
P HYSICAL RE VIE W B VOLUME 9, NUMBE R 7 1 APRI L 1974

High-temperature series for the susceptibility of the spin-S Ising model
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We have extended the series for the zero-field susceptibility of the spin-S Ising model to eighth order
in the reduced temperature K, on the triangular, simple cubic, body-centered-cubic, and
face-centered-cubic lattices. The coefficients of these series p ($) are expressed as simple polynomials in

X =S(S+1).For the face-centeredwubic lattice, an accurate polynomial fit to the critical point
K,(S) is presented; and the apparent spin dependence of the critical exponent y is briefly discussed.
The series are quite well behaved for all S. However, the large-S series seems to exhibit more rapid

apparent convergence.

I. INTRODUCTION

Domb and Sykes' have presented high-tempera-
ture series for the zero-field susceptibility of the
spin-S Ising model on the face-centered-cubic (fcc)
lattice. Their series extend through order six (but
contain a minor typographical error in order four~).
In this work we report new calculations for this
model, in which we extend the series through order
eight on the fcc lattice, and also present new series
through eighth order on the triangular (TRI), sim-
ple cubic (sc), and body-centered-cubic (bcc) lat-
tices. These series are presented in the format
chosen by Domb and Sykes, ~ to facilitate compar-
ison with their results.

We have performed extensive analyses of the fcc
series, and find that the apparent critical index y
varies from 1.232 for S=~ to 1.246 for S=&. The
former value agrees with the analysis of Jasnow and
Wortis~ for the Ising limit of the classical (S =~)
anisotropic Heisenberg model. The latter value is
changed to 1.248 if the order-twelve series devel-
oped by Moore, Jasnow, and Wortis for the spin-
& Ising model is employed. In addition, we have
obtained an accurate two-parameter fit to the "best"
eighth-order estimates of the critical point K,(S).

The series expansions presented herein have been
derived by means of a generalization of the recur-
sive method of Stanley and Kaplan. ' This method
is, in turn, a variation of the linked-cluster expan-
sions employed by Domb and others. ~ The recur-
sion-relation procedure developed by Stanley and

Kaplan makes the calculation of lower-order over-
laps~ in the linked-cluster method essentially auto-
matic. Stanley and Kaplan used their procedure on
the classical isotropic Heisenberg model, 4~ for
which t0ro significant simplifications are present.
Namely, no articulated diagrams contribute to the
expansions, and a decomposition theorem for the
computation of overlaps may be developed from the
recursion relation.

We have considered the general class of models
with Hamiltonians of the form

-ff)C= Q W(Q(r))+ ~K ZQ Q(r) ~ Q'(r+ 5), (1.1)
r r 6

where P= I/(kT), Q(r) is a classical tensor variable
with arbitrary domain, S' is an even function of Q,
and Q(r) ~ Q(r+5) is the inner product of Q(r) and

Q(r+5). In general, for this class of models, the
simplifications available for the classical isotropic
Heisenberg model are not present. That is, artic-
ulated diagrams are necessarily included; and the
decomposition theorem of Stanley and Kaplan5 must
be interpreted with care. In general we have found

it more useful to employ the recursion relations
in their multiplicative form. Series expansions for
the susceptibility (and other functions of interest)
have been derived through eighth order in K for ar-
bitrary models of the type described by Eq. (1.1).
Details of the method, and other applications, are
described elsewhere. 7

II. DETAILS OF THE MODEL

We follow the notation of Domb and Sykes. ' The
spin-8 Ising Hamiltonian may be cast in the form

q, =u ' —&s*(o)&)
H-p 88 S

(2. 2)

Xp may be obtained either by calculating the Helm-
holtz free energy F(K(S),H) to at least second order
in H and taking the second derivative of F with re-
spect to H at H =0, or by using the zero-field sum

rule

y
=™Z G'(r)

r
(2. 3)

where J is the exchange energy, ' H is the magnetic
field; m is the magnetic moment; and the variable
S (r) takes on values —S, —S+1, . . . , S —1, S.
Thus, the variable K in the general Hamiltonian de-
scribed by Eq. (l. 1) becomes K(S) = pZS for the

Ising model. In all that follows, the magnetic field
is set equal to zero. The zero-field susceptibility
is defined as
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Here Gi(R) is the spin correlation function
(S (0) S (R)). It is the latter method that we have
actually employed in calculating yo.

'
Following Domb and Sykes, i the zero-field sus-

ceptibility is expanded as

QI„(S)[SC(S)]" . (2. 4)

It turns out that for a given lattice, one may write
h„(S) as a polynomial of degree n in X=S(S+I):

h„(S) = Z CI"' X'
l=1

where we have explicitly included a common de-
nominator D„ in each polynomial. Note that the
coefficient of X is absent from h„ for all n. The
coefficients, C', "' and common denominator D„ for
n=1, 2, . . . , 8 on each lattice are presented in Ta-
ble I. For each order n, D„ is listed first, followed

TABLE I. Susceptibility series through order eight for spin-S Ising model. For each
order the expansion coefficient h„{S) [see Eq. {2.4)] is given by

n

Dp„(S}=g C&"&X
l~&

where X=S(S+1) and the coefficients C&+) are listed below D„beginning with C&"&. For
example, on the triangular net, h2(S) =

5
(18X -X). Note that hp(S) =1 for all lattices.

D2

Da

D)

D6

D7

Ds

TRI

1
2
5

—1
18
75

1
—66
464

6 300
—15

1 116
—15 956

64 904
661 500

225
—23 652
549 228

—4010 864
11 092 944

3 969 000
—315

38 070
—1 024 404
10828 976

—51 683 088
106 529 088

59 535 000
945

—155 790
5 059 764

—67 444 248
442 284 696

—1 550 331 552
2 524 174 144

110020 680 000
—496 125

95 829 480
—3 418 716 780
51 936 829488

—420 350 361 696
1 974 825 335 232

—5 447 227 764 544
7 291 822 764 928

sc

1
2
5

—1
18
75

1
—56
484

6 300
—15
948

—13268
70 952
26 460

9
—684

15612
—134 688

519376
3 969 000

—315
26 640

—675 348
7 445 912

—45 048 576
134 113696
19 845 000

315
—30 240
911376

—12 891 672
100431 384

—476 289 088
1 153 557 056
3 143 448 000

—14 175
1 490 076

—48 243 924
743 902 992

—6 684 759 648
39 578 788 800

—153 502 202 048
312 149 311616

bcc

3
8

45
—12
296
675

12
—912

10928
14 175

—45
3 882

—75 972
551 368
297 675

135
—14 040
444 348

—5 361 168
27 795 632

8 930 250
—945

109710
—3 893 436
60 404 784

-499 442 352
1 979 241 472

133953 750
2 835

—374 220
15 821 136

—315219 672
3 428 921 064

—21 984 134 208
70 437 239 296
35 363 790 000

—212 625
30 793 770

—1 408 662 900
30 878 814 384

—390 360 493 728
3 164 326 789 536

—16 391 099 923 392
43 833 285 137 024

fcc

1
4
5

—2
76
75

2
—272
4 248
3 150
—15

2 322
—70 772
656 648
330 750

225
—49 104

2 440236
—39 096 208
251 682 608

1 984 500
—315

79290
—4 607 196
105206 144

—1 125 263 472
5 480 403 392

29 767 500
945

—322 920
22 986 144

—664 684 728
9 548 691 096

—76 329 628 032
297 051 037 504

55 010 340 000
—496 125

198 604 710
—15 730 522 380
522 161 817 264

—9 196404 968 448
96 001 685 872 416

—612 403 917 558 592
1 976 994 515 599 744
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by C&"', C&", . ~ ~, C„" ~ The leading term h, is
unity for all lattices. The remainder of this work
is concerned with the spin dependence of the crit-
ical point and susceptibility of the Ising model.

III. ANALYSIS OF fcc SUSCEPTIBILITY SERIES

or

1
x, = lim—

(3.2)

Now the approach of R„ to x,' may be very slow or
nonuniform, in general, so that one cannot really
say anything in general about x, from the first few
ratios. However, if we have good reason to believe
the function in question has a particular functional
form, we may use that information in estimating x,
from the first few R„. Thus, given Eq. (3.1), we
expect that the ratios, R„(S)=h„(S)/h„~(S), for yo(S)
will behave as

R„(S)= K,(S) [1+(y —I)/n] (3.3)

for large enough n. Thus, one expects R„(S) to
vary linearly with I/n and to converge rapidly to

We have chosen to analyze the series on the fcc
lattice because (i) this lattice and topologically
equivalent orthorhombic lattices are prevalent in
nature and (ii) the series are found in practice to
converge more rapidly as the lattice coordination
increases. ' Although the results are not discussed
herein, somewhat less detailed analyses of the sc
and bcc series are in essential agreement with the
fcc results. However, the apparent accuracy of the
results is lower due to the oscillation of the ratios
on loose-packed lattices.

As is well known the zero-field susceptibility
diverges as the critical point is approached. This
divergence is characterized by the critical exponent

y, which may be defined by the relationship

)(0 = )([1 —K/K, (S)] ", K- K,(S) (3. 1)

We have used the end-shifted-ratio method ' to
obtain numerical estimates of K,(S) and y(S) from
the series for y. More than 20 values of S, dis-
tributed evenly on a logarithmic scale between S =-,'

and S = ~, have been investigated.
Since the method of end shifts is not so well

known as other series-summation methods, we dis-
cuss it briefly herein. Given that a power series
has its radius of convergence determined by a sin-
gularity on the real axis, we may estimate the ra-
dius of convergence (critical point) by forming ra-
tios R„=h„/h„, of succeeding terms in the sequence

(hJ of coefficients of the series. By d'Alembert's
ratio test, the radius of convergence x, is deter-
mined from

h x".-- a„,x, '

[K,(S)] '. In practice, the asymptotic behavior of

R„may be partially masked by coincident weaker
singularities, or by logarithmic corrections such
as in[1 —K/K, (S)]. When no singular corrections
are present the amplitude functions [)( in Eq.
(3.1)], even though analytic at K,(S), will introduce
curvature in the behavior of R„(S) at small n. A

number of methods of dealing with this curvature
have been developed, 3' including the Neville table
and the method of end shifts ' used herein.

The method of end shifts may be heuristically
justified by noting that there is an ambiguity of at
least +1 in n in our definition of the ratios R„(S).
Indeed, according to Eq. (3. 3) for large enough n,
R„will become a linear function of I/(n+b) for any
(finite) choice of &. The idea of end shifts is that
the effect of corrections to Eq. (3.1) is largely to
make R„ linear as a function of 1/(n+60), for some
choice 40, rather than as a function of I/n. In
practice the "best" choice for 40 is determined by
forcing linearity in the last three available ratios.
That is, the three equations

and

R„=R*„+A/(n+ 60)

R„q ——R*„+A/(n+ 60 —1)

(3.4a)

(3.4b)

R„2= R*„+A/(n+ 60 —2) (3.4c)

2

1
1—1

2
2—12
3
321

4
1
2

5
5-1
6
8

10
15
20
30
50
502
51

100
999

9 999
99 999

[K (S)j 1

9.796 06
6. 820 56
5. 757 74
5.211 50
4. 878 74
4. 654 77
4. 493 71
4. 372 33
4. 277 56
4. 201 52
4. 13918
4. 087 12
3.943 45
3.856 88
3.741 11
3.683 00
3.624 87
3.578 24
3. 577 52
3. 576 84
3. 543 21
3.511 69
3.508 50
3.508 15
3 ~ 508 14

y(S)

1.246
1.241
1.238
l. 236
1.235
l. 234
1.234
l. 233
1.233
1.233
1.233
1.232
l. 232
l. 232
l. 232
1.232
1.232
1.232
1.232
l. 232
1.232
1.232
1.232
1.232
1.232

0. 00
0. 32
0.49
0. 57
0. 62
0.64
0. 66
0.67
0. 68
0.69
0. 69
0. 70
0. 71
0.71
0. 72
0. 72
0. 72
0. 72
0. 72
0. 72
0. 72
0. 72
0. 72
0 ~ 72
0. 72

TABLE II. Best estimates of the critical point [K~(S)]
and the exponent p(S) using eight orders on the fcc lattice.
The end shift A(S) employed in the estimate is also listed.
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determine the "best" estimate (R~) ' for the crit-
ical point, the end shift &0, and the amplitude A,
uniquely. The solutions are

TABLE gI. C ritical-parameter estimates obtained
using N terms for S=y (N=5, 6, ... , 13) and S=~(N=5,
. . . , 9) on the fcc lattice.

and

2(n —1)R,—(n —2)R„z —nR„
R„-2R„g+R„

R"„=(n+ a }R„—(n+ n —1)R„,

(3. 5a)

(3.5b)

A = (R„—R~) (n + b.o) (3.5c)

By comparing Eq. (3. 3) with (3.4a) we obtain ap-
proximants y„(&,) for the critical exponent y:

6
7
8

9
10
ll
12
13

9.766 7
9.7776
9.8019
9.804 7
9.796 OG

9.793 98
9.794 67
9.79547
9.794 96

1 ~ 2G9

1.261
1, 238
1.235
1.246
l. 247
1.248
l. 247
1.248

0. 13
0. 08

—0. 12
—0. 15

0. 0
0. 06
O. 04
0. 01
0.04

3.483 10
3.50527
3.508 25
3.507 79
3.508 14

y(~) 4(~)

l. 300 1.30
1.241 0. 82
l. 232 0. 72
1.233 0. 74
1.232 0. 72

y„(&0) =A/R2+ I = (n+ 40}RJR~ —(n+40 —1) . (3.6)

This estimate for y is not independent of Rf, the
estimate for [K,(S)]'. One might hope to obtain an
"unbiased" estimate for y by use of the approxi-
mants y„'" (&) defined by

R„(n+ ~)'" "}=("~)R„"(..~ 1)R, -'""-"
(3.&)

since R„ is not specified as it is in Eq. (3.6). How-
ever, the use of 4-and particularly its choice ac-
cording to the criterion that last two available es-
timates y'", (4) and y„'"'(4) to be equal to one an-
other-forces the equality y„'" =y„. That is, the
same solutions for the end shift 40 and exponent y
are obtained in both cases. Thus, unlike other ra-
tio methods, the method of end shifts does not pro-
duce independent estimates for y. (Compare with
the work of Hunter and Baker. n)

Qn this point, however, note that the end-shift es-
timate for y is not biased in the sense that the word
is used in Ref. 11. That is, one obtains a biased
estimate' for y by supplying an accurate estimate
for K, (say from logarithmic-derivative series9'")
and forcing the ratios to reproduce this value of K,
by adjustment of y. The estimates for y obtained
from Eq. (3.6) appear to be biased in that they ap-
parently depend on the estimate R*„ for K,'. How-
ever, R*„and y are both fixed once the "best" value
for b is chosen-y and R'f are actually treated on
equal footing. Biased estimates for y can easily be
obtained within the end shift method; and we have
employed such estimates to check the results for y
described below.

The method of end shifts is by no means a cure
all for series analysis; it suffers from many of the
same failings as other ratio variants. (For a dis-
cussion of the applicability of various series, sum-
mation methods, consult Ref. 11.) However, it is
less "rigid" than the Neville table~ as an extrap-
olation method. In addition, it can be extended to
sequences which have a more general functional
dependence on n than 1/n,' for example, Fisher and

Camp have used this method to extrapolate se-
quences which behave as n "for large n. '3

The end-shift analysis has been checked through-
out against Neville-table results. '" The estimates
for K, and y obtained from the two methods agree
closely, and the choice of end shifts over Neville
tables reflects personal preference.

The estimates for [K,(S)] ' exhibit a very smooth
behavior as a function of S. In fact the variation
with S is very close to that predicted by molecular-
field theory as Namely,

[K,{S)]'~ (S+1)/S (3.6)

In fact, we have constructed a two-parameter
least-squares fit

S K,(S) =S(S+1)K,(~) +Ko+Kz/S (3.9)

where K0= - 0.20949 and K~ =0.01370-which re-
produces the results of Table II for [K,(S}]' to
within 0. 002% for all values listed. The variation
of K,(S) with S when S is not too small is thus very
well accounted for by molecular-field theory. It
is gratifying, also, that the estimates for K,(S) are
sufficiently self-consistent that a two-parameter
fit is accurate to more than four places.

An important fact to be noted about Table II is
the difference between the estimates y(-,') = 1.246
and y(~) = 1.232. Furthermore, this difference is
evident between y(-,') and y(S), which for all S great-
er than S = 3 are unchanged from y(~) (to within
quoted apparent accuracies). Such a marked dif-
ference is confounding in the face of the univer-
sality hypothesiss'4' '4 which states, in particular,
that y does not depend on such things as kinematics.
This hypothesis has recently been put on a firmer
basis in the context of Wilson's renormalization-
group theory (RGT}." According to this theory,
the spin-S Ising models all correspond to the same
fixed point of the renormalization group, and must
therefore have the same value of y.

If we are thus not to believe the differences in y
to be real, we must face the question of which value
of y to accept, y = 1.246 (S = ~} or y'= 1.232 {S=a&),

or neither? Scaling theory9 and RGT ' both make
the choice y =+4 attractive: the scaling relations are
beautifully satisfied with y=y'=+, p=lfs-, and
e = 0. '=+8. We note that RGT predicts, via the a ex-
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pansion, "that y = 1.244; this result is obtained by
keeping all terms through second order in c =4-d,
where d, the dimensionality, is equal to 3." How-

ever, there is good evidence from series that
y'= 1.29 —1.314y and that e'=zz4 a, so that scal-
ing arguments may not be valid in three dimensions
for the Ising model. In addition, the E expansion is
probably asymptotic, at best"; so, while +4is fa-
vored, the question cannot be settled by RGT and
scaling theory. Rather, the small, but readily ap-
parent, spin dependence we have found must be con-
sidered, along with evidence that n 4 0.

' and y4 y',
as evidence against scaling and universality 4 in
the three-dimensional Ising model.

We have made end-shift estimates for [If,(S)j
'

and y(S) with S=-, and S=~, using 5-Qterms for
S = ~, and 5-13terms for S = &. The longer series
for S = 2 was taken from Ref. 4. The results are
presented in Table ID. Note that the S = ~ results,
to eighth order, have apparently converged at
y =1.232, whereas the S =

& results are still chang-
ing significantly at eighth order. This apparent
convergence of the S= series could be due to a
defect, 6 and thus disappear in higher orders. The
result for y(~) using 13 terms is y(~) =1.248 =+4.

(Our result for E,' based on the longer series is
9.7950 which differs by 1 part in 104 from the value
9.7940 obtained for the same series in Ref. 4. )

Unfortunately, while the eighth-order results are
apparently well converged, they are not sufficient
evidence to settle the question of the spin depen-
dence. If we accept the universality hypothesis, '4

then based on the four additional terms in the S =-,'

series we would tentatively conclude y =f for all S,
although the contradictory evidence for S &4 cannot
be ignored. '7

Another viewpoint in analyzing these series, and
one adoptedby%ortis, Saul, Moore, and Jasnow, "
is-accepting universality and scaling —to force y
to equal +4 for all S. This may be done by allowing
for weaker confluent singularities in y. Within the
spirit of universality one would expect the exponent
of the weaker singularity to also be independent of
S, while its amplitude would decrease with decreas-
ing S and perhaps become identically zero at S =-,'.
Such an analysis is very interesting and does yield,
if the nature of the confluent singularity is found to
be reasonable, a plausible explanation for the ap-
parent spin dependence we have found in our es-
timates for y.

Note added in Proof. We have extended the
series through order ten on the two- and three-
dimensional lattices. The apparent convergence of
y(S) to 1.232—for large S—persists when the two
additional terms are included, the change in lf', (~)
being less than 3 parts in 10.
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