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Thermoelastic relaxation near the Curie point of EuO
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An extensive investigation of the acoustic properties of thin EuO reeds has been carried out near the
magnetic critical temperature Tc =69.3 K. The main results are the observation of an enhanced

damping and velocity dispersion of flexural modes in the frequency range 0.4-3 kHz as T Tc, These
experimental findings are quantitatively described by Zener's theory of thermoelastic relaxation, taking
into account the strong temperature dependences of thermodynamic and transport properties near Tc.
The temperature dependences of the adiabatic and isothermal Young's-modulus sound velocities are also
obtained. Pippard relations are used to determine the thermodynamic quantities (d P/d T), (d S/d T),
and (d S/d P) along the transition line.

In this paper we report on an investigation of
acoustic properties of EuO near its magnetic criti-
cal point. EuO is a face-centered-cubic ferromag-
netic insulator with a Curie temperature of 69.3K.
It has been extensively investigated' in recent
years, since it represents a close approximation
to the isotropic Heisenberg ferromagnet. In the
present paper we present a complete description
of acoustic experiments at low-kilohertz frequen-
cies on thin EuO reeds, in which large sound damp-
ing and dispersion are observed near the transition.
A preliminary account of this work has been given
previously. 2 We show that this behavior may be
accounted for using Zener's thermoelastic relaxa-
tion theory. ' The temperature dependences of
the adiabatic and isothermal sound velocities near
Tc are determined by correcting the Young's-mod-
ulus measurements for thermoelastic dispersion.
The thermodynamic quantities (dP/dT), (dS/dT),
and (dS/dp) along the transition line are deter-
mined using generalized Pippard equations which
relate the adiabatic and isothermal Young's-modu-
lus velocities to the specific heat at constant pres-
sure near the transition.

Thermoelastic relaxation is an important loss
mechanism for thin reeds vibrating in flexure.
Zener predicted the existence of this process in

1937 and the basic aspects of the theory were
quickly verified. ' Further experimental tests of
the theory were provided by Bennewitz and Rotgers
on german silver and, more recently, by Berry'
on a-brass. In both cases the damping was mea-
sured as a function of frequency at room tempera-
ture. In the present investigation of EuO, the
frequency remained essentially constant and the
measurements were carried out as a function of
temperature near the magnetic phase transition.
This is the first time this process has been studied
near a critical point.

I. THEORY
Thermal relaxation may occur whenever a solid

experiences a stress inhomogeneity which locally

changes the temperature of the specimen. A sound
wave propagating in a solid produces regions of
compression and extension which will lead to tem-
perature gradients for materials with a nonzero
thermal expansivity. The sound wave loses energy
as heat flows from the warmer to cooler regions
and this may result in significant sound attenuation.
The sound propagation is considered adiabatic if
the temperature gradients are not removed by heat
flow during half of a sound vibrational period. On
the other hand, if the gradients are dissipated with-
in half a sound period, the propagation is isother-
mal. For example, consider a plane wave travel-
ing in a bulk sample having a positive thermal ex-
pansivity, p~ -=(1/V)(BV/BT)~ )0. As shown in Fig.
1(a) the compressed regions will be heated while
the extended regions are cooled. For a thermal
wave ~ =Dk~, where D is the thermal diffusivity
and k is the wave vector. Thus the thermal wave
velocity is c = (D~)'~' and we have adiabatic propa-
gation at low frequencies where c (v, v being the
sound velocity, which is essentially constant. At

high frequencies c&v and isothermal conditions
prevail. The condition c = v defines the crossover
from adiabatic to isothermal behavior for a plane
wave. The crossover frequency is ur, = U2/D,

shown in Fig. 1(c).
The situation is quite different for a reed of the

same material vibrating in flexure. I.et us con-
sider a segment of such a reed of thickness d,
shown in Fig. 1(b). The layers below the neutral
plane (dashed line) are compressed during this part
of the vibration cycle and are heated, while the
layers above the neutral plane are extended and
cooled. Again heat flows from the warmer to cool-
er layers. Now, however, the temperature gra-
dient always extends over the sample thickness re-
gardless of frequency. Thus at low frequencies,
there is sufficient time for the thermal gradient to
be removed, since the sound period is very long.
This leads to isothermal propagation. For higher
frequencies the sound period becomes so short that
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modulus, linear thermal expansivity, and isobaric
specific heat, respectively. f& and ~~ are the rela-
tive strength and characteristic relaxation time for
the jth-order process. The expression for 1" given

by this equation is valid so long as the relaxation
strength A(T) & 10~. For a thin rectangular reed
the strain is a function only of the transverse dis-
tance from the neutral plane and the calculation of
the relative strengths and relaxation times gives

EXTENSIOM
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fg =(96/v')(2j +1) ' (2)

(c)

3

Z QJc

~,'= [(2j+1)(v/d)]'D, (3)

where D= X/C~ is the thermal diffusivity, with a
the total thermal conductivity. Evaluating the first
few weighting factors from Eq. (2), f, =0.968, f,
=0.012, and f, =0.0016, shows this series is
strongly convergent and little error (& 2%) is made
by retaining only the first term. For the analysis
of the EuQ measurements we assume the damping
constant 1" and the Young's-modulus dispers:on
satisfy the single relaxation expressions

NAVE VECTOR k

I'((o, T) =A(T) (odt((o~) (4)

FIG. 1. Adiabatic and isothermal sound propagation:
(a) regions of extension and compression for plane-wave
propagation, (b) segment of a reed vibrating in flexure,
(c) dispersion curves for sound and thermal propagation.
The frequencies ~z and ~, represent crossover frequen-
cies for flexural and plane-wave propagation, respective-
ly.

[E((o, T) —Er(T) j/Er(T) =A(T) ~o7'6t((u T), (5)

where Er(T) is the isothermal Young's modulus. '
The relaxation function 6t(~~) is defined by

COPPER BI OCK

the heat does not have time to traverse the reed
thickness and adiabatic conditions exist. The
crossover occurs when heat crosses the sample in
approximately half a sound period. The corre-
sponding frequency is &o& = (n/d)' D, which is also
shown in Fig. 1(c). In most dielectrics u&, corre-
sponds to frequencies higher than the 0Hz range
while (d„may be adjusted to lie in the audio range
10 -10 Hz. The vibrating-reed technique is thus
a good method for exploring the thermal behavior
of solids at low frequencies. The EuO measure-
ments presented here cover both the adiabatic and
isothrermal regimes of the reed.

The Zener theory of damping by transverse ther-
mal modes in reeds showed that the relaxation be-
havior may be represented by a discrete spectrum
of relaxation times which led to a total relaxation
rate I', RECEiVER

ELECTRODE
SAMPLE

PPER
USING

OOD'S
TAL

RivE
CTRODE

r =&q-'=A(T) Zy, , "&', ,

where the relaxation strength A(T) = TEr a~a/C~,
and E~, a~, and C~ are the isothermal Young's

FIG. 2. Sample holder. The Au-sputtered EuO sample
was soldered to a copper block containing the thermome-
ter and heater used to measure and control the sample
temperature. The sample holder was suspended from an
evacuated inner can by stainless-steel wires.
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FIG. 4. Electronic system I. This system measured
the fundamental flexural resonances of samples I and II.
The PAR-124 oscillator was voltage controlled by a ramp
generator and the real or imaginary component of the
sample resonance was recorded as the frequency was
swept through the resonance. Sweep rates ranged from
0.1—0.6 Hz/min.

II. TECHNIQUE

The Young's modulus and damping constant were
measured using a vibrating-reed technique. The
samples were EuO single crystals of width 0.4 cm
and length 1.0 cm, with the long axis along (110).
At 300 K, the measured resistivity of the EuO was
p=10' 0 cm. We investigated two samples, one
(designated I) with a thickness d= 0.016 cm and a
second thinner sample (II) with d=0. 0065 cm. A
gold film (-2000 A) was sputtered on all sample
surfaces to make them conducting. Sample I was
resonated at its fundamental frequency of 1600 Hz
and gave the most accurate data. The thin sample
(II) was primarily used to confirm that 7 varied as
d~. Simultaneous measurements at its fundamental
(433 Hz) and second overtone (2785 Hz) also yielded
dispersion information. A schematic of the sam-
ple holder is shown in Fig. 2. One end of the sam-

pie was soldered with Wood's metal to a copper
block. A copper housing, which contained the drive
and pickup electrodes, clamped the copper block
so that the free end of the sample was situated be-
tween the two electrodes. The gap between the
sample and electrodes was typically 0.015 cm.
Two stainless-steel wires isolated and supported
the copper housing from an inner evacuated can.
The inner can's temperature could be controlled
with a heater and thermometer mounted on it. The
inner can was further thermally isolated by sup-
porting it inside a large outer can which could also
be evacuated. The pressure in the double-can
system was reduced to 10 4 Torr during measure-
ments. A 100-A carbon resistor heater and a
1000-Q platinum thermometer were situated in the
copper block holding the sample. The sample tem-
perature was measured with the Pt thermometer
using a standard ac resistance bridge with phase-
sensitive detection. The sample temperature was
controlled to better than + 2x10 K by using the
bridge off-balance signal to regulate the heater
current.

For a clamped reed of rectangular cross section,
the flexural resonant frequencies are
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f„=(X/2w)(k„/I)' v, (8)

where x =d/(12)'~' is the radius of gyration, I is
the length of the reed, and the k„'s are constants
1.875, 4.694, 7. 855, . . . for n= 1, 2, 3,
The quantity v = (E/p)'~' is the Young's-modulus
velocity along the reed, with E being the Young's
modulus and p the density. Thus, the Young's-
modulus velocity along the reed is directly propor-

FIG. 3. The real and imaginary components of a
single mechanical resonance. cop and I denote the res-
onant frequency and decay rate, respectively. The real
component (dashed line) is an antisymmetric function of
co —~p and reaches its extrema at the half-power points
of the resonance given by co =(dp &I' and (d =(dp+&I'.
The width at half-maximum for the imaginary component
(solid line) is the decay rate 1.

In materials exhibiting phase transitions, the
thermoelastic process may be considerably en-
hanced near the transition temperature. As T ap-
proaches T~, the quantities C~ and o~ become
singular and thus the relaxation. strength and re-
laxation time will increase over a small tempera-
ture region near T~. In recent years thermody-
namic properties near critical points have been
measured with high precision. This information
coupled with acoustic measurements may be used
to critically test the predictions of the thermoelastic
relaxation process.
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tional to the flexural resonant frequency. Equation
(8) is valid for X„»X, where X„ is the flexural
wavelength of the nth mode (X„=2wl/k„). This con-
dition is satisfied for all frequencies measured in
this investigation.

The acoustic properties at resonance were de-
termined using a vector-component technique. Let
us consider the motion of a damped mechanical
oscillator excited by a complex driving force Eoe'"'.
The equation of motion for the displacement of this
system is

25

—20

UJI-

IS

mx +a x+ sx = E e'"', (9)

where m, B, and s are the mass, mechanical
resistance, and stiffness constant, respectively.
The steady-state solution of Eq. (9), assuming the
displacement has the form x =xoe'"', is I
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where ~o = (s/m)'~a and I' = R„/m are the resonant
frequency and damping constant, respectively.
Under the condition that the quality factor of the
system Q —= ~o/I'» 1, which is the case in this in-
vestigation, the real (R) and the imaginary (I) com-
ponents of the displacement amplitude have the
form

(&'o —oo')(Fo/m)
(

2 Q)2+&2 F2

~oF(Fo/m)
(

2 a)2+~2 F2 (12)
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FIG. 5. Electronic system II. This system measured
the second overtone of sample II. The PAR-124 detector
was phase-locked to an external oscillator which was
voltage controlled. As with electronic system I, the fre-
quency was swept through the flexural resonance and the
frequency and resonant shape were recorded as a function
of time. For the 433-Hz resonance, sweep rates were
typically 0.02 Hz/min.

TEMPERATURE (K)

FIG. 6. Temperature dependence of the decay rate I
for 1600 Hz flexural vibrations. The solid curve is the
calculated damping from the thermoelastic relaxation
process. No adjustable parameters, scale factors, or
background terms were used in this comparison of ab-
solute decay rates.

These resonant components are shown as a function
of frequency in Fig. 3. All pertinent information
concerning the resonance can be obtained from
either component. However, in the present in-
vestigation we chose to concentrate on the real
part. The component B is an antisymmetric func-
tion of w with respect to &go, and its maximum and
minimum occur at the half-power frequencies &
= mo —(I'/2) and &u, = &go+ (I'/2). The resonant fre-
quency and damping constant can thus be obtained
from a plot of this component versus frequency.
A fit of Eq. (11) to the data utilizing a four-param-
eter nonlinear-least-squares routine was used to
determine the parameters &, and 1 for each tem-
perature. The standard deviations for &0 and I'
from the computer fit were typically 2x10 %, and
0.4%, respectively.

The measurements of the sound damping and
dispersion were carried out with either of two
electronic systems, each using phase sensitive
detection. For the thin sample (II), we investi-
gated both the first and second overtones. In this
case it was advantageous to use both electronic
systems simultaneously to obtain data for the two
modes under the same experimental conditions.
Figure 4 shows the electronics associated with the
first-measurement technique. The phase-detec-
tor's internal oscillator was voltage controlled by
a ramp generator and produced a cw sine wave of
frequency f. This signal was converted to a square
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FIG. 7. Decay rate vs temperature for the two over-
tones of sample II. The solid curves are the predictions
of the thermoelastic theory. A constant background loss
of 0.65 sec ~ is included in the 433 Hz theoretical curve
(right-hand ordinate).

wave whose period was twice that of the input
signal. A filter tuned to the fundamental of the
square wave yielded a sine wave of frequency f/2,
which was applied to the drive transducer after
appropriate amplification. Drive signals were
typically 25 V. The unbiased-drive transducer
drove the sample at twice the applied frequency.
The receiver transducer was biased with 200-V
dc and detected the flexural vibrations at frequency
f through the resultant variation in the receiver
capacitance. After amplification, the received
signal was fed to the phase detector. Received
signals at the phase detector were typically 10-20
mV. The unbiased-drive-biased-receiver arrange-
mentused here has the attractive feature that any pick-
up of the drive signal is at half the frequency of
interest and can be filtered out in the receiver.
By adjusting the phase of the received signal rela-
tive to the internal oscillator, the real or imaginary
component of the resonance could be selected.
The phase-detector dc output and the resonant fre-
quency were recorded as the frequency was swept
through the flexural resonance. Twelve to 20 min
were necessary to record a resonance curve using
sweep rates as low as 0.01 Hz/min. The second
electronic system employed is shown in Fig. 5.
In this case an external oscillator at f/2 is voltage
controlled by the ramp generator. The phase-de-
tector oscillator is then phase-locked to twice the
frequency of the external oscillator. The rest of
the circuit is similar to that of the first-measure-
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FIG. 8. Temperature dependence of thermoelastic
dispersion. The experimental dispersion was obtained
from the ratio of resonant frequencies. The solid curve
is the theoretical expectation for the two lowest overtones
of sample II.

ment technique discussed above. With a slight
modification, the two electronic systems could also
track continuously the resonant frequency as a
function of temperature. This was accomplished
by replacing the ramp-generator signal with the
dc output from the phase detector.

III. RESULTS

A. Damping

The measured decay rate I' for the thick reed
(sample I) is shown in Fig. 6 for the temperature
range T~ ~ 5 K. The data are for the fundamental
frequency of 1.6 kHz and were obtained under
thermal equilibrium conditions. A test of the thick-
ness dependence of the thermoelastic relaxation
time given in Eq. (7) was made using sample II,
which was a factor of 2. 2 thinner than sample I.
For this thin sample, simultaneous measurements
were carried out at two resonant frequencies using
the electronic apparatus shown in Figs. 4 and 5.
The results for the sound damping at the two lowest
overtones are shown in Fig. 7.

B. Dispersion

The simultaneous measurement of the fundamen-
tal and second overtone of sample II permitted the
determination of sound dispersion between the two
frequencies. Because of experimental difficulties
we took data only above the transition, as is shown
in Fig. 8. We observed a rather small time-de-
pendent background change 4v/v =7x10 5/day in
the fundamental resonance. This behavior was
probably due to long equilibration times associated
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with stress release accompanying temperature
change in the Wood's metal-copper bond. The dis-
persion measurements were taken over several
days and the data were corrected for background
drift.

I
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I
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I
'

I
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I
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C. Velocity

The temperature dependence of the [110]Young's-
modulus velocity near the EuO Curie point is shown

in Fig. 9 for the fundamental of sample I. These
data also represent measurements taken over a
period of several days. This was necessary be-
cause of the wide temperature range covered (-10K)
and the fact that measurements were taken only
after equilibrium conditions were attained. For
large temperature changes, the equilibration time
was -1 h.
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rv. DISCUSSION

A. Thermoelastic properties

The temperature dependences of the thermody-
namic and transport properties needed to compute
the relaxation strength A and the time constant v

were measured on samples cut from the same
single-crystal boule used in the present investiga-
tion. Variations in the measurements due to dif-
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FIG. 9. Temperature dependence of the (110) Young's-
modulus velocity for 1.6-kHz flexural vibrations in EuO

near T&. The solid and dashed lines are the adiabatic
and isothermal velocities, respectively, calculated from
thermoelastic relaxation theory and the experimental
data.

FIG. 10. Temperature dependence of the thermoelastic
relaxation strength A(T) and the relaxation function (R(sr~).
Curves I and II correspond to (R(~7) for samples I and II,
respectively. The temperature variation between curves
I and II near Tz arises from the fact that for sample I
~7 & 1, while for sample II, (dr& 1.

ferences in sample preparation were thus mini-
mized. The thermal expansivity was measured in
the temperature range 62-76 K by a capacitance
technique described previously. ' Specific-heat
data were obtained from the recent measurements
of Kornblit, Ahlers, and Buehler. " An ac tech-
nique was used to measure the thermal diffusivity'2
of a thin EuO reed, similar in size to the acoustic
samples. We have used the data for 0~, C~, and
E to calculate the expected relaxation strength for
the thermoelastic process which is shown in Fig.
10. Also shown is the relaxation function 6t(~v)
for samples I and G. The temperature dependence
of the damping constant I' comes primarily from
the relaxation strength rather than &~. As the
transition is approached from above the relaxation
strength increases by a factor of 5 and reaches a
sharp maximum near T~. The rounding of the re-
laxation strength near the transition is probably
due to the effects of sample inhomogeneity. Near
Tc the relaxation function $(~~) exhibits different
temperature dependent behavior for the two sam-
ples, since &7 & 1 for sample I while ~~ & 1 for
sample II.

The decay rate expected from the thermoelastic
process is obtained from the relaxation strength
A and the relaxation function (R(~~), using Eq. (4).
The solid curve in Fig. 6 represents the prediction
of the thermoelastic theory for sample I. No ad-
justable parameters, scale factors, or background
terms were employed in this comparison of absolute
decay rates. Other possible contributions to the
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measured decay rate near' the transition may arise
from critical relaxation processes and domain
losses (below Tc). However, it can be shown that
these processes lead to a negligible contribution
to the decay rate at these frequencies. "'" The
excellent agreement between the theory and ex-
periment is remarkable, taking into account possi-
ble uncertainties in the absolute values and tem-
perature variations in the separate experiments
for n, C&, and D. These damping measurements
confirm the predictions of Zener's thermoelastic
theory to better than a few percent.

Sound damping observed in the thin sample (II)
was also compared to the thermoelastic theory.
In Fig. 7 the solid lines again represent the theo-
retical prediction for the measured frequencies.
In the case of the fundamental frequency of 433 Hz
the total damping is so small that the contribution
from background terms, probably due to clamping,
becomes significant. To account for this clamping
loss, a constant background damping term of 0.65
sec ' has been included in the theoretical curve for
this frequency. There is good agreement between
the low-frequency measurements and theory, ex-
cept very near T~. The high-frequency data, on
the other hand, are only represented reasonably
well by thermoelastic loss. However, the fit could
be improved by including an arbitrary constant
background term, as was done for the lower fre-
quency. Both sets of data from sample II show an
excessive amount of rounding near T~ as compared
to sample I. We attribute this enhanced rounding
to strains introduced in the sample by lapping.
The thermoelastic dispersion between the two re-
sonances of sample II is represented by the solid
curve in Fig. 8 and is seen to agree well with the
measurements above 69.5 K. Closer to the tran-
sition, there is a rounding in the data similar to
that observed for I', and I 2 in Fig. 7.

Near a second-order phase transition the sound
velocity experiences a dip as the critical tempera-
ture is approached from either above or below.
The magnitude of the velocity dip depends on the
coupling between the velocity and other singular
thermodynamic parameters. The EuO measure-
ments in Fig. 9 show the expected sharp drop in
velocity as the transition is approached from above.
However, below T~ the sound velocity does not
immediately rise. Instead, there is an inflection
point at the transition and the velocity continues to
decrease for approximately 20 K before it again
has a negative temperature coefficient. The ve-
locity behavior below the transition may be ac-
counted for by two effects, (a) magnetic domain
interactions, which cause a reduction in the sound
velocity, and (b} dispersion associated with the
thermoelastic relaxation. The effects of domains
on the velocity below T~ cannot be interpreted at

Various relations among thermodynamic quan-
tities have beer. proposed near a X transition. Pip-
pard's original derivation" related the specific
heat at constant pressure C~, the isobaric thermal
expansion coefficient P~, and the isothermal com-
pressibility 3', by the expressions

C~/T = )Vs+const,
P&

= $&~+ const,

(IS)

(i4)

where $ = (dP/dT)„ is the slope of the X line and V
is the specific volume. These relations, which
give the asymptotic behavior as the transition is
approached, have been successfully used to de-
termine thermodynamic properties along X lines. '

The Pippard equations were generalized by Gar-
land" to stress-strain variables and by Janovec'
for transitions in anisotropic dielectrics. From
the expression for the Gibbs free energy in terms
of stresses and temperature near a A. point, Gar-
land derived the following relations:

(Cp/VT} -g(,
S,&

= g&' n; —g g —tg; 0& —0"~',
(i6)

(16)

where S ~& are the isothermal elastic compliances.
The quantities a, and (,' = (ST„/SX,) X~«are the
linear expansion coefficient and slope of the X line,

this time owing to lack of information on domain
properties in EuO. The good agreement between
the thermoelastic theory and sound damping shown
in Fig. 6 gives us confidence in using the theory
to correct the measurements for dispersion, We
used Eq. (5) and the data to compute the tempera-
ture dependence of the adiabatic and isothermal
velocities shifts as shown in Fig. 9 by the solid
and dashed curves, respectively. The removal of
dispersion effects reveals a small minimum in
hv/v in both the adiabatic and isothermal cases.

The velocity data corrected for dispersion may
be used to estimate the relaxation strength for the
critical relaxation process. At 1.6 kHz, we are
essentially measuring the "zero" frequency or
adiabatic velocity, v, (0), for this process, which
is given by the adiabatic curve in Fig. 9. The in-
finite-frequency velocity, n, (~), for the critical
process is identified with the unperturbed lattice
or background velocity. v, (~) is estimated by ex-
trapolating the adiabatic velocity well above the
transition to T~. This leads to a critical relaxa-
tion strength

[v~( ) —v~(0)]/v, (0)=2xi0 ' .

A knowledge of the critical relaxation strength is
important in interpreting recent ultrasonic mea-
surements" at 230 kHz which explore the critical
relaxation process.

B. Thermodynamic properties
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where A =[T„v',(T,)/18V ] (dS/dP), and & =&,(T„)
—vp. We see that a comparison of the isothermal
and adiabatic EuO velocities with the specific heat
will yield the thermodynamic quantities dT/dP and

dS/dP along the transition line.
The experimental resonant frequency data were

normalized to the measurements of Shapira and
Reed' at 78 K to obtain the absolute velocity. In

Fig. 11 the inverse square of the isothermal ve-
locity measured above the transition is plotted
against C~ using the specific-heat values of Korn-
blit et al. "given by

A' T-Tc —1, D T —T

where e = —0.0418, A =4.189, B'=14.14, and
D =33.55 for C~ in J/mole K. The straight line
drawn through the data yields (dT/dP)„= 0.45K/kbar
for the slope of the transition line [see Eq. (19)].
This value, which is larger than 0.34K/kbar quoted

by Argyle et al. is in good agreement with the
value 0.47 K/kbar determined from a plot [Eq.
(13)] of C~ vs p~ for EuO. " Since C~ is assumed
finite at the transition, the isothermal velocity
does not vanish at T„, but will reach the minimum
value of 4. 13x10' cm/sec which is -1% less than

Vp.

We show the adiabatic velocity as a function of
C~' in Fig. 12. The data are consistent with the
expected linear relationship, Eq. (21), over the
temperature range 0.02 & T —T„& 1.7 K. The iso-
thermal velocity satisfied Eq. (19) over approxi-
mately the same temperature interval. Deviations
from linear behavior very near T„are probably due
to inhomogeneity effects. The straight line in
Fig. 12 gives (dS/dP)„=1. 3x10 ' cm'/gK and v, (X)
=4.167x10 cm/sec. The expected velocity at
the transition is -0.22% below vp. By using the

values of (dS/dP)„and (dT/dP)„determined in this
experiment, we find (dS/dT)„=2. 9xl04 erg/gK~.
This may be compared to (dS/dT), = 1.3 x 104 erg/
g K' obtained from Eq. (13). '

V. CONCLUSION

We have shown that flexural damping and disper-
sion near the EuQ magnetic phase transition may
be quantitatively accounted for by the thermoelastic
relaxation theory. In the case of the thermoelastic
process, the enhancement of these acoustic prop-
erties near Tc is primarily due to an increase in
the relaxation strength rather than in ~v. . This is
in contrast to most other critical processes where
it is tacitly assumed that the (d~ dependence con-
trols the relaxation process. The thermoelastic
theory contains no adjustable parameters and thus
it may be useful in determining critical properties
in solids. For example, in cases where sufficient
thermodynamic data exist, it should be possible to
measure the thermal diffusivity using thermoelastic
relaxation.

We have used the vibrating-reed technique to in-
vestigate both the adiabatic and isothermal velocity
regimes near Tc in EuQ. The temperature depen-
dence of the adiabatic and isothermal velocities in
conjunction with generalized Pippard relations have
yielded the thermodynamic quantities (dT/dP)„
(dS/dP)~, and (dS/dT)„, which are consistent with
other available measurements.
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