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Proofs have been given that the Bethe-Peierls approximation solves exactly the Ising problem on a

Cayley tree. For a tree with coordination number y & 2, the approximation predicts, among other

things, a phase transition in zero field at T, = 2J[hi[y/(y —2)][ ', with a discontinuity in the specific

heat. On the other hand, the partition function in zero field can be calculated exactly and turns out to
be analytic for all T. TQs paradox is analyzed and resolved. The transition occurring on a Cayley tree

is found not to be of the type usually studied in thermodynamics.

In a well-known review article on cooperative
phenomena, Domb gave a proof that the Bethe-
Peierls approximation solves exactly the Ising
problem on a Cayley tree. This is a connected lat-
tice in which each site has the same number y of
nearest neighbors, and in which there exist no
closed loops. The Cayley tree has since then also
received the name of "Bethe lattice. " Figure 1
represents a portion of such a lattice for the case
y —1=K= 3. Domb's proof is based on an expan-
sion in Mayer diagrams given by Rushbrooke and
Scoins, and on the observation that the Bethe-
Peierls approximation is obtained by summing all
diagrams involving no closed configurations.
More recently, Wheeler and Widom3 proved a sim-
ilar result for the lattice solution with an arbitrary
number of components. Because of the mathemat-
ical similarity between the Ising problem and the
lattice solution, their result was a confirmation
and generalization of Domb's result. The above
seemed to be a well-established result, frequently
quoted in the literature. It was therefore a sur-

prise for the present author to realize that the
partition function in zero magnetic field can be cal-
culated explicitly and is analytic for all T. The
calculation can be done as follows: consider the
usual Ising Hamiltonian

0=-J 4 0;0&, J &0
(g sS)

where each'0; takes the values +1, and the symbol
(i,j ) means that the summation is over all pairs of
nearest neighbors. We consider a, Cayley tree and
choose an arbitrary site 0 which we call the origin;
let the corresponding spin be op. We associate
with each bond ~ a variable 8 =- cr„cr„where r and
s a,re the atoms at the end of that bond. It is clear
that the (8,) are all independent (since there are
no closed loops), that each 8 takes only the values
a I, and that the set (os, (8,j) is a complete set of
coordinates in the sense that to each configuration
(o;f there corresponds a unique (oc, (8 )) and vice
versa. The partition function is:

Nb

Z(p)= Z e a=2 Z ~" Z e r~se =Z II (esr+e sr} =Z (2coshpg)"s=2(2coshpg) s, (2)
all states (yp 81 b

'o (yp

where Nb is the total number of bonds on the tree.
It is also easy to see that Nb = N, —1 (N, = number
of sites). In fact, for each site i o,iithere is a
unique self-avoiding path leading from i to 0. If
we associate with each site i ~0, the first bond
along this path, we have a one to one correspon-
dence between sites i 0 and bonds; thus N, -1

Therefore, in the thermodynamic limit N,- ~ the free energy per atom is

f= lim —= —lim —lnZ = —kTln(e +e } (3}
F . kT 8Z

N~ N „N~
S S

The specific heat per atom is c = —Td f/dy which
is continuous for all T. The Bethe-Peierls ap-

E = Eo+ 2JyN+ 4JN (4)

where Ep is the energy of the ferromagnetic
ground state o& = —1 for all i, N, is the number of

proximation does not agree with the exact solu-
tion. The explanation of this paradox is that on a
Cayley tree there is a huge number of surface
atoms. The ratio of surface atoms to total num-
ber of atoms tends to (EC —I)/K and not to zero in
the thermodynamic limit, and this makes some of
the usual arguments illegal. In the diagrammatic
approach there are three steps which become in-
correct on a Cayley tree for this reason:

(i} The energy cannot be expressed in the usual
way:
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x[P((rp, +1)+P(op, —1)] .

(c) For every t the ratio Q(+1, f)/Q(-1, $)
must be given by the corresponding Boltzmann
factor:

(6)

/ ~

I/
t

FIG. 1. Portion of a Cayley tree with K=3.

up spins, and N., is the number of pairs of neigh-
bors with both spins up. Equation (4) gives in-
correct energies for up spins placed on the bound-

ary, a possibility that can be neglected in a real
lattice but not on a Cayley tree.

(ii) It is assumed to derive Mayer's theorems
that the weight of a, graph having articulation
points is the product of the weights 'of the com-
posing stars. That this is not true on a tree can
easi1.y be verified by computing explicitly the dia-
grams (1 —2) e (1-2-3) (the numbers 1, 2, and 3
would be encircled in the usual notation'p). It is
crucial to take into account that particle 2 in the
right-hand side may be on the surface.

(iii) The numbers of bonds and sites are re-
lated by N, = N, —1 and not by N& = —,'N, y as would
be the case for a lattice with a negligible fraction
of surface atoms.

It seems that the errors introduced by (i) and
(ii) cancel to some extent, and that it is (iii) which
invalidates Domb's discussion. If, in his analy-
sis, the correct relation N&= N, is used, no phase
transition results.

The proof given by Wheeler and Widom would

go roughly as follows when specialized to the
Ising problem:

(a) Choose one site as the origin 0, and let
i=1, 2, ... , y be its nearest neighbors. Let
P(rrp, (r&) be the joint probability for finding the
values oo, o&, in thermal equilibrium. Let

Pp(or/op) =P(op, o;) [P(op, +I)+P(op, —1)] '

be the conditional probability that o; will occur if
the central atom has spin ao.

(b) Because in a Cayley tree there are no closed
loops, the probability Q(crp, E) of finding a value op

of the central spin and f spins up and $ —y spins
down among its nearest neighbors is exactly

Q(+1, $)/Q(-l, t')=e ' ' "', )=0, 1, 2, . .. , y . (6)

(d) Because of the arbitrariness in the choice
of the origin, we must have

P(+1, —1)= P(- 1, +1) .
Among the four numbers P(l, 1), P(1, —1),
P( 1, 1),-and P(- 1, —1), only three are indepen-
dent because they must add up to unity. Equation
(7) further reduced the number of independent
quantities to two. Finally, there are two of the
equations (6) which are independent ($ = 0 and

$ = 1, for example) so that all probabilities can be
determined. We will not give details of the al-
gebra here; suffice it to say that the resulting
equations are exactly the Bethe- Peierls equa-
tions.

We can note again that this argument, based
on the equivalence of all sites in thermal equi-
librium, breaks down for atoms close to the sur-
face. Since these constitute the majority of the
atoms in the tree, they will dominate the behav-
ior of all thermodynamic functions. Thus, no
contradiction exists between the Wheeler -Widom
result and the analiticity of f(P) [Eq. (3)]. The
above discussion suggests, moreover, that even
though no phase transition in the thermodynamic
sense occurs at T, = J/(h ln [y/(y —2)Q, the mag-
netization in the central region of the tr ee will
change suddenly from zero to its Bethe-Peierls
value when the temperature is lowered below T,.

In order to prove this last statement, we still
have to show that among the three solutions of the
Bethe- Peierls equation existing below T„ the sys-
tem will not choose the one corresponding to zero
magnetization. To do this, we proceed as fol-
lows. We define first an "n-generation branch":
take one atom and call it the "first-generation
atom"; connect it to K other sites or atoms and
call these the second generation, connect each
second-generation atom to K other atoms and call
these-the third generation, etc. Stop the process
when the nth generation has been added. The re-
sulting graph, which is itself a Cayley tree, is an
n-generation branch. We will study the Cayley
tree obtained by attaching y=K+1 n-generation
branches to a central atom 0, and our aim will
be to compute the magnetization of this central
atom. To break the symmetry between the up and
down directions, we use the well-known procedure
of applying a magnetic field B& 0, and letting B- 0 after the limit of an infinite system has been
taken.
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Let A, be the partition function for an s-genera-
tion branch in a field B, and let o be the spin of
the first-generation atom. We can split

Q e-8z=A;+A;
conf ig,

(8)

A+ 8fzB A
- &oB (10)

completely determine As' for all s. Similarly the
partition function of the tree obtained by hanging
y=K+1 n-generation branches onto a central atom
0 is.

z-z +z
z+= BWB(A + SJ A 8J)ye + ~ e

Z- = z-'"'(A '8-"+A„-2')" .

(11)

(12)

Let Po(+ 1) and Po(-1) be the probabilities that oo

is+ 1 or —1, and define z, = A,+/A, . We have
from elementary statistical mechanics and the use
of (12)

Po(+ 1) Z z„qz z„e + 1

Po(- 1) Z e + z„

where z„ is determined by the equations

zse+1
Zs+1 e

+zsPj3J Z~Zs~ s

(13)

where A,
' contains all terms in the sum Eq. (8)

for which cr= 1, and A, all terms for which cr=
—1. Since an (s+1)-generation branch is obtained
by attaching K s-generation branches to a new
first-generation atom, we can immediately write
down recurrence relations

eBIB Q {A +)c(A )K f-s-z(24 )r-
~=o

8wz(A + Bz A
- Bz )z-

S S

-svB(A + -Bz
A

- Bz)lc

which together with

z,(B). We also indicate the position of z„name-
ly, z, (B) & z, & z, (B), and a geometric construction
giving the successive iterations z2, z„men-
tioned in (i) above. It is obvious from the figure
that z„(B)= z, (B), the biggest one of the three
roots of z =g(z). If B-O, z,(B)- 1 and the other
two have well-defined limits z, (0), z, (0) which are
different from 1 and are the inverse of each other.
Thus, the magnetization of the central atom mo(B)
has a nonvanishing value for B-0. If T & T„on
the contrary, the equation z =g(z) has only one
root which tends to 1 for B-0, and

lim lim mo(B)=0 .
8 0 n "

This completes our calculation.
We have also been able to prove that if the

average magnetization is computed by the same
means

m =lim lim
1 SlnZ(P, B)

(15)
~-og -- &, aa

S

the result is zero even below T, . The proof is
cumbersome and will not be given in detail; we

only indicate briefly the essential steps. The
main idea is again that the magnetization close to
the surface goes continuously to zero with B, and
that the thermodynamic functions are dominated
by precisely these surface atoms.

For any given T, choose n» ez and B«J'(K —1)/
Consider an atom A n steps away from the

surface. There are E." paths leading from A to
the surface, and these constitute an n-generation
branch. The maximum magnetic energy of this
n-generation branch is B =K"'pB//(K —1) ob-
tained when all spins are aligned. Because of

g(2) I,

z =e~"' .1
(14)

The computation of the magnetization of the cen-
tral atom, or more precisely of

lim lim Po(1)/Po(- 1)
B ~o ft~e

can now be done as follows:
(i) With a fixed Band z, =e, compute zz

=g(z, ); z, =g{zz); etc. Find the limit z„=z„(B)
= lim, z, {B). This amounts to taking the thermo-
dynamic limit first.

{ii) Let B-0; define z„(0)=lime Oz (B).
(iii) Compute Po(1)/Po(- 1) from (13) with z„

replaced by z„(0).
In Fig. 2, we sketch the shape of g(z) for T

& T, and a small field. The equation z =g(z) has
three roots which we indicate by z, (B), z, (B), and
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FIG. 2. Function g(z) intersects the line at 45 at
three points z„z~, z, when T& T~. These points are
roots at the equation z=g(z), . The point z&=e is be-
bveen z& and z,. The points z2 =g(z&), z3 =g(z2), etc. ,
are indicated, and it is clear that lims z, =z,.
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our condition on B, we have E ~«J; thus the
magnetic part of the energy can be neglected in
front of J in computing the configuration of this
part of the tree.

Let us next look at one particular path from A
to the surface. The mean number of spin flips
along this path is ne» 1. This means that in-
dependently of what the spin at A was, the atoms
close to the surf ace (say less than , zz —steps away
from the surface) have negligible magnetization.

Another remarkable fact is that both above and
below T, there coexist infinite clusters of up and
down spins. T, does not correspond to a percola-

tion threshold in the usual sense. The proof of
this statement will also be omitted since it is a
straightforward application of the "birth-and-
death" process considered for example in Feller's
book.

Ne conclude that the transition occurring at T,
in the central region of the tree is not of the type
usually studied in thermodynamics. It does not
show up as a singularity in the free energy; it is
instead a process in which a large number of
atoms cooperate to produce magnetization in a
negligibly small portion of the system when T

*Laboratoire associd au Centre National de la Recherche
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