists of a room-tem-
perature microwave cavity with a cold-finger
Dewar in which the sample is placed. The sample
could be rotated abou' the axis of the cold finger
with an accuracy of +1' of arc. The sample tem-
perature is regulated by the combination of adjust-
ing the flow rate of liquid helium into the cold finger
and heating the sample block electrically. The
block temperature is controlled by a feedback sys-
tem using a GaAs diode as the sensing element,
and could be held constant within + 0.2 K for sev-
eral hours. The actual sample temperature was
measured by means of a Chromel- Alumel thermo-
couple, mounted directly on the sample, with the
block temperature held constant. Because of the
microwave losses in the thermocouple, a separate
calibration run was made to determine the sample
temperature.

Data at 23.4 and 9.8 GHz were taken with stan-
dard K- and X-band spectrometers, respectively,
operating at room temperature. These systems,
at Sandia, were used to study the frequency depen-
dence of linewidths as presented in Fig. 6. All
other measurements referred to were obtained
with the above-described 9.3 GHz apparatus at
Illinois.

The magnetic field was measured with an NMR
gaussmetex at the start and end of each sweep
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FIG. 5. Angular dependence of linewidth rhH at room
temperature, 9.3 GHE, for field in a-c plane. Dashed
curve is theory for infinite temperature. Solid curve is
smooth fit through calculated points at 8=0, 55', and 90'
for 300 K. In this and all successive figures, the theoret-
ical curves contain no adjustable parameters.

through the resonance line and the resulting
curves were fit by a least-squares program to
Lorentzian curves. A systematic increase in the
rms deviation between the fitted curve and the
data was noted as the angle between the sample c
axis and the magnetic field departed from 55'.
No attempt was made to account for the non-Lo-
rentzian nature of the line in the fitting process so
that our linewidths may be systematically in error
by an amount which can be of the order of 10/p at
0' [see discussion in paragraph following Eq.
(23)].

IV. RESULTS

A. Room temperature data

Data are presented in Fig. 5 for the angular
variation of the Lorentzian half-width at half-max-
imum &0 taken at 9.3 GHz and at 300 K. The
solid curve represents a smooth curve drawn
through the theoretical values of 4H at 6 =0', 55',
and 90' coxnputed for T = 300 K. As there are no
adjustable parameters in the theory, the compar-
ison is on an absolute basis. The observed line-
width is within 20/p of the computed value at all
angles and the amplitude of the anisotropy is quite
comparable: 30 Oe experimentally as compared
with the predicted 40 Oe. The anisotropy ampli-
tude is temperature dependent as may be seen
from the T=~ limit of the linewidth expression
which is drawn as a dashed curve on Fig. 5.

The dataof Fig. 5 were taken in the a-c plane
(azimuthal angle y = 0) but, within experimental
error, there is no angular variation of the line-
width for fields lying in the basal plane (8 =~ v).
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FIG. 6. Frequency dependence of ~ vs angle 8 at
room temperature. Solid curve above base line is infinite-
temperature theory.

fied from a comparison with (22) and (23), and
(H-Ho) is associated with (~ —&uo)/y. Using val-
ues of A, B, and to appropriate to 300 K and 9.3
GHz we obtain the theoretical line shape given by
the dashed line of Fig. 7. Good agreement is seen
to exist both at 8=0 and at 8=55'. It is interest-
ing to note that since the relative size of A and B
is important, no single curve for the line shape
holds for all linewidths of an ideal two-dimensional
system at 8=0 as is the case for the linear chain
(i.e. , the Fourier transform of e ). This factg3 /2

was not appreciated in our earlier publication"
and consequently we displayed a theoretical line
shape for arbitrary A/8 which did not give satis-
factory agreement with experiment.

B. Temperature dependence

This is consistent with the infinite-temperature
calculation which shows that AH(y =0) differs
from bH(y ~4v) by no more than 10%%up, being 8%%ug

at 8 Qw. As previously, the azimuthal angle is
measured with respect to the a axis.

A comparison of the linewidth in the a-c plane
at 9.8 6Hz with that at 23.4 GHz shows a small
but systematic narrowing at higher frequency near
the minimum angle 8=55'. In Fig. 6, we show
the ratio ~(9.8 GHz)/ddI(23. 4 GHz) measured on
the same sample and the theoretical ratio for fi-
nite temperature. Despite the relatively large un-
certainty in the ratio, there is clear evidence for
the predicted effect. The weak maximum in this
quantity and the frequency independence of the
linewidth at 8=0' predicted by Eq. (23) appear to
be borne out.

In order to study the room-temperature line
shape in detail, direct detection of the cavity level
was made (video detection mode). The resultant
line shape is known in Fig. 7 by plotting the ratio
I(0)/I(H Ho) vs. (H- -Ho)~/~~, where Ho is the
field for resonance and I(0) is the amplitude of the
absorbtion at Ho. For a Lorentzian line, the data
would fall on a straight line of unit slope with an
intercept at 1, as shown in Fig. 7, For reference,
a Gaussian, which falls off much faster in the
wings, is also shown. The data at 8= 55' follow
the Lorentzian shape to within experimental uncer-
tainty as was indicated by the smaller rms devia-
tions of data taken at 8= 55 from Lorentzian
curves. Theory predicts a Lorentzian shape at
8= cos '(1/v 3) = 55" since at ihat angle the ampli-
tude of the @=0 secular component of the perturba-
tion is zero, which makes &0=0.

For fields along the c axis (8=0) the line shape
was given by (5) and can be written

I(H- Ho) - P/exp(- At —Bt lnt/to)),

where the parameters A, B, and t„can be identi-

The temperature dependence of the linewidth
was measured at 9.3 GHz for 8=0, 55, and 90'
over the temperature range 50-170 K. The results
are shown in Figs. & and 9 which give, respective-
ly, the linewidth at 8=0' and the anisotropy ex-
pressed by the ratios nH(8=0)/nH(8 = 90') and
ddI(8= 90')/hH(8= 55'). As predicted in Sec. II
C, the linewidth has a broad minimum near 100 K
before rising sharply as the Neel temperature is
approached. The theoretical 1inewidths for these
angles were calculated at several temperatures
using the procedure discussed in Sec. IIC. The
results are shown as the curves in Figs. 8 and 9,
again without adjustable parameters. The agree-
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FIG. 7. Line shape at room temperature, S.3 GHz.
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C. Frequency shift

Figure 10 shows the field Ho required for reso-
nance vs. 8. There are two mechanisms for this
angular variation which we refer to a.s classical
and dynamical. The classical effect simply comes
from the mean dipolar field,

lk

I I I I i

0 TN IOO 2QQ'
TEMPERATURE (K)

I

300

Hgg —(Q) Z (3 cos 8gg —l)Y(y

where the average moment (p,) is given by

y g S(S+1)H~
3ks(T+9g )

(33)

(34)

FIG. 8. Temperature dependence of linewidth for
8=0. Solid curve is theory. ddt reaches 705 Oe as in-
dicated at 50 K ~ 1.1'.
ment at room temperature extends to 60 K with
agreement to within 10 Oe at all angles. %e take
this as ample confirmation of the applicability of
the diffusion-dominated exchange narrowing model
presented above to nearly two-dimensional anti-
ferromagnets such as K2MnF, .

At lower temperatures, the theoretical analysis
presented above indicated that the dominance of
q = 0 modes, which leads to the minimum in the
linewidth at 8= 55', will give way to fluctuations
at the antiferromagnetic wave vector qo. The
crossover is clearly seen in the data to occur
near 70 K at which temperature the linewidth is
the same for 8=55' and 8=SO'. This is quite
close to the predicted value of V5 K. The pre-
dicted temperature dependence of AH(8 =0)/
~(8= 90') is also in reasonable agreement with
experiment. %e note that at the lowest temper-
ature the value ~(8=0)/n H(8= 90') = 2. 5 exceeds
the figure of 2. 0 predicted by Eg. (30), which as-
sumes complete dominance of modes at the anti-
ferromagnetic wave vector. A ratio greater than
2.0 has been observed' in NiCl~ near T„, and is
accounted for in Huber's theory'~ by the damping
rate of the mode q() becoming comparable to ~, in
the critical region. In our calculation, an addi-
tional mechanism is the angular dependence of co,.
Although it is interesting that there is exact agree-
ment of our theory with experiment for n,H(8=0)/
ddI(8=90') at the lowest temperature, this may be
fortuitous since, as mentioned, we do not expect
our method to hold in the immediate vicinity of
~N

The temperature dependence observed here is
in agreement with that found by Yokozawa'6 and
by deVfijn et al. '~ for KEMnF„and is similar to
that reported in Ref. 10 for other two-dimensional
antiferromagnets. The low-temperature angular
dependence, which does not show a minimum at
8= 55', was a,iso reported in Ref. 3'7.

in the high-temperature regime with + the Curie-
%eiss temperature =96 K for K,MnF, . The field

8«, adds to the applied field and thus produces a
shift 68o 84)y in the field required for resonance
at a fixed frequency. For a two-dimensional lat-
tice appropriate to K~MnF4 we find at 300 K and
for a free electron g=2. 00,

5Ho=0. 4 p(3 cos 8 —1),

I I $ I i I

H(e=o)
H(8= ~0')

j,o—

I
y 0e ~ ~

~ ~ r e r

H(e= eo.)
H{e=s5 )

05t
l00 200 300

TEMPERATURE (K)

I"IG. 9. Temperature dependence of linewidth anisot-
ropy. Solid curves are theoretical. , vrith infinite temper-
ature points shown by arrows.

where p is the frequency in GHz and WHO is rnea-
sured in Oe.

This relation is plotted as the dashed lines in
Fig. 10 for the two frequencies, and it is seen
that the angular variation of Ho is satisfactorily
accounted for in this manner. The g factors at
60' are 2. OOV and 1.SSS at X- and K-band frequen-
cies, respectively.

The agreement may be somewhat fortuitous since
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V. SUMMARY AND CONCLUSIONS
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we have not included surface demagnetizing fields
which can contribute an amount of the order of
4~M, to H«, where the magnetization yer volume
is M, = 2(p,,)/a c for the KsMnF» structure with lat-
tice constants a and c (two spine per unit cell).
At room temperature 4' =6 Oe at 9.3 6Hz, so
the effect of sample shape on the angular variation
of Ho can be important.

The second, dynamical, effect comes from the
exchange narrowing phenomenon itself. Equation
(6) gives only the relaxation part of )('(~). A

more complete expression ' shows that there is
a frequency shift,

2
dv. sinMu&ovP„(r),

tflm 3 0
(36)

where g„of Eq. (6) is related to g'„by g„=P„+g „.
The upper limit in (36) has been extended to ~

for the reason discussed after Eq. (V). The field
shift 5H = —ho/y may then be computed by using
Eq. (21) in Eq. (36). The resulting dynamical ef-
fect predicted for infinite temperature is shown in
Fig. 11. This contribution to the shift is approxi-
mately independent of frequency since it i,s nearly
proportional to the frequency-independent integral
f sin&sar(dv/v) It is most. likely that its magni-
tude of 7 Oe maximum is too small to be observed
in comparison with the shift from H~„at these fre-
quencies. Thus we cannot make meaningful com-
parison here between theory and experiment, for
the more interesting dynamical shift. Such a study
could be made by going to much lower frequencies
where H« is diminished or by making careful
measurements of g-factor vs. angle at several
frequencies as done by Henderson and Rogers. "

FIG. 10. Angular dependence of field Ho required for
resonance, referred to its value at 8=0, at room temper-
ature. Dashed curves represent the shifts expected at the

bvo frequencies from the classical dipolar field, Eq. (35).
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FIG. 11. Theoretical angular dependence of &0 due

to the dynamical shift, Eq. (36), at infinite temperature.

We have measured the ESR linewidth hH in a
single crystal of K~MnF4 as a function of the angle
8 between R and the c axis, as weil as of the azi-
muthal angle cp and as a function of temperature.
The angular dependence is independent of q and

at high temperatures is proportional to (3 cos'8
—1) plus a constant term. As the temperature
T is lowered, the linewidth initially decreases,
passes through a minimum, and increases rapidly
as T approaches T„. The angular dependence of~ is also temperature dependent such that
aH(8= 55') becomes greater than nH(8=90') at.
the lower temperatures. The line shape has also
been studied at high temperatures, and we find a
Lorentzian line at 8= 55' but a significant depar-
ture from Lorentzian at 8=0. Measurements at
23. 4 and 9.6 GHz reveal that n,H(8=0) is indepen-
dent of frequency but ~(8= 55') is noticeably
more narrow at the higher frequency.

The above results have been interpreted in
terms of a two-dimensional Heisenberg antiferro-
magnet, and good agreement has been obtained
for alI. aspects of the data. In particular we note
that the absolute value of hH has been calculated
to within 20% at all angles and over a broad range
of temperature using only the classical dipolar
interaction and measured exchange constant, with

no adjustable parameters. The method was to
use spin time correlation functions in the general
resonance formula which are diffusive for long
times and Gaussian for short times. A notable
feature is that the observed angular dependence
cannot be obtained by considering the zero-time
values of the correlation functions. These involve

a sum over all wave vectors and predict, for
@=0, LII to be greater at 8=+~m than at 8=0. The
long wavelength q-0 components do, however,
show the proper dependence, and these are ex-
pected to dominate the long-time behavior. Thus
we have rather conclusive evidence from this study

of a two-dimensional compound that the long wave-
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length modes control the relaxation processes
in the region where the asymptotic 7~~ depen-
dence is important. Evidence of quite this direct
a nature is not possible for a one-dimensional sys-
tem since there all wavelengths produce the same
angular dependence.

The dependence of resonance field upon 8 has
likewise been observed. It can be explained
quantitatively by the net dipolar field present in
noncubic K~MnF~. The perhaps more interesting
frequency shift which arises from the two-dimen-
sional spin dynamics is masked by this mean field
at the high frequencies used here and thus has not
been measured.

In conclusion, our results show that the recent
theories of spin dynamics, which include the dif-
fusive behavior of long wavelength modes, can be
applied with quantitative success to the two-dimen-
sional antiferromagnet above the ordering temper-
ature, at least as long as we are not in the imme-
diate vicinity of T„. It should be mentioned, how-

ever, that although there is very good agreement
for the antiferromagnet, our formalism does not
appear to be satisfactory for the two-dimensional
ferromagnets studied thus far. Recent measure-
ments on K2CuF4' and NiCl3, "which have ferro-
magnetic interactions within the plane, show a
linewidth which initially decreases as T is lowered
from a high value, whereas we would predict an
initial increase of hH for a ferromagnet. It might
be that the difficulty is associated with the non-S-
state character of the ions in these materials, for
which nondipolar broadening can be important.
Also, interplane interactions may be more effec-
tive in KBGuF, and NiGl3 than in K~MnF, so that the
strong two-dimensional effects are washed out.
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APPENDIX A: DIPOLE CONTRIBUTION TO g (r)

The various g„are given by'~

g()(r)= 4 y ff f '$(S+1)N 'QF' 'F& ~8&,' (7'), (Al)
aa

g (7)-la 4jfPf-($($ 1)N-(qF&(&F&-()g&(&(r)

(A2)
g (r ) ~4)I2/ -1$($+ 1 )N-1 Q F&P )F& w &~ (P ) (r )

(A3)
where

PF ((()F( (&&g((&)-(r)
aa'

=Q ~F, ') ( S( )rs', ) /P[ ,'$(S+—1)] (A9)

for isotropic correlations ((S',(7)S' ) = —,'(S', (7)S",)).
In E&Is. (A7) and (A6) time dependence is with
respect to the Heisenberg-exchange Hamiltonian
only. Zeeman modulation has been explicitly ac-
counted for in E&I. (6).

Note that all g„are divided by

fj) = 3(Spsp)/$($+ 1)= gp7'/[pNy f( S(S+ 1)k(& ],
(A 10)

which is the normalized (&&p = 1 at T = ~) q = 0 cor-
relation or yoT, where ~ is the static uniform
susceptibility.

Angular dependence of both g„(0) and the q-0
part i Fp~ i'(Stsp)P enter into the expressions for
the two-dimensional linewidth, They represent,
respectively, the short-time and long-time prop-
erties of g„(r). Since

a
simple analytic expressions cannot be given at fi-
nite temperature where (S;S' ) is a function of q.
But in the infinite-temperature limit, where
(S;S* ) = —,

' S(S+ 1) independent of q, we have

g, (0)= ~ y'ff'$($+ 1)[(1—3 cos 8)'

+9 sin'8]Zr~&, ,

g((0)=my ff $($+ 1)sinP8 cos 8Zr, &,

(A11)

(A12)

(A13)

g, (0) =+y '5'$($+ 1)(cos'8+ —,'sin'8) Z r(~ . (A14)

It is convenient to consider the ratios

{A15)

in which e,f and q, f are polar and azimuthal angles,
respectively, of r,f with respect to a coordinate
system in which the applied field 6 is along the
polar axis.

The spin correlation functions are

&„(r)=&,','(r) = -'(S;(r)$' (r)S,'.S .)/[-.'$($+ 1)],
{A7)

~ (r) =
pp (([S',(r)$;(r)- 2$;(r)S', (T)]

x(s;.s,', —2s;.s', ))

+(S;(r)$",(r)$;,S-„.)}/[-,'$($+I)]'. (As)

Upon RPA decoupling of the four-spin correla-
tions the sums all reduce to

F,"& =p(3 cos'8 —I)rope"'(i,
f

F"' = P sin8 cos8 e ("(~r ' e(~ ~u
a ff ff

F& ) =+sin'8 e~&"or 'e&s'"o
a ff if

(A4)

(A6)

which, in the high-temperature limit, are

(1 —3 cos 8)'
(1 —3 cos'8)'+ 9 sin'8

g, =-,'b,
(A16)

(A17)
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—,'b sin 8
L'p =

cos 8+ g sin 8
where

(A18)
particularized to a square lattice with a nearest-
neighbor exchange interaction —2JS& ~ 8& and lat-
tice constant a. Use of (C3) in (Cl) gives

r)~ r]~ (u~ =~3 S(S+ 1p'(I —s„) (C4)

has the value 1V. 58 for a square lattice. Equa-
tions (A12)-(A14) and (A16)-(A18) are for II in a
(100) plane (y = 0) and assume (cos~y', &&,„=—,

' (see
Fig. 1).

APPENDIX B: CORRELATION FUNCTIONS FOR r -+ ~

The correlation function go(r) is given by

g, (~) Z F«'F&P(S;(r)S„(v)S;,S;.&

AC

=Z, F,"'F,'"(S;S' S,' (- r)S, (- r)&.

From (Bl) it follows that if go(r) is dominated by
q-0 in the 7- ~ limit, then it is also dominated
by q'-0 in the same limit [at least at high tem-
peratures where go(v) must be an even function of
7] Tha. t the major contribution to go(r) is from
q-0 for sufficiently long times is a consequence
of 5,(r) being a constant of the motion at q =0 and
of the relative importance of small q in lower di-
mensions.

We therefore assert that for 7 —~ both F,'0' and
E&. ' can be replaced by their q, q' =0 values in the
expression for go(v) and thus a (3 cos 8 —1) con-
tribution to the angular dependence results, irre-
spective of whether or not decoupling of the four-
spin time correlations is valid.

APPENDIX C: SHORT- AND LONG-TIME BEHAVIOR OF g~ (r)

The effective Gaussian frequency &o, of Eq. (15)
is given by

&d', = —is (0)/gs (0)

2P ~F{s)~8( 8&fa PF(&&)~IfR

D= —,'(2w)'i Z«[S(S+1)]' (C5)

for large spin values (3/[8S(S+ 1)]« I}and infinite
temperature. Equations (C5) and (C6) show that
the constant E defined in (17) has a value of about
5.0.

The long-time behavior is obtained by using Eq.
(16) in Eqs. (Al) and (AQ) and converting the sum-
mations to integrations over the first Brillouin
zone of a square lattice. Thus we have at high

temperature

S'o(~)=-'~"S(S+ I)(u/v)' J,
' f dq. dq„

x ~E&o'~2exp[-2D(q~+q )~],
with similar expressions for g, (v) and gz(r). For
7- ~ the upper limits may be extended to infinity
and, since the major contribution is for q near
zero, lE@'I may be replaced by IFo 'I . The re-
sult may be written as

at infinite temperature where 4„ is a correction
of the order of 0.2 which arises from the cosq„a
—cosq„a part of (C3). The diffusion coefficient D
for the long-time dependence of Eq. (16) has been
calculated by several authors'9 "who find that it
is proportional to

iimq ~(&d2&3~2/((g&& ~2
ff

where (&u', & is the fourth moment. Only slight dif-
ferences are found in the constant of proportional-
ity depending on the particular method. Use of
results of Ref. 41 for (&d, & in a square lattice and
the Tahir-Kheli and McFadden~' constant of propor-
tionality then gives

where

f, = 3(S;S~&/S(S+ 1)

and the wave- vector second moment is

nn g„(r) =g„(0)t„/(8vDr/s')

for t'„as defined in (A18).
If a Gaussian dependence

(C7)

(~,'& = - (S:(0)S' &/(S:S' & (C2)

It has been assumed that (&u, &» (&d, &, where (&d, &

= —i(S;(0)S' )/(S;S' ), which is valid at high tem-
peratures.

At infinite temperature we have

(&o', & =~BS(S+ lp (2- cosq,«- cosq„«) (C3)

from the calculations of Collins and Marshall '

(C8)

is used, 'then it is evident that the denominator of
(C7) is modified to (&vDi+4«c&~)/« However, ac. -
cording to (A18) we would have

&„=(«/a)'/f' ' J ' 'dq, dq„e "'"=4vo&'/a'

(c9)
for v a /a & 2 so that the form (20) results.
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