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The theory of diamagnetic fluctuations in a system of Josephson-coupled superconducting
layers is studied using the approach of Kurkijarvi, Ambegaokar, and Eilenberger, but with a
modified treatment of finite frequency fluctuations proposed by Maki and Takayama. Both
temperature and field dependence of the fluctuation-induced magnetization above Tc are dis-
cussed. The results are extended to the limit of isotropic superconductors, where they are
generally in good agreement with the experimental results of Gollub, Beasley, and Tinkham,
for both clean and dirty superconductors. For weakly coupled layers, the temperature depen-
dence of the magnetization for fixed field changes from a [T—T (8)) ' behavior near the
phase transition, typical of three-dimensional superconductors, to a [T—T (8)] behavior of
two-dimensional character at higher temperatures, as predicted by Lawrence and Doniach,
Similarly, the field dependence at Tc changes from a WB dependence to a relatively field-in-
dependent behavior at higher fields. With increasing layer coupling, these changes take place
at higher temperatures and fields, respectively, but they are masked by effects which suppress
fluctuations at high fields and temperatures. The numerical results are consistent with the
layer-compound data of Prober, Beasley, and Schwall, but they show that these compounds
behave much more like three-dimensional than like two-dimensional systems, in spite of the
apparent Curie-Weiss-like temperature dependence of the susceptibility.

I. INTRODUCTION

Recently, the precursor diamagnetism of super-
conducting layer compounds, transition-metal
dichalcogenides intercalated with organic mole-
cules, has been investigated experimentally by
Geballe et al. ,

' and by Prober, Beasley, and

Schwall (PBS). In a magnetic field perpendicular
to the layer planes, the enhanced susceptibility,
caused by superconducting fluctuations in the nor-
mal state, showed a Curie-Weiss-type behavior,
&y -(T —T,) within a certain material-dependent
temperature region, which was interpreted as in-
dication of a two-dimensional nature of the fluctua-
tions.

A susceptibility formula derived by Lawrence
and Doniach' for layer-compound superconductors
indeed predicts a Curie-Weiss-type behavior well
above T„and a three-dimensional behavior ~X

(T —T,) ' near T„where the Ginzburg-Landau
coherence length exceeds the spacing of the metal-
lic layers. The Lawrence-Doniach formula was
based on the theory of static fluctuations of the
Ginzburg-Landau order parameter worked out by
Schmid and by Schmidt, ' and it interpolates be-
tween Schmid's results for three-dimensional and

for two -dimensional supe rconductors.
Extensive experimental work by Gollub, Beasley,

and Tinkham (GBT) on several isotropic super-
conductors has shown, however, that the Schmid
theory, which has been worked out explicitly for
finite magnetic field by Prange, is not sufficient
to describe the experimental results adequately.
With increasing temperature and magnetic field the

measured susceptibility is progressively depressed
below the Schmid-Prange result. This had been
predicted by Patton, Ambegaokar, and Wilkins
(PAW), who invented a phenomenological cutoff
to suppress high-energy fluctuations which are
overestimated by the simple Schmid theory. Sub-
sequent theoretical work by Lee and Payne (LP),
by Kurkijarvi, Ambegaokar, and Eilenberger
(KAE), and by Maki and Takayama. (MT)" attrib-
uted the dominant cut-off mechanism to nonlocal
electrodynamics for clean superconductors and to
finite frequency fluctuations for dirty superconduc-
tors.

Of course, these nonlocal and dynamic effects
must be expected to be important for layer com-
pounds, too. It is the purpose of the present pa-
per to calculate the fluctuation susceptibility for
layer -compound superconductors with arbitrary
concentration of impurities, starting from a micro-
scopic model and including both types of cut-off
effects. The result should provide a reliable basis
for the interpretation of experiments.

In many respects, the present approximate eval-
uation of the magnetization closely follows the
treatment of impure superconductors given by KAE.
But there are two important differences. First, in
the basic Gorkov Hamiltonian the single-particle
energy for the motion perpendicular to the layer
planes is replaced by a Josephson-type interlayer
coupling, as was proposed by Lawrence and
Doniach. ' Second, the final sum over the frequen-
cies of the pair fluctuations is evaluated according
to the procedure proposed by MT. "

The model used is applicable to isotropic three-
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dimensional (3D) superconductors as a limiting
case. This provides a useful test of the numerical
results. The 3D curves for the field dependence
of the magnetization at T = T, scale with great ac-
curacy to a single one, if the field is measured in
units of a scaling field B,. The values of B, are in
reasonable agreement with the experimental val-
ues for all impurity concentrations. The experi-
mentally observed universal behavior of the tem-
perature dependence of the magnetization for fixed
magnetic field, B/B, =const, is also reproduced
very closely for low fields, B/B, 0. 3. For high
fields, B/B, -5, only experimental data on clean
superconductors are available, and the theoretical
result for low impurity concentration is in good
agreement with these data. The result for the dirty
limit differs noticeably from that for the clean
limit, indicating a breakdown of universal behav-
ior at high magnetic field.

Comparison of the corresponding results for
layer compounds with experiments was not possible,
since no data on the field dependence exist, and,
therefore B, is not known experimentally. In
general, the theoretical results look very similar
to those of the 3D limit, except for extremely small
interlayer coupling.

The dirty limit results of the present theory are
in close agreement with results obtained very re-
cently by Klemm et al. ,

' who applied a slightly
improved version of the MT dirty-limit calcula-
tions to the case of layer compounds, replacing the
pair energy by the tight-binding form proposed by
Lawrence and Doniach.

To make a comparison with the experiments of
PBS possible, the temperature depehdence of the
zero-field susceptibility is also investigated in this
paper. For this case, Klemm presents theoretical
results for the 3D limit only, and he reports re-
sults of an extrapolation to zero field of data on an
isotropic Pb-Tl alloy to zero temperatures. He
reports that these can be represented by the same
curve as the data of PBS. In the 3D limit, the nu-
merical results of the present theory for low im-
purity concentration are in good agreement with
the experimental data, whereas the dirty-limit re-
sults differ noticeably from these, and agree well
with Klemm's calculation. The layer -compound
results show that, for the values of the material
parameters referring to the PBS samples, the
theoretical susceptibility differs only very slightly
from the 3D limit. This is in agreement with the
experimental data reported by Klemm and shows
that the Curie-gneiss-type behavior of the suscep-
tibility is not a conclusive indication of 2D fluctua-
tions. However, we will show below that the mag-
nitude of the scaling field B, does provide a very
direct indication of the transition towards quasi-
2D behavior as the interlayer coupling is reduced

by intercalation.
The theory also indicates that a layer-compound

superconductor with an interlayer coupling, which
is only one order of magnitude smaller than that
of the TaSz (pyridine)»3 investigated by PBS,
should show a noticeable deviation from 3D behav-
ior for temperatures in the regime T, & T~ 1.2T,.
Thus, experiments with compounds of larger layer
spacing are very promising in this respect.

Another question, which requires further clarifi-
cation, both experimentally and theoretically, is
the mentioned breakdown of universal behavior. If
further experiments should prove universality, the
adequacy of calculations based on the MT summa-
tion procedure has to be questioned.

The analysis leading to the generalized Ginzburg-
Landau theory of the normal state and an expres-
sion for the fluctuation-enhanced magnetization is
the subject of Sec. II. In Sec. GI the results of the
numerical calculations are discussed and compared
with experiments and other theories. Finally,
Appendix A contains some mathematical details
concerning the symmetry properties of the pair
propagator, and in Appendix B the validity of the
MT summation procedure for superconductors with
arbitrary concentration of impurities is discussed.

II. ANALYSIS

A. Model Hamiltonian and free energy

Following Lawrence and Doniach, " we describe
the conduction electrons of a layer-compound su-
perconductor by a Hamiltonian which treats the
electrons within a metallic layer in the effective-
mass approximation and couples neighboring layers
by a Josephson-type term.

In the presence of a homogenous magnetic field
B= V'XA perpendicular to the layer planes, this
Hamiltonian can be written

x g~, (x) —a 6P~,(x )(g&, ,(x ) —2&~,(x )

+&~, ,(x)), (2. 1)

where the vectors x, &„», A act in the x-y plane and
the index j, labeling the layers, substitutes for the
z variable z=sj, with s, the layer spacing. In this
model, the z dependence of the single-particle
states has a tight-binding form, and for vanishing
magnetic field the single-particle energy is

e(k) = (ff /2m)(k, '+ k,) + q(1 —cossk~), (2. 2)

where I k, I
» v/s. Expanding for small k~, we can

express q = k'/M, s' in terms of the effective mass
M~ in the z direction.

To describe the effective electron-electron inter-
action, we write
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(2. 3)

and

(t,.(x)/vs =(t).(r), r =(x, y, z =sj), is= l). ,

dx dgs

As usual, this attractive interaction will be al-
lowed to act only on particles within a shell of
width k~D about the Fermi surface.

It is only through the parameters q and ~ that the
model Hamiltonian H =Ho + H, contains information
about the nonmetallic constituents of the layer com-
pound, such as intercalating organics.

For mathematical convenience we introduce the
notation

00 CO

Z Z dk, in[1 —XII~ (v}] (2. 7}
v=-~ n=0

with R = (I e I B/etc) the magnetic length, V is the
volume, and

II()() (v) = —Z (Q(«) (v; I) ' k/t2wrN(p)]]-'

(2. 8}

Here the effect of impurities is described in terms
of the scattering lifetime r. N(I() is the density of
states at the Fermi surface, and Q is the product
of impurity averaged single-particle Green's func-
tions in the representation +, which diagonalizes
the pair propagator:

Q~ (v, I) = f f@.*.(r)G, (r, r '; g, )

and rewrite the Hamiltonian in the compact form

« =Z f Ae(r )e —. ee ~ A(e )) A, ( )
fy r c

x G', (r, r ", K„, ,)4' (r '),
with (cf. Appendix)

g, = p+isgn(2I+1)(I21+1Iv/tI+If/2r).

(2. S)

(2. 4)

For fixed M, and vanishing layer spacing s, this
reduces to the usual three-dimensional form of the
Gorkov Hamiltonian. '

For &=0, it describes the 2D limit of decoupled
layers, and may also be reinterpreted as a model
for a thin film of thickness s."

To calculate the enhanced diamagnetism due to
the effective electron-electron interaction (2. 3),
i.e. , due to fluctuations of the order parameter,
we follow the approach of Lee and Payne and

write the grand canonical free energy

II(X) = —(I/P) ln Tre s(" «"'

in terms of the pair propagator

L(r, t; r', t') = —T(((),(r, t)(I),(r, t)

(2. 5)

x0",(r', t')0', (r', t')&, (2. 6)

which is evaluated in the ladder approximation. "
But we want to point out that the analysis can be
greatly simplified by taking advantage of the cylin-
drical symmetry of the model. Because of this
symmetry, the single-particle Green's function is
diagonal in the Landau representation, as is well
known, " and, furthermore, the exact pair propa-
gator (2. 6} is diagonal in the Landau representation
for a particle of charge 2e.

These consequences of the symmetry properties
and the resulting simplified analysis are discussed
in more detail in Appendix A.

In the ladder approximation we obtain, for the
contribution of fluctuations to the free energy,

50 = II(X) —A(0)

neglecting the field dependence, which could lead
to oscillatory effects of the de Haas-van Alphen
type. We then obtain

Q~ (v, l}=(-1)"f" dxe "L„(2x)

x Q(2x/R, k«, v, I), (2. 11)

where I-„ is a Laguerre polynominal and

Q(q~+q'„q„. v, I)

~ ~

d3k l 1
(2s)' g, —«(k) g„, , —«(q —k)

'

This differs from the corresponding formulas
given by LP and by KAE only through the different
single-particle energy «(k).

B. Evaluation of the pair propagator

In the calculation of the magnetization from the
free energy, we will not attempt to use the full re-
sult for the eigenvalues II, given by Eqs. (2. 8),
(2. 11), and (2. 12), since this would require a very
complex numerical work. Instead of this, we make
two kinds of approximations, both in the spirit of
the work of KAE.

KAE have investigated the role of the "nonlocal"

This formula still contains the full magnetic field
dependence. But for magnetic field values of prac-
tical interest, the cyclotron energy is much small-
er than 2skT+ II/r —even for clean superconductors
at the transition temperature —and, therefore, we
use the semiclassical approximation

«'(, ';(,)=e p —'
( — ') A( ~ '))2c~

xGO(r —r';g, ;B=0), (2. 10)
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effects which cause the difference between Eq.
(2. 11) and its local approximation

Q'"(v, l) =Q[(4n+2)/R', k„v, l] . (2. 13)

and then replaces the nonlocal Q~, by its local ap-
proximation Q~ . We will adopt this approxima-

They found that the full nonlocal result for the
magnetization is very closely reproduced, if one
evaluates the derivative with respect to the magnet-
ic field B using the difference formula

28 —Q~ = (n+ 1)Q„,~ p
—Q~ —nQ„, p, (2. 14)

8

tion in the following. As a second type of approxi-
mation, we will replace the results of Eqs. (2. 12)
and (2. 8} by simpler expressions which behave
correctly in the limit of long-wavelength-low-fre-
quency fluctuations, but allow the 0, integral in
Eq. (2. 7} to be evaluated analytically. As a result
of this only the final frequency summation and the sum
over the Landau quantum numbers n in Eq. (2. 7)
need to be carried out numerically. Lee and Payne
discussed in some detail how Eq. (2. 12}can be
evaluated approximately in the isotropic three-di-
mensional case, and under which condition this ap-
proximation is meaningful (unr» 1). Applying the
same kind of approximation we obtain

d k„'~' dk, 2wisgn(21 + 1)9(-(2l+ 1)(2v —2l —1))
(2w)', ), 2w &, —g„, , —[z(k+ —,'q) —z(k —pq)]

with z(k) given by Eq. (2. 2) and 8(x} the step function. This can be simplified to

(2. 15}

m 9(- (2l+ 1)(2v —2l —1})
Q(q'„, q„', )=-

S l v- l-1
~

~

' dz 2qsinzsin(zsq, )
' 2 @z, p, —q(l —cosz)" ' '

, 2w f, -g„, , m

which integrates exactly in the 3D limit (s 7) =I /M, fixed, s-0), in the 2D limit (7) =0), and in the special
cases q„=O or q, =0, but not in the general case. Therefore, we evaluated Eq. (2. 16) for small s(q) to ob-
tain the approximate result

6(- (2l + 1)(2v —2l —1)) 4 pz(q ) (2. 17)

with

z(q) =(I /2m)(q„+q, ) f)(+1 —cosq, s) . (2. 18)

zz(q) may be considered as energy of a pair fluctu-
ation with momentum @and effective masses 2m
and 2M, .

In terms of the auxiliary functions

1 (2x —1)
fp(x) = 8(1 —x) + —8(2x —1)arctan

jT x —1

I

and d by

d = 2fp(n/u)/f„(rilp) . (2. 22)

2.0

Figure 1 shows a plot of N(lJ. }, r)/'q, and d vs q/p, .
In the three-dimensional limit d = 3, and Eq. (2. 17)
is equivalent to the approximation used by KAE
[cf. their Eq. (4. 6)].

f (x) =f (x)+ —6(2x —1) (2x —1)iiP,

1
f„(x)= (1 —x)8(l —2x) + —9(2x —1)

2x —1 +2 1 —x arctan1/3 1

2x —1
(2. 19)

the density of states at the Fermi surface is given
by

I.5

I.O

0.5

/2

I.O
I

I.5

lq(p. ) = (m/2ws) f (q/V, ),
the "pair" coupling parameter g by

(q

2V 'ip

(2. 20}

(2.21)

FIG. 1. Density of states at the Fermi level &(p), in-
terlayer pair-coupling parameter q, and the variable d,
related to the dimensionality of the system, as functions
of interlayer coupling g.
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A/2

Il~ (v) =2I)I(p,)Z tI~ (l, v) ' —pf ',
S=O

(2. 23)

Following the notation of KAE, we define the co-
herence length ho= kv~P/2v, the reduced magnetic
field b= $o/R =(ielB/kc)g, and p= $o/vier measur-
ing the impurity concentration.

Then, using Eq. (2. 17), we can evaluate Eq.
(2. 8} to yield

(C)(z(A —1 —o)) —(l)( o(1 —e))
1+ —,'Q(e + z)

we finally obtain the interpolation formula

E„)( v)= 1 — 1+ — +
i

v
i

Q c(T)

b(4n+ 2) + 2(mg/M„s }(1—cossk, )
d(1+ I v I + p)

with I given in the local approximation by

I'"(l, v) '=2l+1+
i vi + p

2 2b(n+ z)+ (m$zo/Ms )(1 —cossk, )
d 2l+1+ I vl +p

with
(2. aS}

(2. 24)
and with It = k(dDP/7( the cut-off parameter of the
BCS theory. Strictly speaking, Eq. (2. 23) is ap-
plicable only for I v I «2~, but since only small v

will contribute significantly to our final result, we
can ignore this restriction.

With the standard BCS relation

) =~(u) ((&,~~ )-((-')

1'yh(u~
=~(p)lnl kT

'
(kT, (2. 25)

1
I '(l, v)—na -P

In their calculation of the magnetization for fi-
nite p at T = T KAE simply dropped the terms
with l &0. Since this leads to a completely unphys-
ical result for H,o(T) at low temperatures, we use
a slightly different approximation. Omitting the
l dependence of the denominator in Eq. (2. 24), we
can easily evaluate E„)„(v). To simplify the result
further, we follow MT" and define &(T) by the re-
lation

T 1 e(T)
ln —+PT, 2 4mkT

—0(-)

A 1 A —1 z T

(2. 27)
Here the term within the square brackets is negli-
gibly small, since ~» 1 for T= T,. Then, using
Eqs. (2. 25)-(2. 27} and an approximation of the

type

1-'(*1)(2)(2}

g being the digamma function, the argument of the
logarithm in Eq. (2. 7) can be written

E (v) = 1 —XII (v)

T ~I2 1
=MV(p) ln —+2 Z

c to n+

(2. 28)
If we expand Eq. (2. 27) for sma. ll Q and keep only

the linear term, we obtain essentially the approxi-
mation of E~(v), which was used by MT. But in
addition, Eq. (2. 28} takes into account that II~"'2
has to vanish for large quantum numbers n (or q„).
For temperatures near T„we find from Eqs.
(2. 25) and (2. 29) that for a typical weak-coupling
superconductor Q is in the range I & Q(T,}& 2 show-
ing only a very weak dependence on the BCS cutoff
A.

In fact, for T= T, and Q=2, Eq. (2. 28) is equiv-
alent to the approximation used by KAE in the im-
pure case. Numerical calculations have shown
that in the clean limit the results of the present
theory (more explicitly, of the nonlocal static ap-
proximation defined in Sec. 11 C) agree best with
the results of the more rigorous 3D clean-limit
calculations by LP and KAE, if we choose Q =2.
Furthermore, since our final results depend only
weakly on Q for impurity concentrations with p

~ 3,
we discuss, in the following, only the results for
Q(T.) = 2

C. Magnetization formula

First, we consider the magnetization in the local
approximation. If we insert Eq. (2. 28) into the
free-energy formula, Eq. (2. 7), we find that the
sum over the Landau quantum numbers n diverges.
This kind of divergence was reported and discussed
in Refs. 7 and 9-11. It always occurs, if one
treats the conduction electrons as free electrons
and describes their interaction by a & function in
the position space. To circumvent this difficulty,
one can either use a more realistic interaction po-
tential of finite range, or restrict the electrons to
a conduction band of finite width. But, as already
noticed by Prange, one does not really need such
an improved theory to calculate the magnetization,
since the divergent contribution to the free energy
is independent of the magnetic field in the following
sense. In the local approximation we can write
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I e I BkT n+1

n()(E) —n()(Q)=v V~ r 2 dk, lnE"'( ) — dn)ndn', v, i, (v)),
v=~ n=o n

(2. 30)

where the sum over n simply extends the x integration in the subtracted terms from 0 to ~. Thus, the sub-
stitution Bx=y shows that the subtracted term is independent of the magnetic field and, in fact, is the zero-
field contribution to the free energy.

ln Eq. (2. 30) the n sum is convergent (and also the k, integral-even in the 3D limit), and we can use this
formula to calculate the magnetization. The result is

I eI kT B aE,5M"*= —v d~ Z d dk, lnE + ' —(( 1)l E,„„l,, — 1 E„,l ) ]}ua ~ n=o -r/s E~, (2. 31)

with E~ =E~'(v) given by Eq. (2. 28}. Equation (2. 31) can be written precisely in the form in which Prange~
presented his result. Using Eq. (2. 28), we can carry out the k, integration in Eq. (2. 31) exactly.

We obtain

with

6M"'4p ~ ' M
lVkvfv~B

I I

Z y [F(» y) E(» + Z y)]
u w oo

(2. 32)

y=( m/ M)(&./ )s'/ 8 ..=(Ivl+e(&)P/»)(1+ Ivl+p)d/'4~ z. =(1+ ivy p+)~/(2~&},

and

1 1 11 1 ~ n+ —, n —z n+ z+x+ zy+w„'
8wo 4 „, w„' w„n —z+x+-, y+w„ (2. 33)

where

w'„(x) = [n + E + x+ y)(n s E + x)]'i' .
From Eq. (2. 33) one can show that

11m~V&(», y) =fr, (x) .
dko

(2. 34)

Thus, the first term in the square brackets of Eq.
(2. 32) with v= 0 corresponds to the Prange approx-
imation. To obtain an approximation which is es-
sentially that of MT, "we have to include the fre-
quency dependence of this term (the main differ-
ence being that we include a "frequency-dependent
diffusion constant" which makes the frequency sum
convergent}. The last term in Eq. (2. 32) arises

from the fact that we have used Eq. (2. 28), and not
only its linear approximation. This leads to a cut-
off similar to the one introduced phenomenologically
by PAW. ' But the numerical calculations show that
this cutoff is in no case the most important one.

To include nonlocal effects according to the ap-
proximation discussed in Sec. II B we have to re-
place the second term in the curly brackets of Eq.
(2. 31) by the one obtained by evaluating the deriva-
tive with respect to B according to the difference
formula, Eq. (2. 14). To this end, we calculate
B(S/SB)E~ from Eq. (2. 26) and apply Eq. (2. 14)
to I„» given by Eq. (2. 24}, where the l dependence
of the denominator again is omitted. We then eval-
uate the l sums, using the approximation

and obtain an interpolation formula for the nonlocal correction, which is consistent with Eq. (2. 28), and
which allows the k, integration to be carried out analytically. The final result can be written in the form

~~'4 kc ' ~ M + ~y[C(»vv «„+z„+r„,y) -C(x„+z„,x„+z„+rv v y)],VkTv B 4I el' m

with r„=p(1+ Iv I + p)d/4b and

(2. 35)

1~ 1 1C(x, z, y}= —~n(2n+x+z+y)
w„(z)w„'(«)[w„(z) + w„'(x)] w„(x)w„'(z)[w„(x) + w'„(z)] (2. 36)
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The symbols x„, z„, y and w„(x) have the same
meaning as below Eqs. (2. 32) and (2. 33). Equa-
tions (2. 32) and (2. 35) represent our final analyti-
cal result for the enhancement of the magnetization
due to fluctuations of the order parameter:

gM HAMI of:+ gM» (2. 3?)

We remark that, at T = T, and for Q = 2, the ap-
proximations which led to this result are complete-
ly equivalent to the approximations made by KAE
in their treatment of isotropic 3D superconductors
with finite impurity concentration.

For dirty superconductors, the question of how
to evaluate the contributions to the magnetization
arising from finite frequency fluctuations has been
a matter of controversy. Whereas LP and KAE
evaluated the frequency sum in a straightforward
manner, MT used the transformation

«a(l ~ l)= — « + )( 8(( (,2P " 1 1

2 e" —1
(2. aS)

neglected zero-point fluctuations, and evaluated
only the term containing the Bose distribution fac-
tor. In a recent paper, Maki' has investigated the
zero-point term (i. e. , the term with 2), and he
found that it leads to a contribution to the suscep-
tibility which is only weakly dependent on both
magnetic field and temperature. He interpreted
this contribution as a correction to the Landau
diamagnetism of the normal metal due to the elec-
tron-phonon interaction. Since in obtaining the ex-
perimental results for the fluctuation-enhanced
magnetization a weakly temperature -dependent
background was subtracted, Maki argues that one
has to omit the contribution of the zero-point fluc-
tuations in order to describe the experiments ade-
quately. In fact, Gollub et al. reported that the
theory of Maki and Takayama nicely explains their
experimental results on dirty superconductors,
whereas the theories of LP and KAE fail seriously
in this limit.

The fact that in the limit of clean isotropic su-
perconductors the susceptibility shows a weak log-
arithmic temperature dependence well above T,
has been overlooked by LP and KAE, but was
pointed out recently by Aslamazov and Larkin. ~6

In Appendix 8 we show that the contribution of the
zero-point term to the susceptibility in the clean
limit, too, is a slowly varying function of temper-
ature, being finite at T, and leading to the logarith-
mic behavior well above T,. Thus, according to
Maki's argument, this contribution should be sub-
tracted in the clean limit, too. But, on the other
hand, the magnitude of the zero-point contribution
decreases with decreasing impurity concentration,
and the effect of subtracting it is far less dramatic
in the clean limit than in the dirty limit.

In the layer-compound case the situation is very
similar. Even in the 2D limit (q = 0), where the
zero-point fluctuations lead to a contribution to the
magnetization which is logarithmically divergent
at T„ its temperature dependence is very weak
compared to that of the leading term, which di-
verges as (& —&,) ' (cf. Ref. 13).

We therefore evaluate the frequency sums in Eqs.
(2. 32) and (2. 35) following the procedure proposed
by MT. Using the relation

p
ooo)

d&u ~lmg(i&u) = — dug(~~~)
2 1T

(2. 39)
and u&„= 2wi v/P, we can formulate this summation
procedure as follows: Replace

by

(2. 40)

This improves the convergence of the summation
considerably, suppressing the high-frequency con-
tributions which might have been taken into account
poorly by our preceding approximations.

D. Critical temperature and critical field

The zero-field critical temperature T', of the
present theory according to Eq. (2. 25) is given by
the familiar BCS result for weak coupling super-
conductors,

&-1/XÃ( g)
e D

and is independent of the interlayer coupling pa-
rameter for 2q & p. , as is seen from Eqs. (2. 19)
and (2. 20). The present theory, which near the
phase transition is equivalent to a linearized Ginz-
burg-Landau (GL) fluctuation theory, predicts the
same type of phase transition for both the 2D and
the SD limit. Recently, Doniach and Penrose
studied the influence of nonlinear fluctuations of
the GL order parameter on the transition tempera-
ture. They found that the temperature To at which
the free energy is nonanalytical depends logarith-
mically on g and is always lower than T,. In the
3D limit this lowering is extremely small and even
for rI/p. -10 ', it is only of the order of a few per-
cent of T,. But in the 2D limit, q- 0, To ap-
proaches zero. Since this nonlinear effect be-
comes important only for extremely small values
of g, the present theory is expected to give a rea-
sonable description of real layer-compound super-
conductors.

If we assume that the effective electron-electron
coupling constant X (the 3D form) is independent of
the layer spacing s, we have to expect from Eq.
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Pic a(T) d(1+ p)
lel 4wbT

(2. 41)

which yields a reasonable description of the transi-
tion curve for not too low temperatures, say, for
T/T, ~0. 7/(1+p, ) with p, =p(T,). From Eq. (2. 41)
it follows that

2~ &+ pc (2.42)' dT r lel 2
An exact evaluation of formula (2. 24) would lead

to Eq. (2. 42) with s (1+p,) replaced by 7L(3)X(P,),
where X.(p,) is the Gorkov function. ' Thus, the er-
ror in Eq. (2. 42), introduced by the approximation
which made the l sum in Eq. (2. 26) tractable, van-
ishes in the dirty limit and is less than 20% in the
clean limit.

In terms of the zero-temperature Ginzburg-Lan-
dau coherence length )oz,(0), defined by

2 I e t dH, 2

g
T

dT Tc

Eq. (2. 42) reads

(2.43)

(2. 44)

III. NUMERICAL RESULTS AND DISCUSSION

The final result for the scaled magnetization,
given by Eqs. (2. 32) and 2. 35), depends in two dif-
ferent ways on the special features of the Hamilto-
nian, Eq. (2. 1). First, there is an over-all an-
isotropy factor (M, /m)' ', a,nd second, there is the
parameter (m/M, )($0/s) =—bo, which determines the
shape of the resulting curves. It is this parame-
ter, bo, which distinguishes the present model
from a simple anisotropic effective-mass approxi-
mation.

(2. 20) that the transition temperature T, increases
with decreasing layer spacing. Measurements' of
the pressure dependence of T, indeed show this
type of behavior for the nonintercalated compounds
TaS2, TaS&.6Se 4, and NbSe2. But intercalated lay-
er compounds show no simple connection between
transition temperature and spacing of the metallic
layers.

The intercalating organics seem to influence
strongly the effective electron-electron interaction,
and the 2D form of the coupling constant, X= X/s,
which does not lead to an explicit dependence of T,
on layer spacing, seems to be more appropriate to
describe these materials.

The upper critical field H,s(T} in the present the-
ory is given by the divergence of the magnetization
in the Prange approximation, which according to
Eq. (2. 33) occurs for

I
@0+2=0 .

This defines the function

In the layer-compound case, bo is expected to be
sma11 and to vanish in the 2D limit of decoupled
layers (p-0), whereas the 3D effective-mass ap-
proximation can be obtained from the present mod-
el in the opposite limit, bo- '0 (i. e. , s-0). In the
effective-mass approximation, the result for the
magnetization differs from the corresponding re-
sult for isotropic 3D superconductors only through
the anisotropy factor (~, /m)'~ .

Thus, it is the dependence on bo which contains
the effect of lowering the dimensionality from three
to two which is the interesting one to investigate.

A nice feature of our result for the precursor
diamagnetism is that it provides a uniform frame-
work for the discussion of a number of special
cases, which correspond to different approxima-
tions investigated earlier in the literature.

First, there are the static approximations, which
consider only the zero-frequency (v = 0) contribu-
tions and neglect time-dependent fluctuations of the
order parameter. Among these the simplest is the
Prange approximation, which is obtained from Eq.
(2. 32) by omitting the second term in the square
brackets or, formally, by setting Q =O. The
Prange approximation treats only the long-wave-
length fluctuations properly and is expected to be
applicable only immediately above the transition.

The "local static" approximation, to be mentioned
next, takes into account the momentum dependence
of the pair propagator more carefully than the
Prange approximation, and, therefore, gives a
more realistic description of short-wavelength
fluctuations. Equation (2. 32) with v=0 and finite
Q provides an approximation of this type, which,
in fact, is very similar to the PAW theory' with
(at T=T,) E=(s /2Q)h /(4m)oL(0) ) playing the role
of their cut-off energy (for a discussion of this
cutoff, see Ref. 6).

As discussed by LP and by KAE, the local ap-
proximation does not describe the action of a mag-
netic field correctly. At least for clean supercon-
ductors, it is important to include nonlocal effects
caused by the latter. The "nonlocal static" approx-
imation, defined by Eqs. (2. 32} and (2. 35) with
v=0, takes care of this.

A second class of approximations takes dynami-
cal fluctuations of the order parameter into ac-
count. The different approaches used by LP and
KAE and by. MT, have been discussed at the end
of Sec. IID. The MT approximation is obtained
from Eq. (2. 32} for Q = 0 together with the rule
(2. 40) for the evaluation of the frequency sum.
Finally, the "nonlocal dynamic" approximation is
defined by Eqs. (2. 32), (2. 35), and (2. 40).

A. Field dependence of the magnetization at 7;

The theoretical results are dicussed most easily
at T = & where the scaled magnetization defined
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FIG. 2. Curve (a) shows the scaled magnetization in the Prange approximation plotted vs ~(M~/m)Bg /@p, The other
curves show the scaled magnetization as function of the scaled field I3/B, . In the 3D limit, the numerical results for
different impurity concentrations p = 0:{0); p =1:(&); p =4: (+); p = 8:(0); p =16:(+) follow very closely the same uni-
versal curve. For comparison, the clean-limit results of KAE (dotted line) and the experimental results of GBT (dashed
line) are also indicated. The solid line refers to nearly 2D layer compounds, and the dash-dot line to a layer-compound
intermediate between 2D and 3D behavior.

by Eqs. (2. 32) and (2. 35) depends only on the
scaled magnetic field b = )OI e I B/Sc = wBg/$0 with

Po = bc/2 l e I the flux quantum.
In the Prange approximation the scaled magneti-

zation is a function only of the ratio' b/ho= w(M, /
m)Bs /$0. Figure 2 displays a semilogarithmical
plot of this function, which has the value 0. 0913 at
b/bo ——0 and decreases with increasing field. At
b = b, = 11.7bo, it is depressed to half its zero-field
limit, which agrees with the constant 3D results.

In the 2D limit (bo=0), the Prange approximation
predicts at T, a magnetization independent of the
magnetic field. In this limit a plot like that in Fig.
2 becomes meaningless.

Each of the improvements of the Prange approxi-
mation discussed above yields a curve for the
scaled magnetization, which is progressively de-
pressed below the Prange curve as the magnetic
field increases. On a semilogarithmical plot like
that of Fig. 2 these curves all look very similar.
With increasing field b, they decrease slowly (with
limit zero for b ~) in suc-h a manner that the fall
from 80 to 20%%uo of the zero-field limit stretches
over about two decades in b, and they can be well
characterized by the field value b, at which they as-
sume half the zero-field limit.

Figure 3 shows b, /(1+ p) = wB, g/$0(1+ $0/I) as a
function of the impurity concentration for the dif-
ferent approximations in the 3D limit (actually for
b0= 100, d= 3, and Q =2). This type of figure has

been presented previously by GBT. 6

The results shown in Fig. 3 were calculated us-
ing the formulas derived in Sec. II in order to
test the approximations involved. The agreement
with the results given by GBT is good even in the

I.O—
LOCAL STATIC

0.8—

+ 0.6—
le

N

0.4—
O

I
I

I
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I I I I I I I I

2 4 6 8 IO I2 I4 l6

( /X

FIG. 3. Impurity dependence of the scaling field B,
in the 3D limit as predicted by the different approxima-
tions discussed in the text. The dashed line indicates the
result of a straightforward evaluation of the frequency
sums (LP-KAE). The points indicate experimental re-
sults obtained by GBT.
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clean limit (p = 0), where the approximations of
Sec. II are expected to be rather crude.

Comparing their experimental results for the
cut-off fields B, with the predictions of the differ-
ent approximations, GBT concluded that the most
important cut-off mechanism is due to nonlocal ef-
fects (LP-KAE theory) for elean superconductors
and due to dynamic effects (MT theory} for dirty
supe rconductors.

The present calculations show that the inclusion
of both nonlocal and dynamic effects always leads
to a smaller cutoff B, than the inclusion of only
one of these effects. In particular, in the clean
limit the B, value predicted by the nonlocal dynamic
approximation is smaller than that predicted by the
nonlocal static approximation by roughly a factor
of 3. This reduced B, value is in even better
agreement with the experimental results for the
weak-coupling superconductors In and Nb than the
B, value predicted by the original LP or KAE the-
ory. (The excellent agreement of the LP -KAE
cut-off field with the value found experimentally by
GBT for the strong-coupling superconductor Pb
seems to be accidental. )

Apparently all the B, values, obtained experi-
mentally by GBT for finite impurity concentrations,
are in very good agreement with the local dynamic
approximation (MT}, whereas the nonlocal dynamic
approximation predicts lower values for intermedi-
ate impurity concentrations. This discrepancy re-
quires further investigation, and more experimen-
tal information about the dependence of B, on the
impurity concentration in the region l ~ $0/l~ 5 is
desired. But there is no theoretical reason to
simply omit the nonlocal effects, and moreover,
the nonlocal dynamic approximation is the only one
of the approximations discussed, which works rea-
sonably well in both the clean and the dirty limit.

In the layer-compound case the relations between
the different approximations discussed above re-
main qualitatively unchanged. If one defines B& as
the field value at which the magnetization is de-
pressed to half the Prange value,

3M(B~) = p5Mp ~ (Bq)

(note that B~ = B, in the 3D limit), one obtains, for
each value of bo, qualitatively the same picture as
in Fig. 3 with B, replaced by B~. Thus, also for
layer-compound superconductors the magnetization
is depressed below the P range result, and this
depression is mainly due to nonlocal effects in
clean materials and due to the dynamics of the
fluctuations in dirty ones.

In the following only the results of the nonlocal
dynamic approximation will be discussed in more
detail.

Since, according to Fig. 3, b, /(1+ p) depends
only weakly on the impurity concentration, it seems

10—
O

I.O-
O

~ ~IO
m" IO'

IO'

Bp

IO

p= l6

l I I

IO I.O IO

(m/M, )($„(o)/s)

FIG. 4. Dependence of the scaling fields 8, and B& on
the dimensionality parameter (m/Mj)[&Gg(0)/s] for two
different impurity concentrations.

to be more appropriate to express the magnetic
field in terms of

5QL =
5[ toL( 0) /t]p= vB/GL(0)'/yp

than in terms of 5 itself. Similarly, the dimen-
sionality parameter may be changed to

t,[& (0}/&,]'=( /M, )[& (O)/s]'=-. +
where x reduces in the dirty limit (and for T = T,)
to the dimensionality parameter used by Klemm. "

In the nonlocal dynamic approximation the field
value B~, at which the depression of the magnetiza-
tion below the Prange approximation becomes sub-
stantial, depends only weakly on the dimensionality
parameter r, being roughly twice as large in the
2D limit as in the 3D limit.

This is shown in Fig. 4 for two values of the
impurity concentration, together with the corre-
sponding curves for B„ the field value at which
the scaled magnetization equals one-half of its
zero-field limit. '

The essential information contained in Fig. 4 is
the following. For sufficiently small dimension-
ality parameter, t'-10 ', the scaled magnetization
drops already essentially below its zero-field limit
for field values (B~ 2B,), which are so small that
the Prange approximation is still valid (B,«B~).
This fall is due to dimensionality effects and the
scaling field is independent of the impurity concen-
tration (B,= 3. 7(m/M~) $0/s~). For increasing r,
the fall of the scaled magnetization takes place at
higher field values, where nonlocal and dynamic
effects become more and more important and limit
the scaling field B, by its 3D value.

Figure 5 shows these results in more detail.
The thin solid lines represent the result in the non-
local dynamic approximation for two values of the
impurity concentration and for four different r val-
ues. The thick solid lines refer to the 2D limit
r = 0, and the broken lines indicate the correspond-
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FIG. 5. Field dependence of the scaled magnetization
for two different impurity concentrations (p=1, 16). The
thin lines represent the results for four values of the di-
mensionality parameter, (m/MJ [ANGL{0)/s] =1, 0.1, 10
and 10, and the thick lines represent the corresponding
results in the 2D limit. The broken lines refer to the re-
sults of the Prange approximation.

ing results in the Prange approximation.
In this double-logarithmic plot the 2D Prange re-

sult appears as a straight line with slope —~.
Whereas the curves for x-1 look very similar to
the corresponding curves in the 3D limit (the main
difference being only a scaling factor), the curves
for r-10 show clearly 2D behavior for zB)oL(0)/

0. 002, and the magnetization itself remains
nearly constant while the field increases by one or-
der of magnitude.

Unfortunately, this feature will not show up in the
usual semilogarithmical plot of the scaled magneti-
zation as function of B/B, This ca.n be seen from
Fig. 2, where the solid line represents the scaled
magnetization as function of B/B, in the Prange
approximation, which coincides in the field region
shown with the result of the fu11 calculation for
sufficiently small r (r(10 ', B,«B~) The shap. e
of this curve is apparently not very different from
the results in the 3D limit (actually for r = 100,
d=3, @=2), which are shown in Fig. 2 for five dif-
ferent impurity concentrations, and which scale
with a remarkable accuracy to a single universal
curve. This universal behavior is in agreement
with the experimental results of GBT. But the
shape of the experimental curve, indicated by the
dashed line, does not agree too well with that of
the theoretical curve.

For B & B„ the result of the present calculation
is in good agreement with the theoretical curve ob-
tained by KAEM for clean 3D superconductors (dot-
ted line). But in contrast to the KAE result and in

qualitative agreement with the dirty-limit results
of MT ' and Klemm, ' our 3D curve falls slightly
below the experimental curve for B &B,. The val-
ue of the scaled magnetic field at which the mag-

In the Prange approximation, the sealed mag-
netization defined by Eq. (2. 32) depends on temper-
ature only via 2xo= H~(T)/B [cf. -Eq. (2.41)].
Near the transition curve, the leading term is giv-
en by

VkTMB 4 I e t

1/2
~

I/8
=

4 m (xs ~ l((xs ~ l ~ (')) (3. 1)

netization practically vanishes is in good agree-
ment with the experimental value.

Considered as a function of the dimensionality
parameter r, the shape of the scaled magnetiza-
tion curve does not change monotonically between
the 3D form and the 2D form. The nonlocal and
dynamic corrections, which become substantial
for B-B, , always diminish the result of the
Prange approximation. For r-10 ', the result of
the Prange approximation drops to half its zero-
field limit in the same field region. In this case,
the full calculation leads to a curve which drops
more rapidly, exceeding the 2D curve slightly for
B& B, and falling a little below the 3D curve for

B,. This extreme behavior is indicated in Fig.
2 by the dashed and dotted line.

At the present time, there are no experimental
data on the field dependence of the fluctuation-in-
duced magnetization of layer-compound supercon-
ductors available, which could be compared with
the present results. But we have to expect that
such data, if plotted as in Fig. 2, would lead to a
curve similar to tht. experimental curve for iso-
tropic 3D superconductors, and there is little hope
that the present theory could be checked unambig-
uously, or that the dimensionality parameter r
could be determined from the shaPe of an experi-
mental curve in the semilogarithmical plot of Fig.
2.

On the other hand, the value of the scaling field
B, itself should provide a much better possibility
to measure the dimensionality parameter than the
shape of an experimental curve. From Fig. 4 it
can be seen that the value of B, is determined by
dimensionality rather than nonlocal or dynamic
effects, if x&0. 01, or

M~/m ) 100[)oL(0)/s]

Deviations from the 3D behavior should be ob-
servable if and only if this condition is fulfilled.
On the other hand, if one finds experimentally
B,«0. 1/0/who„(0)', then one has detected dimen-
sionality effects, and one can identify x = 0.28,
&hoL(0)'/go[or (9,/m)s'~ (11.7/s)$0/B~].

B. Temperature dependence of the magnetization for
finite magnetic field
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with y = be/b = (m/M, )ge/vBs S. ince 10
10 Io IO Io 10

2x, +1=- "
~

[T-T,(8)]/8dHc2

dT j p (g)
IO

for T near T,(B), this yields the well-known power
laws for the susceptibility, Z (T —T,(B)] '~' and

y. -[T —T,(B)] ' in the 3D limit and in the 2D limit,
respectively. But, as seen from Eq. (2. 33), the
limiting form, Eq. (3. 1) is the dominant contribu-
tion only if xo+& «1. In the opposite limit, xo+&» 1, Eq. (2. 33) can be evaluated by replacing the
sum by an integral. The result can be written in
the form of Eq. (3. 1) but with & replaced by 2

—', .
The zero-field critical temperature T, corre-

sponds to x0=0. Thus, near T, even the Prange
approximation does not predict a simple power law
behavior of the susceptibility, in either the 3D limit
or the layer compound case.

For finite r, the scaled magnetization approaches
the 3D form near the transition curve, i.e. , for
xo+ ~ «y, but with increasing temperature it is
progressively depressed below the 3D curve and
approaches the 2D form for xo+p»y. The condi-
tion xo+-,' =fy defines a curve

HD(T) = H,2(T) + 2f(m/M, )(ge/vs2), (3. 2)

lo

lo
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-(e-H (v)) =I
T-Tc(B) dH

B c& B dT y Ig)

I

Io

TD —T, m 4L(0)2 (3.3)

in the B-T plane, which separates the region of 2D
behavior from that of 3D behavior. In the zero-
field limit, the condition He(T) = 0 defines a char-
acteristic temperature

FIG. 6. Temperature dependence of the susceptibility
for constant magnetic field. The thin lines show the re-
sults for four values of the dimensionality parameter
(~/MJ) l(Gz (0)/s 1 (10, 1, 10, and 10 ), and for two
values of the impurity concentration (p =1, 16). The
thick lines refer to the 2D limit, and the broken lines to
the results of the Prange approximation.

marking the transition from 2D to 3D behavior.
Equation (3.3) agrees with a formula given pre-
viously by Lawrence and Doniach (f= 1).

The effect of nonlocal and dynamic corrections
is to depress the scaled magnetization progress-
ively below the Prange value as the temperature
increases. Figure 6 demonstrates that for all val-
ues of the dimensionality parameter r this effect
is important in the temperature region T p T,.

The curves shown are for the fixed value

»$«(0) /Pe=0. 0173, which corresponds to
8=0.38 for p, =l and r 100 (3D l-imit). In this
plot the curves for p, = 16 lie a little above those
for p, =1 at high temperatures. For finite r, the

curves approach the 2D form (r=0) at high tem-
peratures and the 3D form as T approaches the
transition temperature T,(8). The power-law
predictions of the Ginzburg-Landau theory are
found to hold only in the small temperature regime
0& IdH, 2/dTI r (e)[T —T,(8))/8-0. 01

Figure 7 shows numerical results for several
values of r, p„and 8 with 8/8, fixed, where 8,
is the impurity-dependent scaling field defined in
Sec. III A. The temperature is measured in units

of (T —T,)I dH~/dTI rgB, which is the linear ap-
proximation of 2xo near T,. In Fig. 7(a) the re-
sults of the present calculation for the 3D limit are
compared with the experimental data on In obtained

by GBT, and with the results of the MT theory,
i.e. , the local dynamic approximation defined pre-
viously, with xo replaced by its linear approxima-
tion near T,. Without this linearization, the re-
sult of the local dynamic approximation falls some-
what below the MT curves, but remains significant-
ly above the result of the full calculation for p=16.
(This indicates that the suppression of high momen-
tum fluctuations is of some importance even in
dirty superconductors. )

Whereas the present results in the clean limit
are in rather good agreement with the experimental
data on In, both for low and high fields, the dirty
limit (p =16) results lie, in agreement with
Klemm's result, noticeably above the In curves,
more for B=5B, and less for B=0.3B,. Whether
this apparent breakdown of universality is a short-
coming of the theories based on Maki's procedure
for the evaluation of frequency sums, or indicates
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a measurable effect, is hard to decide at the mo-
ment, because data on dirty materials in high fields
are not available.

Figure 7(b) shows the calculated results for p= 1
and several values of the dimensionality parameter.
Apparently, the curves depend only weakly on x.
Only the high-field curve for r~ 10 is shifted up-
wards, because here B, is so small that the falloff
is determined only by dimensionality effects
(Prange approximation) and not by the nonlocal and
dynamic corrections, which cause the other curves
to decrease more rapidly.

As was the case for the field dependence, the
temperature dependence of the magnetization is
thus expected to show roughly the same universal
behavior for layer-compound superconductors as
for 3D isotropic superconductors. Therefore, the
shape of the curves in the usual plots of the scaled
magnetization versus reduced field or temperature
seems to be not appropriate to discover dimension-
ality effects. Moreover, only low-field measure-
ments are available for layer compounds at pres-
ent, and 8, is not known experimentally.

C. Zero-field susceptibility

In the limit of vanishing magnetic field, Eq. (2. 32) yields

g~loc & g 2 ~ 1/2
lim — — — —= Z ~b[F(x„, b ) —E(x„+z„, b )],VBkT 2 e M~

with x„=x„b, z„= z„b, [x„and z„are defined below Eq. (2. 32}]and

F(», y) =r'~[»(x+y)] "' .

(S.4)

(3.5)

(3.6)

Equation (2. 35) changes in the same way, with

1 z+x+y 1 z+-,'y+[z(z+y)]'" 2

4 * —* * —* '*~ lv (*(* HP" (*( y)P' ~ (*(x ))1'"]
From Eq. (2. 41) it follows that xo= —(I e I/2K'))OH„(T). Near T, this may be expressed in terms of the
Ginzburg-Landau coherence length:

4 )GL0 Tc 4 )GL T

Thus, the Prange approximation for the zero-field susceptibility near T, leads to

(3.7)

This formula has been obtained previously by
Lawrence and Doniach, ' and it reduces to Schmid's'
results for three and for two dimensions in the lim-
it s-0 and in the limit M, /m- ~, respectively.

In Fig. 8(a) numerical results for the suscepti-
bility based on the present theory are compared
with the corresponding data given by Klemm. " The
dirty-limit curve (p = 16) decreases more slowly
with increasing temperature than the curve for
p = 1. Thus, as for finite magnetic field, the pres-
ent theory predicts no strictly universal behavior
of the temperature dependence of the zero-field
susceptibility in the 3D limit.

Figure 8(b) shows the results for p= 1, and sev-
eral values of the dimensionality parameter x. For
x» 1, the curves coincide with that of the 3D limit,
and also the curves for r = Q. 1 and r = 0. 01 differ
only slightly from this limiting form. Experimen-
tal results by PBS on TaS, (pyridine), &, single-
phase crystals are also indicated in Fig. 8(b). The
material parameters ~ yield r~ 0. 15, so that nearly

3D behavior must be expected for this material.
Figure 9 shows the numerical results for )(0 (for

p = 1 and p = 16}together with the predictions of the
Lawrence-Doniach formula, Eq. (3.7), for several
values of the dimensionality parameter x in the
temperature region 1.002 & T/T, & 2. Nonlocal and

dynamic effects depress the curves with increasing
temperature progressively below the curves given
by Eq. (3. 7).

This depression sets in at lower temperatures
for small impurity concentration p„and at higher
temperatures for larger p„and it is more effective
in the 3D limit than in the nearly 2D case. For
r &0. 1 the full calculation yields only a very weak
dependence of the curves on x, although for r =0. 1
the result of the "ormula (3.7) falls already re-
markably below its SD limit for T~1.2T,. (For
r =0. 01, the "full" curves start falling essentially
below their SD limit at T = 1.05T,. )

For r~ Q. 001 the curves show 2D behavior in the
region T &1.01T„ i.e. , curves with different r but
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FIG. 7. Temperature dependence of tthe scaled mag-
netization for constant magnetic fie' ld (a) Three-dimen-

1 limit: The numerical results for three values ofslona lml
the impurity concentration [p=0 (~I p= x, n

(+)] are shown together with experimen tal results of GBT
{thick broken line) and the predictions of es of the MT theory
{thin broken line) and of the Prange approximation (solid

d f four values of the dimensionality parameter
(m/~ ) [)GL(0)/s] [10, i.e. , 30 limit: solid line; 1:(m J10:broken line', 10:{+)].

th arne p value coincide if they are multipliedes
Furthermore, below T = 1.1T, theere is

ce t'balieta remarkably large region, where the suscep x i i y
varies essentially as (T —,) '.2

Such a Curie-Weiss-type behavior of the suscep-
tibility is predicted by the Lawrence-e-Doniach for-
mula for ~(T —T )/T ~50r But the. theory shows
that the inverse susceptibility, varying like
(T —T )' ' near T„ increases much faster with in-C CP

T . Thus,creasing emn temperature for T well above, . us,
even in the 3D limit, there may occur a tempera-
ture region e owb 1 2T where the inverse suscep-
tibility varies nearly linear wit. .'t- T —T.

Figure 9 shows that the extent and the position of
this Curie-Weiss-like region depennd on the dimen-

al't parameter r and the impurity concentra-
tion p, as we . or p, =ll For p =1, it is located rough y

t 0. 1&(T —T,)/T, ~0.3 for r=0. 1, and it
moves to lower temperatures with deere g
Since for larger p, e rth result of the full calculation
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FIG. 8. Zero-field susceptibility. (a) Three-dimen-
sional 1imi:11' t: The results for two values of.the impurity
concentration [p=1:{)C); p =16:(+)] are shown together

and the theoreticalth th xperimental curve (dashed an e eor
The resultcurve (dash-dot) of Klemm's paper {Ref. 13). The

f the Schmid theory is also indicated. (b) Layer com-o e c m
ounds: The curves shown refer to three valuess of the

dimensionality parameter (y = 100, y =
poun s: e

=10 3 and y=10 ).
Also indicated are the results for y ==0.1(x) and y =10

suits of PBS(+). The circles represent experimental resu t
(Ref. 2) on Ta82 (pyridine)2(2 (Ref. 25).

comes closer ot th t of the Lawrence-Doniach ap-
proxima &on,t' the extent of the Curie-Weiss range
increases wx incre'th '

asing impurity concentration,
and for larger p, z s p't position is shifted towards
higher temperatures.

For r~ 0.01, the present theory indicates that
th t erature dependence of the zezero-field sus-

rm and thatceptibility should differ from the 3D form, an
the value of r can be estimated from the tempera-
ture TD, at which' h y ~T —T )' is depressed to one-
half of its limit at T,.

The qualitative predictions of the present theory
seem to be in agreement with the experimental re-

data on thesuits. The apparent similarity of the da a
3D supercon uc or3D onductor Pb-5/0 Tl with those on the layer

res withcompound TaS2(pyridine)~~2 for temperatures wx

(T —T,)/T, ~ 0.3, which has been observed by
Beasley and reported in Klemm's paper, can be
understood if r~0. 1. Reasonable values for the

ed y'= 0. 15. More-terial parameters yield indeed y =

if one evaluates the incorrect 2D formover, one ev
T =0. 05Eq. (3. 7) for r=0. 15 and for (T —T,)

(whichiswe wx in11 ithin the Curie-Weiss-like regime
h PBS suits) the result for the suscepti i ity

appears to be larger than the result of the fu ca-
culation by a factor 6. 4. This resolves the dis-
crepancy mentioned 2n Re . 2. Furthermore, PBS
found that mixed-phase samples showed a Curie-
Weiss-like behavior over a larger temperature in-
terval than single-phase sample s. This would be
consisten i mmet f d-phase samples are dirtier than
single -phase samples.
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equation (2. 4), is diagonal in the La.ndau represen-
tation,

G,(r, t; r', t)=ZQ~(r)G, (n; t —t')P ~(r'), (A2)

where

p (r ) = (const. )e'"'~ '~'y„(x -X)
t

O

Xm
oO )

yg G5
D g)

I

02

O. l

Q002 0.005 O.OI 0.02 0.05 Gl 0.2

c)

FIG. 9. Zero-field susceptibility for two values of the
impurity concentration (p=1: solid lines, p =16: dashed
lines) and several values of the dimensionality parameter
r. Also shown is the prediction of the Lawrence-Doniach
formula (dash-dot lines), which for +=100 coincides with
the 3D Schmid result. The circles indicate experimental
results of PBS. (Ref. 2}.

Apart from the fact that the present theory in the
3D limit yields values for the scaling fields B„
which are only in mediocre agreement with experi-
mental values for intermediate impurity concentra-
tions, the main difference between theoretical and

experimental results occurs in the temperature
dependence of the susceptibility. Whereas the cal-
culated susceptibility, especially in the 3D dirty
limit decreases relatively slowly with increasing
temperature even after Maki's' "zero-point term"
has been subtracted, the measured susceptibility
is forced to vanish at a temperature slightly above
2T, by the subtraction procedure used by the ex-
pe rimentalists.

with

L((x x')'. (y y)', ~z z'~,. t t )

(A4)

are the eigenfunctions of a particle with charge
—

I e I in the vector potential A(r ) = (0, Bx, 0). The
quantum numbers are n =(n, k„= X/R-, k,) with
R=(lelB/kc) ~z the magnetic length. Further-
more, G,(o)=G,(n, k,) is known to be independent
of k, .

To prove Eq. (A2), one uses the symmetry prop-
erties of the Hamiltonian: rotations around the B
axis and arbitrary translations change the Ha?nil-
tonian in the same way as certain gauge transfor-
mations of the vector potential do.

Thus, the Hamiltonian is invariant under such a
symmetry transformation and a suitable subsequent
gauge transformation. From this it is easily seen
that the Green's function has the symmetry prop-
erty

G(r, t; r', t ) =exp[-i(~e ~/2ck)(r —r') ~ A(r+ r')J

&G((x —x')'+(y —y')', iz —z' i; t —t'),
(As)

which is sufficient" to prove the diagonality stated
in Eq. (A2). [A(r) is a linear function of its argu-
ment r. f

Similarly, the pair propagator, Eq. (2. 6), satis-
fies

L(r, t; r ', t ') = exp[-i(
~

e /ch)(r —r ') ~ A(r+ r ')]

xL((x —x ) ~(y —y )',
~

z —z'
~; t —t ),

ACKNOWLEDGMENTS
=L[z(r —r'), t; —z(r —r '), t'J . (A6)

G,(r, t; r ', t') = —i T(P,(r, t)g~t(r ', t ')), (A l)

It is a pleasure to thank Professor S. Doniach
for suggesting the subject of this work and for
many stimulating and helpful discussions during its
progress. I also wish to thank him and Professor
W. Harrison for their obliging and generous hos-
pitality. Furthermore, I appreciate gratefully a
scholarship granted by the Deutsche Forschungsge-
meinschaft and the hospitality extended to me by
the Department of Applied Physics, Stanford Uni-
versity, Stanford, California.

APPENDIX A

It is well known" that the one-particle Green's
function

Therefore, the pair propagator is diagonal in the
Landau representation for a doubly charged parti-
cle:

L(r, t; r', t')=Z (r)L (t —t')4'*(r'), (A6)

where @ (r) is obtained from Q (r ) by replacing e
by 2e, and where I. =L,„~ is independent of k, .

In the presence of randomly located impurities,
these arguments remain valid for the impurity av-
erage of the propagators, if the impurity potential
is cylindrical symmetric about the magnetic field
direction.

In the ladder approximation, the pair propagator
is determined by the equation'

corresponding to the 3D limit of the Hamiltonian L(i, 2) = ll(l, 2) t~ f dSL(i—, S)fl(S, 2), {A7)
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where

1=(r&, t,), f d3= f '
dtz f

and

II(It, 2) = G,(r|, t,; rz, tz)G, (r&, t&, rz, tz) (AS)

O(B ). Since for small B the main contributions
come from large n, we can use the asymptotic for-
mula [see Ref. 10, Eq. (2. 34)]

due "~ L„(u)g(u)

(A 9}

with

with G the free single-particle Green's functions
(X = 0).

In the + representation this simplifies to

L (l) = II (l) —tXL (l)II (l),

8 4 8
=g(u)+2 @g(u)+ —,u, g(u)+

~Q

to obtain, with Eqs. (2. 8) and (2. 11),

m'B 8 4
II~ =II(y, k,)+ — 2 z +

3 y s zg
y ey 3 ey

14=4n+2

II (l)= —Z@~(r)GP(r, r'; f„)

x G', (r, r '; g. .. ,)4.(r ') (A 10) where

xii(y, k )+ )
y = (4n+2) / R

(Bl)

This can be written

"—i
5II= dX —ZZL (l),

0 ~ 1 e
(A12)

and leads, with Eq. (A9), immediately to Eq. (2. 7).
Of course, the considerations of this Appendix ap-
ply to the case of a layer compound in a homoge-
neous magnetic field perpendicular to the layer
planes as well as to the three-dimensional limit,
since they depend only on the cylindrical symmetry
of the problem.

APPENDIX B

To calculate the susceptibility for small mag-
netic field B in the clean limit, we evaluate the
sum over Landau quantum numbers n in the free-
energy forn. ula, Eq. (2. 7), by means of the Euler-
MacLaurin formula and neglect terms of the order

and f, = p + t(21 + I)w/P, where Fourie r coefficients
with respect to the imaginary time dependence
were taken as usual. In the presence of impurities,
Eq. (A10) has to be replaced by Eqs. (2. 8) and

(2. 9). This is the result of the usual perturbation
theory, taking into account only "s-wave" scatter-
ing (lifetime independent of quantum numbers) and
neglecting all diagrams which contain any cross-
ing impurity and/or interaction lines.

The contributions of pair fluctuations to the
grand canonical potential, Eq. (2. 5), are easily
expressed in terms of the pair propagator:

5fl = —(H&) = dX L(r, 0; r, 0') . (All)

11(k„+k„k,) = kT Z Q(k„+ k„k,)

x y[(Slay)»(y, k„v)]'.
[1 Xll(y, k v)]'

This formula can also be obtained from Eq. (2. 31),
using first Eq. (2. 14), then the local approxima-
tion Eq. (2. 13), and, finally, the Euler-MacLaurin
formula to evaluate the n sum.

In the 3D isotropic case Il(kz+ k„k,) = II(k ), and
Eq. (B2) can be simplified:

8kT g
" k [(8/Sk )II(k; v)]'

9yz [X ' —II(k' v)]' (B3)

This formula has been obtained by Aslamazov and
Larkin within their diagrammatic approach. '
To evaluate Eq. (B2), we proceed as in Eqs.
(2. 23)-(2. 26), with Eq. (2. 24) replaced by

f(a!+k'„k., I, v) '=»+I+
I vl

1 z(k)/(llz/2m/)
d 2l+ I+ I vl

(B4)

the limit for vanishing magnetic field and vanish-
ing impurity concentration. e(k) is given by Eq.
(2. 18). We obtain

is the zero-field form [cf. Eqs. (2. 8) and (2. 12)].
With Eq. (Bl) the evaluation of the free energy [ne-
glecting terms O(B')] is straightforward, although
somewhat tedious. The result for the zero-field
susceptibility can be written

1 en 1 kT

T 1+ Ivl i e(k)1 —Xll(k„+ k„k v) = MU(p) ln —+Ref +—, z —g( —,)
C

dk' 2mtp

=VT(p} ln —+ —ln (1+ lvl)'+ —z'g(3) z z ~

&c m p
(B5)
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With this result, and in the effective-mass approximation (d = 3), Eq. (B2) can be written in the form of
Eq. (83) and finally simplified to

3D 1 [ 7 g(3)]1/3 ~0

0 V=~ 30

00 X4

[(1+ I vl) +x ] (In(T/T, )+31n[(I+ I vl ) +x ]]. (Bs)

Since kT(3=hv1, /2w, independent of T, the temper-
ature dependence occurs only via ln(T/T, }. For T
close to T„Eq. (Bs}can be evaluated asymptoti-
cally, and the leading term (v = 0) yields just the
Schmid result [cf. Eq. (3.7)]. With increasing T,

decreases monotonically and approaches for
large T the "zero-point" term, which is obtained
from Eq. (B6) by replacing g„by 2f~" dv. Since the
main contributions to the x integral come from the
region 1+1vl ~x~ 3(1+ I vl), the x integral can be
done for large ln(T/T, ), leaving

1 a33r 1 T
dv — ln —+ ln(1+ v) + 3 lnC

16 1+v T,

3' T 1
ln —+ 2 lnC

16 T, (B7)

2 j'd.
0

CO X4

(7 /T, —1+v+ —'x3)3

=3&V2 + v0

(BS)
where v0 is of the order of unity. We see that the
zero-point contribution is finite at T, and that its
temperature dependence is much weaker than that
of the dominant (v = 0) term, which diverges like
(T —T,} '~3 at T,.

To include the effect of finite magnetic field, we
may replace e(k) in Eq. (B5) by i(k)+ M /(m)3)
[cf. Eq. (2. 24)], which yields H,3(T)+H~(0)[I —(T/
T,) ] with H,3(0) = dpo/ [7vf(3)$0,] [cf. remarks be-
low Eq. (2.24)]. Inserting this in the Euler-Mac-
Laurin expansion of the susceptibility, we find that

where C =5. This is essentially the high-tempera-
ture behavior of the 3D zero-field susceptibility
obtained by Aslamazov and Larkin. The ln (T/T, )
behavior should, however, not be taken too seri-
ously. It was obtained for lnT/T, » 1, and is due
to high-frequency contributions [the integral in Eq.
(B7) converges poorly]. At these high tempera-
tures neither the neglect of the frequency cutoff nor
the Gorkov theory itself are justified. Neverthe-
less, Eq. (86}clearly shows the weak logarithmic
temperature dependence of the susceptibility well
above T,.

To estimate the magnitude of the zero-point
term for T close to T„we may approximate the
integral over v and x roughly by

l

the correction terms are of order (B/H, 3(0))(T,/T) .
Thus, for B «H, 3(0) the susceptibility is given by
Eq. (B6) with T, replaced by T,(B). We can use
this result to estimate the effect of the "zero-
point" term on the scaling field B,. KAE obtain
f1, = 3B,/7f(3)H, 3(0) = 0. 05 or B, = 0. 14H,3(0). Then,
with (T,(B,) —T,)/T, =0. 1 the contribution of the
zero-point term to 5M(T„B)/MB for B=B, is of the
order of 10% to 2IPo of the KAE result. Subtrac-
tion of the zero-point term will thus reduce the
scaling field noticeably, in agreement with our nu-
merical result.

For finite impurity concentration, Eqs. (B2}and
(B5) must be modified and the temperature depen-
dence of the susceptibility becomes less obvious.
It can be shown, however, that for finite impurity
concentration the temperature dependence of the
zero-point term is weaker than in the clean limit.
Thus, the MT-subtraction procedure is well justi-
fied for isotropic 3D superconductors with arbi-
trary impurity concentration.

In the 2D limit, the zero-point contribution to the
susceptibility calculated from Eqs. (82) and (B5)
diverges like ln[T, /(T —T,)]. This variation with
temperature is still weak as compared with the
(T —T,) 1 divergence of the leading Schmid term.
The high temperature variation of susceptibility
and zero point term is obtained as -(T,/T)ln 3(T/
T,) for lnT/T, »1, in agreement with Ref. 26.
Thus, in the 2D limit it depends on the experimen-
tal situation whether the subtraction of the zero
point term is feasible. If a temperature dependent
fluctuation susceptibility can be resolved experi-
mentally only for temperatures close to T„as,
e.g. , in the layer compound measurements of Ref.
2, the subtraction is justified. But if the fluctuation
susceptibility could be measured accurately up to
temperatures well above T„say, T &2T care
must be taken.

Our model for layered compounds shows an in-
termediate behavior, being 3D near T, and chang-
ing over to a 2D behavior at sufficiently high tem-
peratures. The temperature dependence of the
zero-point term is weaker for finite impurity con-
centration than in the clean limit.

Thus the MT-subtraction procedure apparently
is a useful hypothesis in order to compare theory
and experimental results on both layered and iso-
tropic superconductors with arbitrary concentra-
tion of impurities.



2962 ROLF R. GERHARDTS

*Supported by the Deutsche Forschungsgemeinschaft.
Some aspects of this work have been supported by U. S.
Army Research Office, Durham, N. C.

On leave of absence from Institut fur Theoretische Physik
der Universitat zu Koln, 5 Koln, Germany.

'T. H. Geballe, A. Menth, F. J. Di Salvo, and F. B.
Gamble, Phys. Rev. Lett. 27, 314 (1971).

D. E. Prober, M. R. Beasley, and R. E. Schwall, Pro-
ceedings of the Thirteenth International Conference on
Lose Temperature Physics, Boulder, Colorado, 1972,
edited by R. H. Kropschot and K. D. Timmerhaus {Uni-
versity of Colorado Press, Boulder, Colo. , 1973).

3W. E. Lawrence and S. Doniach (unpublished).
4A. Schmid, Phys. Rev. 180, 527 (1969).
"H. Schmidt, Z. Phys. 216, 336 (1968).
J. P. Gollub, M. R. Beasley, and M. Tinkham, Phys.
Rev. Lett. 25, 1646 (1970); J. P. Gollub, M. R. Beas-
ley, R. Callarotti, and M. Tinkharn, Phys. Rev. B 7,
3039 (1973).

R. E. Prange, Phys. Rev. B 1, 2349 (1970).
B. P. Patton, V. Ambegaokar, and J. W. Wilkins, Solid
State Commun. 7, 1287 (1969).

P. A. Lee and M. G. Payne, Phys. Rev. Lett. 26, 1537
(1971); Phys. Rev. B 5, 923 (1972).
J. Kurkijarvi, V. Ambegaokar, and G. Eilenberger,
Phys. Rev. B 5, 868 (1972).

'K. Maki and H. Takayama, J. Low Temp. Phys. 5,
313 (1971).
%. E. Lawrence and S. Doniach, Proceedings of the
Tuelfth International Conference on Lose Temperature
Physics, Kyoto, Japan, 1970 (Academic Press of
Japan, Kyoto, 1971), p. 361.
R. A. Klemm, M. R. Beasley, and A. L. Luther,
Phys. Rev. B 8, 5072 (1973).

4See V. Ambegaokar, in Superconductivity, edited by
R. D. Parks (Marcel Dekker, New York, 1969), p. 259.
J. Sher and T. Holstein, Phys. Rev. 148, 598 (1966);
H. Keiter, Z. Phys. 198, 215 (1967).

~ K. Maki, Phys. Rev. Lett. 30, 648 (1973).
'S. Doniach and O. Penrose, Bull. Am. Phys. Soc. 18,

385 (1973).
T. F. Smith, R. N. Shelton, and R. E. Schwall, Bull.
Am. Phys. Soc. ~18 385 (1973); T. H. Geballe (pri-
vate communication) .
See N. R. Werthamer, in Ref. 14.

2 Klemm uses the notation 2b/bp=1/0.
The B, curves show a maximum near r = 0.1, where the
crossover from 2D to 3D behavior occurs. Such a
slight enhancement above the 3D value was also obtained
in the local dynamic approximation and is, therefore,
not a typical effect of nonlocal electrodynamics.
Klemm's results apparently do not show this behavior.
The numerical factor f is of the order of unity. For
f= 6, Hp(T&) is the field value, at which the scaled mag-
netization in Prange approximation is depressed due to
dimensionality effects to half its 3D value.

3In the numerical calculations the temperature depen-
dence of the cut-off parameter Q, defined in Eq. (2.29),
waa approximated by Q(T) =Q(TPg'(k —&(T)/4xkT)/g'(k).
In the temperature range shown in Fig. 7 the effect of
this temperature dependence was practically of no im-
portance.
Recently, the reliability of the measurement by Geballe
et a l. (Ref. 1) has been questioned. [T. H. Geballe
(private communication); cf. also Ref. 2].
The data are taken from the g' vs T curve for single-
phase samples at H& =3 Oe (cf. Ref. 2). The material
parameters are assumed to be T~=3.43'K, s=12 A,
)GL(0) =190 A. , and (m/MJ'" =O. 023. The latter value
is chosen in agreement with recent experiment [R. E.
Schwall (private communication)), but it may be only an
upper limit because of a remaining uncertainty in the
value of d H~& /dT. Then. , th0 resulting dimensionality
parameter is r 0.15.
L. G. Aslamazov and A. I. Larkin, in Proceedings of
the U. S.-U. S. S, R. Symposium on Current Topics in
the Theory of Condensed Matter, University of Califor-
nia, Berkeley, California, 1973, (unpublished).

27L. G. Aslamazov and A. I. Larkin, Fiz. Tverd. Tela
10, 1104 (1968) [Soviet Phys. -Solid State 10, 875 (1968)].


