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A semi-microscopic scaling-field theory is developed for crossover phenomena near critical and
tricritical points. The theory is based on a renorm~b~etion-group description of a model with two
competing fixed points (such as a critical and a tricritical fixed point) in terms of scaling fields. The
coupled nonlinear difFerential equations for scaling fields are truncated such as to preserve the physics
essential for crossover phenomena. The approach allows the explicit calculation of thermodynamic
functions for (i) tricritical systems and {ii) critical systems with an irrelevant scaling 6eld. %'e obtain,
for example„an explicit expression for the scaling function of the susceptibility, which describes the
crossover from the tricritical to the critical region. The idea of "flow diagrams" in the scaling-field space
is used to characterize crossover phenomena globally in the whole critical region. The concept of
asymptotic critical exponents is generalized and efFective critical exponents are introduced as logarithmic
derivatives of thermodynamic quantities with respect to experimental fields and scaling fields,

respectively. Sy using the method of effective exponents the size of the crossover region between

regions of coherent asymptotic critical behavior is estimated. For the susceptibility, the width of the
crossover region in decades of the efFective temperature variable is roughly equal to the inverse of the
crossover exponent. In the case of a critical system with a slow transient the asymptotic critical
exponent is only reached extremely close to the critical point (unless the amplitude of the transient
vanishes). It might then be impossible to determine the asymptotic exponent experimentally or by
conventional series-expansion techniques, and an analysis of the data in terms of efFective exponents is
the alternative. The scaling-field approach is applied to three systems with crossover phenomena: (i) the
model for tricritical systems with molecular-6eld tricritical exponents, {ii) the Ashkin-Teller model in

three dimensions, and (iii) a model for phase transitions with Fisher exponent renormalization due to a
constraint.

I. INTRODUCTION

Critical exponents characterize the way in which

various physical quantities diverge to infinity or
converge to zero as the temperature, or other
variable, approaches its critical-point value. The
critical exponent X of a function f(p)varying . as

when p, approaches zero from above is defined'

as & = lim„o. {Inf(p,)/In p). This definition has two

disadvantages. (i) It carries the hidden question
in it, both experimentally and theoretically, of the
size of the critical region in which one will be able
to see the true asymptotic value of the exponent.
(ii) It cannot be easily applied to phase transitions
with crossover phenomena, where in different
areas of the critical region different "asymptotic"
forms govern the approach to criticality. In this
article we introduce the concept of effective crit
ical exPonents. They provide a loca/ measure for
the degree of singularity of physical quantities in
the critical region. The effective critical exponent
of a function f(p) is defined by the logarithmic de-
rivative &„,(p)=dlnf(p)/ding. . It coincides in the
limit p, -0' with the asymPtotic critical exponent,
i. e. , & = lim„o+ (x„,(p, )). Effective critical expo-
nents as functions of the number of terms in series
expansions are also discussed.

The second major purpose of this article is to
develop further the scaling field appr-oach to crit-
ical phenomena by the authors. This method is
used to study the behavior of effective critical ex-
ponents, and to calculate scaling functions for sys-
tems with crossover phenomena. The investiga-
tions are based on a renormalization-group
model with two fixed points, such as a tricritical
fixed point and a critical fixed point, that is de-
fined by a set of differential equations for three
"scaling fields. *' The scaling fields considered
depend on three experimental fields: the tempera-
ture, a nonordering field, and an ordering field.
The model describes (a) the competition between
the tricritical and the critical behavior in the
neighborhood of a critical line which terminates in
a tricritical point and (b) the effects of an irrele-
vant field (or operator) on the critical behavior
near a critical point. %e apply the model to three
systems with crossover phenomena: (i) a tricriti-
cal model with molecular-field tricritical expo-
nents, (ii) the Ashkin- Teller model in three di-
mensions, " "and (iii) a model for phase transi-
tions with Fisher exponent renormalization due to
a constraint. The differential equations for the
scaling fields of the model are truncated such as
to preserve the essential physics of crossover



E F FE C TIVE C RITICAL AND TRIC RITICAL EXPONE NTS

phenomena. The asymptotic critical exponents en-
tering these equations as parameters are assumed
to be known. The advantage of defining models in
terms of scaling-field equations is that they can be
kept sufficiently simple to be exactly soluble, but
still be made sophisticated enough to include non-
linear features like crossover phenomena, '
which so far could not be studied microscopically.
A derivation of the differential equations for scal-
iug fields starting from a Hamiltonian definition of
the model is considered a separate problem that
is not discussed here. The renormalization-group
theory provides, in a general form, the relation
between the Hamiltonian approach and the scaling-
field approach. ' The elements of the renormal-
ization-group description of critical phenomena
and the concept of scaling fields are presented in
Sec. II. In Sec. III nonlinear sealing-field equa-
tions defining the models discussed in this article
are introduced and briefly analyzed. These equa-
tions constitute the basis for the investigations in
the following sections.

In Sec. IV we calculate for this model thermo-
dynamic functions near criticality. Their scaling
properties are found to agree with the predictions
of our scaling theory for crossover phenomena,
(including the double-scaling feature)' ' More-
over, explicit expressions for the scaling functions
are obtained. Also in Sec. IV "flow diagrams" in
the scaling-field space representing the develop-
ment of states generated by the renormalization-
group equations are discussed. Flow diagrams
give a clear over-all picture of crossover phe-
nomena in the whole critical region. Then, in Sec.
V, effective critical exponents are derived that
depend on the asymptotic critical exponents and
the scaling fields (and via those on the experimen-
tal fields). It is found that the width of the cross-
over region separating tricritical and critical-line
regimes depends crucially on the value of the
crossover exponent f. ' For the susceptibility
the crossover occurs gradually over about I/&f&

decades, in units of the relative distance to the
critica1 line. For a tricritical system with molec-
ular-field-like tricritical exponentss' the width of
the crossover region is of the order of 10 . For
the three-dimensional Ashkin-Teller model, '
which exhibits a tricritical point with Ising-like
tricritical exponents, the width is of the order of
10 . This result shines new light on the observ-
ability of crossover phenomena and the universal-
ity principle. Another group of crossover phe-
nomena occurs in phase transitions subject to a
constraint which show the Fisher exponent re-
normalization. ' In Sec. VI it is shown that this
crossover is also characterized by the set of dif-
ferential equations defined in Sec. III. Therefore,
all results of Secs. IV and V apply to this case,

of course, subject to a redefinition of the critical
exponents and scaling fields. The width of the re-
gion over which the Fisher exponent renormaliza-
tion occurs is, for the decorated Ising model, ' '
of the order of 10 .

Series-expansion techniques have played an im-
portant role for estimating critical exponents. '
For systems with crossover phenomena (with small
P) and systems with slow transients, it is difficult
to extrapolate relatively short series to obtain the
true asymptotic exponents. To investigate this
question we discuss in Sec. VII effective critical
exponents as functions of the number n.of terms
included in series expansions. We find a weak de-
pendence of the effective critical exponents on the
number of terms in the form of a power law with
an exponent given roughly by the crossover expo-
nent. For the three-dimensional Ashkin- Teller
model, for example, the difference between the
effective and the asymptotic critical exponent de-
cays like n . This explains the difficulties re-
cently encountered in a series-expansion test" of
the universality principle for this model.

The scaling-field method provides a simple and
powerful technique for studying nonlinear effects in
the theory of critical phenomena. In particular,
the approach allows the extension of the description
of critical phenomena into the whole critical region.
We emphasize that we have solved only the most
simplified example of a set of scaling-field equa-
tions describing the competition between different
fixed points (i. e. , different critical instabilities).
A number of modifications, some of which are de-
scribed in Secs. IIIC, VIIC, and Appendix 8, are
needed to describe realistic systems with cross-
over phenomena. However, we would like to sup-
pose that our approach has succeeded in including
some of the essential physics of crossover phe-
nomena.

II. UNIFIED SCALING APPROACH TO CRITICAL
PHENOMENA

The renormalization-group procedure ' ' leads
to a microscopic definition of the variables in which
thermodynamic quantities near criticality are ho-
mogeneous. ' '7 These scaling variables, which
are related to geometrical features of the phase
diagram of the system, are called scaling fields
[compare Eqs. (2. 3) and (2. 4) belowj ' 7' The
scaling-field method, as developed in this and a
previous publication, allows one to analyze the
form of thermodynamic quantities near criticality
and to evaluate scaling functions in terms of the
scaling fields. In this section we review briefly
the renormalization-group procedure and the scal-
ing-field method. The following sections will show
the scaling-field approach "at work. " (Further de-
tails on this method can be found in Refs. 4 and V. )
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The Wilson renormalization-group procedure de-
fines a sequence of effective Hamiltonians H, . We

denote the renormalization-group operation that is
related to a change in the length scale by a factor
e' by R'. The sequence of effective Hamiltonians
H f is obtained by applying the transformation R ' to
the initial Hamiltonian Ho,

II)=R'Ho (2. 1)

H, =IP'+g p;(l)Q, . (2. 3)

Then the thermodynamic potential F Per unit vol-
ume satisfies the generalized scaling relation

F(u&(0))=e "Ffu, (f))

(The scale factor e ' is a. consequence of the ex-
tension of the d-dimensional reference volume un-
der the scale transformation. F also includes a
factor P = 1/ksT. ) For the description of critical
phenomena it is useful to choose the Q, such that
the equations of motion for the p& decouple in linear
order in p, „

"'I ' =X,P, (f)+0(P', ) . (2. 5)

With this approximation Eq. (2. 3) yields

& H, =H*+ Z p, (0) e"'Q, +O(p', ), (2. 5)

and Eq. (2.4) assumes in this asymptotic critical
region the conventional scaling form [however,
with the usual scaling variables v = (T —T,)/T„
etc. , replaced by the "fields" p, ,)]. The scaling
indices y& are related to the ordinary asymptotic
critical exponents. The fields p, , (l) are termed
scaling fields and the conjugate densities Q, scaling
densities. In the following we adopt the convention
of denoting the initial scaling fields p, (f = 0) by p;.

All information about the critical behavior of the

(Implicit in Ho is the factor P = I/ksT. ) The opera-
tion R' is defined to leave the partition function of
the system invariant. Depending on the choice of
R' the operation has group or semigroup proper-
ties, but, in any case, it satisfies R'R' =R"'
for positive l and l . If the initial Harniltonian is
the critical Hamiltonian Ho, then the limit

lxmHi, c=lxmR Ho, =H* (2. 2)
ge ~ 7m gy

tends to a fixed-paint Hamiltonian H*. Each crit-
ical Hamiltonian is associated with a fixed point.
The basic idea of the renormalization-group ap-
proach is that at criticality the effective Hamilto-
nians H, , become asymptotically invariant under
changes of the length scale of the system.

Let us describe the deviations of H, from the
fixed point EP' by an expansion into a complete set
of operators Q„

system is contained in the scaling fields. The
scaling relation (2. 4) connects the values of E in
the two states (p, (0)) and (p&(l)). This fact is used
to evaluate effective critical exponents and scaling
functions in the following sections. The idea is to
choose the state (p, , (I)) outside the critical region,
where one can calculate F by conventiooal tech-
niques, and calculate F in the critical region at
fy, &(0)f by determining the scale parameter I that
connects the two states. The idea applies analo-
gously to the evaluation of any other thermody-
namic quantity.

In general one has to consider nonlinear contri-
butions to the derivatives of the scaling fields p, , (l)
in Eq. (2. 5) and, therefore, to start from the set
of coupled scaling-field equations~3

1+ —5 Q(yI pg(f ) jig(l) + ~ ~ ~

2g ~ A

(2. 7)

The nonlinear terms lead to a number of correc-
tions to the asymptotic power-law behavior near
critical points. The most prominent examples are
logarithmic singularities. (In particular, if the
critical exponent 2 —a of the free energy is an in-
teger an additional logarithmic factor appears in
the specific heat. Even noninteger powers of log-
arithmic corrections occur at critical points in
four dimensions and tricritical points in three di-
mensions, where certain other exponent relations
are satisfied. ') Other effects due to the coupling
of irrelevant and relevant scaling fields give rise
to additive corrections to the asymptotically dom-
inant critical behavior ("confluent singularities" ),
and are further discussed in Sec. IV. Quite gen-
erally, the relative importance of the linear term
and the nonlinear terms in Eq. (2. 7) determines
"where" in the critical region the crossover be-
tween apparently different critical behavior occurs.

If the critical behavior of a system is deter-
minedby several fixed points then the quadratic terms
in the scaling-field equations of motion (2. 7) de-
scribe the effects of their competition in leading
order. (This statement becomes incorrect when
the fixed points are not close to each other. )
Therefore, we may use equations of the general
form (2. 7) to analyze crossover phenomena due to
the competition between two fixed points as they
occur in weakly anisotropic systems' (spin anisot-
ropy, lattice anisotropy, etc. ), and in systems
near tricritical points. ' In the following we define
a model for systems with competing critical and
tricritical phase transitions in terms of differen-
tial equations for scaling fields. 8'e a@ill assume
that all asymptotic critical exponents are knoN)n

and construct the simplest model exhibiting cross-
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over phenomena for these given exponents. The

latter assumption is insignificant for our purposes.
The essential point is that we are interested in the
values of the effective critical exponents ~elative
to the asymptotic ones, and in the explicit form of
the scaling functions for systems with crossover
phenomena.

III. MODEL

=0 p =03 p= 0.7

In this section we formulate in terms of differ-
ential equations for scaling fields a model for a
system with competing critical and tricritical
phas e transitions.

A. Scaling-field equations

%e assume that the thermodynamic state of the
model system can be characterized by a set of
three scaling fields (it„ph, lth). ' Here lth de-
notes the symmetry-breaking field (ordering field)
which is conjugate to the order parameter. The
field p, , describes the departure of the state of the
system from the critical line (i.e. , the line of
second-order critical points), and along the criti-
cal line the field ith (nonordering field) measures
the distance from the tricritical point. Therefore,
311 three fields have to vanish at the tricritical
fixed point, whereas at the critical fixed point only
p, , and p.„have to vanish. %'e note that the whole
critical line is described by one fixed point [com-
pare Eq. (3.19)]. Since we are free to choose the
scale for p. z we choose pz= 1 for the critical fixed
point. Then our model will be constructed such
that it has the two fixed points

(itt, pv, )tg)=
(0, 0, 0), tricriticai fixed point

(0, 1, 0)„critical fixed point.

(3. 1)

In Fig. 1 these two fixed points are represented in
the scaling-field space ()t„ lth, ith).

Next we define the equations of motion for the
scaling fields. Asymptotically close to the tri-
critical fixed point and the critical fixed point, re-
spectively, the equations for p., are linear,

si t(i) s ut(1)
yltp'1(1) snd

sl yap'1(1) t (3.2)

with d/y„„= 2- n, t The simplest way to obtain
an equation that covers both limits (3.2) is to use
the interpolation formula

s it t(1)
el ytt 1(i)+1(ylt: ylt) l 1(l) l 2(l) (3.Sa)

Re could use a similar interpolation equation for
p, „with yh, = h(d+2 —tit) and yh, = h(d+2 —t),) How-.
ever, we will neglect the difference between tit and

g, and thus obtain

+o

FIG. 1. Phase diagram in the {L(f&, p, p&) scaling-
field space. The tricritical fixed point is located at {0,
0, 0) and the critical fixed point at {0, 1, 0). The shaded
area in the (p&, @) plane denotes the crossover region.
It separates the asymptotic tricritical region {III) from
the asymptotic second-order critical region {II). The
dashed lines are paths of p=const, which correspond to
paths G = const in the phase diagram of Fig. 2. The lines
3=const will be defined in Sec. IV B.

s it.(l) —yh l h(l) t

with

(3.3b)

y „=—,'(d + 2 —ti) .

Finally, the operator Q2 conjugate to p, 2 is rele-
vant for the tricritical point but irrelevant for the
critical point. The simplest equation describing
this behavior is

& )t&(1)
81

=yht )th(l)[1- p, h(l)] .

The scaling indices of ith (or Qh) are yht at the tri-
critical point and ya, = -y~, at the critical point.
[Compare Eqs. (3.9) and (3.12). ] Although one
index is not necessarily the negative of the other,
this is a good approximation in several cases where
two fixed points as functions of a parameter inter-
sect. For example, at dimensionality d =4-&,
with e & 0, one obtains yh = + &+0(&') for the Gauss-
ian tricritical fixed point and the non-Gaussian
critical fixed point. ~'h 'hh

(yh is identical with yho

and yh, in the notation of Refs. 7 and 25. ) This is
related to the fact that ith = u (where u is the co-
efficient in Qlilson's renormalization-group Hamil-
tonian) satisfies Eq. (3.3c) to leading order in e
provided we scale according to Eq. (3.1).

Equations (3.3) constitute the basic equations of
our model. Depending on the choice of the asymp-
totic scaling indices y, these equations allow us to
describe different physical situations. In Secs.
V-VD we discuss numerically effective critical
exponents for three particularly interesting three-
dimensional models with crossover phenomena, .

(i) Trtcrltical mode/. We study the tricritical
model with molecular-field-like tricritical expo-
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nents ' and approximate critical-line exponents,
starting from the set of scaling indices

y1t 2, yat=1

y1, = 1.5, y„= 2. 5 .
(3 4)

From high-temperature-series expansions one
obtains for the uncoupled Ising models (x = 0)y,
= 1.6 by using d/y, = 2 —n, with (a = —,'. Therefore
the interaction term R ~5& ~, where 5& ~ = S,S~
—(S(St), scales like r a"' (compare Itef. 27), with
x~=d-y, =1.4, which yields yz=d-2@1=0. 2. '
Hence the interaction term is a relevant operator,
and the model is characterized by Ising-like tri-
critical exponents

y 1t = 1.6, y at = 0. 2 .
For y„and y„we choose

1c= 2. 2, yh=2. 5

(3.6a)

(3.6b)

where we use the approximation q =0. The deter-
mination of y1, is a subtle problem. Here we give
only the argument for our choice and defer further
discussion to Appendix A. We have estimated y„,
using numerical data for the critical exponent y for
model (3. 5) with x = 1. High-temperature-series
expansions yield y=0. 91,"which with q= 0 leads
to y(~ 2/'Y = 2 ~ 2.

(iii) Fisher exponent renormalization. We con-
sider models with phase transitions subject to a
constraint (such as decorated Ising models} which
exhibit Fisher exponent renormalization. ' If the
system is governed by an index y, =d/(2 —(a) & —,

' d
(i.e. , o( & 0), then the critical crossover phenomena
due to Fisher renormalization can be described by
Eqs. (3.3) with the asymptotic critical indices

y it y1t y2t 2y1 ds y1c d y1 (3 7)

For decorated Ising models we take y1= 1 6 using
the ideal three-dimensional Ising value 0, = —,'.

In the present analysis we will accept the values
(3.4), (3.6), and (3.V) for the asymptotic critical
indices without further question. We note that the
ratio yat/y„= 4(t defines the crossover exponent in-
troduced by the authors. '4 Therefore, the main
difference between the models (i) and (ii) is in the
size of the crossover exponent.

8. Thermodynamic quantities

Once we know the solutions of a given set of
scaling-field equations and the value of a thermo-

We approximate q to be q=0.
(ii}Ashhin Te-lier model. We discuss the three-

dimensional generalization of the Ashkin- Teller
model, ' which can be defined by two Ising spins S
and T attached to each lattice site interacting via '

—H =K Q (S (St+ T(Ty+xS(St T( Tt) . (3. 5)

dynamic quantity along a "noncritical boundary"
we can calculate the thermodynamic quantity, in-
cluding its scaling function, for the entire critical
region.

The solutions of Eqs. (3.3a) and (3.3c) for p, ((l),
with i= 1, 2, are

~((l) =g«(l)[I+gat(l)l"" ""'"',
pa(l) =gat(l)/[I+gat(l)l

with the txicxitical g scaling fields

g(t(f) =g(te " gat(1) =gate

The solution of Eq. (3. 3b) is

p„(l ) = he "a' .

(3. 8a)

(3.Bb)

(3.10)

The solutions p, ((l) of Eqs. (3.3a) and (3. 3c) can
also be expressed in terms of scaling fields g„(l)
relative to the critical fixed point,

P((f) =g(.(f)[I +ga, (f}l""""'"", (3. 11a)

)(a(1)= II[I+g~(l)l,
with the critical g scaling fields given by

g( (I) =g( e gat(i) =gate

(3. 11b)

(3. 12)

The critical and tricritieal g scaling fields are re-
lated,

g(.(l) =g(t(1)[gat(l)l'"" ""'"'
ga (l}=I/gat(1) .

(3. 13a)

(3. 13b)

Equation (3.8) in the limit l = 0 allows the param-
eter g« to be expressed in terms of the initial
scaling fields p;,

g = p (1 —lt ) v(c v(t tat

gat Pa/(I Pa) (3. 14)

Similar relations for g. follow from Eq. (3.11).
The two representations for the solutions of the

equation of motion (3.3) in Eqs. (3.8) and (3.9),
and Eqs. (3.11) and (3.12) reflect the symmetry
between the tricritical fixed point and the critical
fixed point in our model. Equations (3.3) and
(3.8)-(3.13) are invariant under the transforma-
tion

(p(t pa& g(tt gatt g(cs gac& y(tt y(ct Sat)

(l 2) I l at glet gatt g(t& gatt X(cp J(t~ %at) (I )'
The two fixed points are only distinguished by y~t
& 0 and ya = - yat & 0. The scaling field ga, (l) is
relevant at the tricritical fixed point and the scal-
ing field ga, (l) is irrelevant at the critical fixed
point.

The initial scaling fields p, , are functions of two
experimental fields, which we take to be the tem-
perature T and a nonordering field G. ' (The ex-
perimental field G is irrelevant along the critical
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line but relevant at the tricritical point. ) Similar-
ly to Eqs. (3. 8)-(3.11) of Ref. 4 we expand in

terms of the eigenoperators Q, [compare Eq. (2. 3)]
both the fixed point Hamiltonian,

H+= -Q h)Q, , (3.16)

and the Hamiltonian K of the system,

For the scaling field JL(, z we find

y, ,= p(G)+r(G) u»
with

p(G) =hf —r(G),

r(c) = (a,'+ Gas)/(f,'+ca,') .

(3. 21)

(3. 22)

(3. 23)

g; = hf —P(h(+Ghg ), (3.18)

with P= 1/ksT. (We absorb in the coefficient hf
contributions from the phase-space weight factor. )
Therefore, the specification of the initial scaling
fields u, amounts to the specification of all inter-
action parameters and of the vafues of all experi
mental fields. The condition p, , =o yields for the
critical temperature

keT, (G) = (h, +Ghi)/hf . (3.18)

We are free ta choose the scale for p, , by k, =1,
which yields

X(c)=Z(0)+GV

=Q (a', +ca,')q, . (3.17)

By comparison with expansion (2. 3) for the re-
duced initial Hamiltonian Ho, we obtain for the ini-
tial scaling fields p, ,

The tricritical field G =G, is determined by

p(cg) =0 (3.24)

Therefore, p is a measure for the departure of G

from its tricritical value G,. Hence the phase di-
agram of the model in the (T, G) plane exhibits a
critical line which varies linearly with the experi-
mental field G and terminates in a tricritical point,
as shown in Fig. 2.

The thermodynamic potential I' of the system is
a homogeneous function in the g scaling fields or a
generalized homogeneous function in the p, scaling
fields [compare Eq. (2. 4)],

F(u„u&, u,)=e "&(u&(f), p2(f), u~(f)) (3 25)

For simplicity we write Eq. (3. 25) and similar
relations in the form F=e 'E(f). Equation (3. 25)
implies for the ordering density (with q = 0)

u, = 1 —P/P, (c)

(a) l

l

I

Critical
Region

(a) Path G/Gt= Const.

(b) Path p,z = Ccnst.

(3.2o)

T'ricritica l

Region

sE(l )
pl = =e

sh 8 p„(l)

e(1&/2)l (f)

and for the susceptibility

(3.26)

X=,@~
=e"X(f) . (3.27)

(The susceptibility X contains a factor 1/P; hence,
in the limit P-0 the Curie law X~ 1/7 follows. )

Equation (3.27) allows the evaluation of the sus-
ceptibility X provided the quantity is known along
a "boundary. " We assume that the system is out-
side its critical region when the boundary

p&(f) =1 (3. 28)

is reached, and we denote u2(f) along this boundary
by Way

u2(l) = p, a . (3.29)

FIG. 2. Schematic phase diagram in the experimental
(T, G, H) field space. The phase diagram consists of a
linear critical line [in the (T, G) plane] that terminates
in a tricritical point. Two kinds of paths of approach to
criticality are shown: (a) lines of G/G& =const and {b)
lines of @2=const. The quantity p(G) measures the de-
parture of a point on the critical line from the tricritical
point. The dotted line denotes the approximate center of
the crossover region separating the tricritical region
and the critical region.

Then we obtain from Eq. (3. 27) for the suscep-
tibility

X(ui, ua& 0) = e"X(ua), (3.30)

X(pa) = X(1 u2 0) ~ (3.31)
Equation (3.30) yields the susceptibility X in the
critical region as a function of the two coordinates
f and P2, and in terms of the susceptibility X(Pz)
along a boundary outside the critical region.
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Before we consider the scaling properties of the
susceptibility (3.30) in detail it is appropriate to
discuss the main effects of our approximations.
First, we consider only three scaling fields (/a„
tea, ta,) although other fields may contribute cor-
rections. ' In particular, we have neglected the
marginal scaling field pe in the tricritical model
(i) which would lead to logarithmic corrections.
Moreover„ the irrelevant fields may contribute
considerably at high temperatures, i. e. , P « I3,.
[Within our theory improved results for X near
criticality can be obtained by matching X, and X(/Ia)
along boundaries tt, (/) = 0. 1 or 0.01 instead of
along tt, (/) =1.] Second, owing to the special
choice of the Eqs. (3.3) the critical temperature
varies linearly with p,z. In Appendix B we will
briefly discuss a more general model, for which
we find [T,(tea) —T,(0)]«~~ tta ', asisexPected. '
Finally, the choice of the scale for p, a by definition
(3.1) has the effect that we obtain a "fixed line"
for yz, = 0 but not the logarithmic singularities dis-
cussed in Ref. 7.

IV. SCALING PROPERTIES OF THE SUSCEPTIBILITY

The model (3.3) implies the scaling properties
of all thermodynamic quantities. As an example
we discuss the scaling behavior of the susceptibil-
ity defined by Eqs. (3.30) and (3.31).

A. Determination of scaling functions

The condition y, ,{/ ) = 1 in Eq. (3.28) can be cast
in the form

a =(1+ca)'.
Ne denote the solution of this equation by

a =f(o, e)

=1+oc+-,'o{3o —1)c +0(c ) .

(4. 1)

(4. 2}

Starting from Eq. (3.Sa) or (3. lla), we find for
the quantities in Eq. (4. 1)

2ti3/lc p-fy& e "y

oc {y1c y1t)/y1c i

3~~3 ic
C

(4. 3a}

(4. Sb)

(4.3c)

Since X(ja) describes the susceptibility outside
the critical region we can assume that it is a
smooth function of //a. Therefore, the critical
properties of X are contained in the quantity f
Both E and p2 are functions of the two experimen-
tal fields T and G via the initial scaling fields p, ,
and t/a. The result (3.30) for the susceptibility
does not depend on the choice (3.3) of model equa-
tions for the scaling fields.

Thermodynamic quantities other than the sus-
ceptibility can be analogously determined.

C. Discussion of the model

or
A

a = /a~|at/&yg (1 pa)-«e&aa &

(yl t yle}/yla ~

e = C '~~i~it

(4. 4a)

(4. 4b)

(4. 4c)

with

C = p, (1 —p )a&~/a at p "&t/ (4. 5)

The exponents o, and o, are related, o,/o, = —y„/y„.
We can determine / from Eqs. (4. 1)-(4.4),

/tuba
t / y gg t/

ag f(o e ) (4 8)

e"' ' = t/P""&&(I —ua)" f(o„e,) (4. 7)

Then Eq. {3.30) implies for the susceptibility

X{tag, tea)= t/j ic/aa c 'at& (c )

with

.(,)= « .'"'""))
& [f{o. c.)] ""'

(4. Sa)

X(t „t a) = t,'""(I—t a)
'"""va(e &),

with

v, (c,) = X(ua(e &"' 'a'))

x [f(o„c,)]a/'a~ .

(4. Qa)

(4. 9b)

The relations in the pa.irs of equations (4. 3) and
(4. 4), (4. 8) and (4. 7), and (4. 8) and (4. 9) are
equivalent [in agreement with Eq. (3. 15)]. Equa-
tions (4. 8) and (4. 9) constitute the main result of
this section; they contain the general scaling prop-
erties of the susceptibility y with the scaling func-
tions v determined by Eqs. (4. Sb) and 4. Qb).

The variable C in Eq. (4. 5) plays the role of a
reduced relative temperature. ' The scale factor
(1 —pa)'h' "at pa '&& 'aa diverges at the tricritical
fixed point and vanishes at the critical fixed point.
This indicates that the asymptotic (or ideal) crit-
ical behavior holds in a large temperature region
around the critical fixed point but shrinks to zero
at the tricritical fixed point. Scaling variables
such as C are singled out in that they are constants
of the motion (invariants) of the renormalization-
group procedure. One easily finds from Eqs.
(3.3) that dC(/)/d/ = 0. Therefore C is a, function of
fia only; Eq. (4. 5) yields for /-/

C = (1 — /1)~abc /at ilaa&&»at, (4. 10)

which defines a function //a(C).
If we express the susceptibility in Eqs. (4. 8) and

(4. 9) in terms of the g scaling fields we discover
that it has exactly the scaling form that had been
postulated in our scaling theories for crossover
phenomena. ' '~ In particular, C plays the role of
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the reduced scaling variable of these theories,

g-3«/32~ Or C g @~3,/32' (4. 11)

y = 2/yu 0 = ysg/ys ~ (4. 12b)

Finally we discuss the scaling behavior of the
susceptibility in various asymptotic regions.

(i) Scaling near the tncritical fixed point. In the
whole region around the tricritical fixed point,
p2«1. Hence we obtain from Eq. (4. 9a)

X(Py~ P2)= Pg "&g(PsPg 2' "") ~ (4. 13)

This and the following results exhibit the structure
expected from crossover scaling. The area around
the tricritical point contains the asymptotic tri-
critical region c,«1 and a part of the asympototic
critical region c,«1, which are separated by a
crossover region, as shown in Fig. 1.

(ii) Scaling in the asymptotic tricritical region
In the asymptotic tricritical region, c,«1, we

may expand p2 and v, into powers of c,. From Eq.
(4. 4c) we obtain

P2 ——c,(1 —Ps) '~~ "=c &+ 0(c&),

and from Eqs. (4. 9b) and (4. 2)

(4. 14)

v, (c,) = X(0) 1+ + c,+O(c,)
20& 8 lnx 2

72& GP2 p =O

(4. 15)

Hence, in addition to the power-law behavior X
= p~"t X(0) one obtains a correction proportional to
p, ,' with an amplitude proportional to p, 2.

(iii) Scaling in the critical region. In the crit-
ical region, c,«1, s we start from Eq. (4. 8a) and
expand into powers of c,. From Eq. (4. 3c) we ob-
tain

g p3'jt/3'lc

= 1 —c, +0(c,), (4. 16)

which, when substituted into Eqs. (4. 8), yields

X(P» P~)= Pi "Vs ' "X(1)

x 1 — '+ c,+0(e-,) .2Q'~ 8 lnX

X2g»2
(4. 17)

The leading term in this expansion is the "double-
scaling' term, which is characterized by the criti-
cal -line exponent y, and the amplitude exponent
2a, /ys, = (y, —y )/P, . The first correction to the
pure power-law behavior is a factor of c, smaller
than the leading term. Since as a function of p. ,

The results can be written in a more familiar no-
tation by introducing the Greek-alphabet exponents

yt 2~y1t ~ pt y25/y lt ~ (4. 12a)

Eq. (4. 3c) yields c,~ p~p '~', this correction is in

agreement with the prediction of Eq. (1.1}of Ref.
4. (Note that the latter equation is written in
terms of g, scaling fields. ) The correction term
vanishes (since c, vanishes) for the critical path
p.2=1. Therefore, one finds only for p.2=1 a pure
power-law behavior. This value of p, 2 corresponds
to Wilson's choice~s of the coefficient uo(&) to elim-
inate the slow transient.

The complete scaling behavior of the suscep-
tibility in the whole critical region (including the
crossover regions) is contained in Eqs. (4. 8) and

(4. 9) and will be numerically discussed in Sec. V.

B. Flow diagram in the scaling-field space

Here we discuss briefly the topology of cross-
over phenomena in the scaling-field space, and the
physical meaning of the coordinates I (p,„y,s) and

tl, (p,„g,) in Eq. (3.30). .
The scale parameter e2' connects the values of

the susceptibility X in the two states (p„ps) and

(1, j},s). Therefore, lines of /(p„ps) = const de-
fine "surfaces" in the scaling-field space [i.e. ,
lines in the (p, „pz) plane] of X/X= const. Two
such lines are shown in Fig. 1. The "critical sur-
face" is defined by l =~ or X=~. It is the line
connecting the tricritical and the critical fixed
point. Renormalization-group equations such as
(3.3) determine how as a function of I the initial
state (p, » ps) changes continuously into (p, (f), ,

pa(l)}. The lines connecting these states define
"trajectories" in the scaling-field space that cross
all surfaces of constant X(l) & X(0). On each trajec-
tory the susceptibility scales according to Eq.
(3.2'I). The trajectories can be defined by
&2(&i &2}= P2(1, Pa) = const. (P2 is a number be-
tween 0 and 1 for p. , and p, 2 both in the interval
[0, 1].) In the following we will refer to the set of
surfaces and trajectories in the scaling-field space
as the flosv diagram of the transition.

Equations (3.8) or (3.11) determine the flow di-
agram for our model. Eqs. (3.11) imply that all
trajectories starting on the critical surface ap-
proach the critical fixed point, and that a single
trajectory ($2=1) leaves the critical fixed point.
In contrast, Eq. (3. 8) implies that no trajectory
approaches the t;ricritical fixed point, whereas in-
finitely many (with 0~ jl2& 1) leave it. (Two such
trajectories are the lines that bound the crossover
region in Fig. 1.) These different patterns of flow
in the neighborhoods of the critical fixed point and
the tricritical fixed point characterize the topologi-
cal differences between these fixed points. 3

Equation (4. 10) implies that a trajectory P2
defines also a scaling path C = const in the sense
of the conventional theory. (Note that the trajec-
tories p2= 0 and p2= 1 are singled out in that pure
power laws hold along these paths of approach to



302 E. K. RIEDEL AND F. J. NEGNER

( )
dinX(ittt pa) (5.1)

Effective exponents for other thermodynamic quan-
tities are similarly defined. The effective expo-
nent ~,«provides a local measure for the degree
of singularity of X at (it„pa). When the point

(p„112)approaches a critical (or tricritical) point
then y, ff becomes identical with the corresponding
asymptotic critical exponent Y. However, the def-
inition (5. 1) avoids the hidden question whether
one is close enough to criticality to be able to see
the true asymptotic value of the exponent. More-
over, since the effective exponent is locally de-
fined it reflects very sensitively crossover phe-
nomena, i. e. , a different critical behavior in dif-
ferent areas of the critical region. From that
viewpoint the concept of effective exponents is
particularly useful for the discussion of systems
with competing phase transitions. In the following
we calculate the effective exponent Y„f for the
model defined by the scaling-field equations (3.3).

Starting from Eq. (4. 8) for the susceptibility y,
we obtain for the effective exponent along a path of
constant p, z

~ 2 8 lllf(gct Cc) tf ln)( (5 2)eff &iy» = +
aloe dlnCI;c

criticality. ) This result suggests that on each
trajectory the degree of singularity of X is constant,
although the absolute value of X decreases. In
fact, we will find in Eq. (5. 12) that along each tra-
jectory jia the logarithmic derivative 8 lnlt/8 ln p, ,
is constant. Its value measures the relative in-
Quence of the critical fixed point and the tricritical
fixed point on the critical behavior along the sohole

trajectory. This in turn allows the critical re-
gion to be divided into areas of effectively critical
and tricritical behavior which, as shown in Fig. 1,
are separated by a possibly broad crossover re-
gion.

V. EFFECTIVE CRITICAL EXPONENTS

If the location of the asymptotic critical region(s)
is not known in a laboratory experiment or in a
computer experiment, then its analysis in terms
of asymptotic critical exponents may become dif-
ficult or meaningless. It is then preferable to in-
troduce effectively field-dependent critical expo-
nents at each point of the field space. This con-
cept of effective critical and tricritical exponents
is introduced in the following paragraphs. As
an example we discuss again the critical and tri-
eritical behavior of the susceptibility X.

A. Effective exponents and size of crossover regions

%'e define an effective critical exponent y,« for
the susceptibility X at each point in the (it„ fata)

scaling-field space by the logarithmic derivative

-=y. (p (1- ~ )'"'"'~ ""'at} (5.3}

We introduce an effective scaling index yl ett(pa},
which we define by

8 inf
Xi,eff 71,c +

g l C

(5.4)

[In Eqs. (5.4)-(5. 7)f means f(o„c,). j Using the
definition (4. 2) for f, i. e. , f=(1+cf), we obtain

tJc CcfJ1,et! 3 ic 1 +c f (5. 5)

from which we deduce
cc

31c 31,ett (31c 31t) 1+ccJ

1
31,ett 31t 3 1c 31t 1+c+C g

(5. 6a)

(5. Gb)

The relative deviations of $1 ff from the asymp-
totic scaling indices y therefore satisfy

3'ic~'2t -3fi t ~3'at
0 ic J1.off 3 1.eff 0 1t
Sic 3'it 3 1c 3 1t

—(c f)el /eat (I + c f)(alt etc t l eat

(5.7)

By comparing this result with Eq. (4. 10) we find

3 iaeff 3 lt —Pay
3 ic 3 1t

(5 8)

from which we obtain

3 1,ett(~2) 31t + j 2(yle ylt)

Finally we evaluate

d lnx d lnx d lnC
d lnC d pa dtia

Equation {4.10) yields

d lnC yl. tr(}la)
yat&a(I —ala)

(5. 9)

(5.10)

(5. 11)

Substituting the results (5.4), (5.9)-(5.11) into
Eq. (5. 2), we obtain for the effective exponent y, «
as a function of tta (or C)

The fluxion dot on y,«denotes that the exponent is
taken along a path ita = const. (Whereas asymptotic
exponents are path independent, effective expo-
nents do depend on the path along which criticality
is approached. ) The result (5. 2) for the effective
exponent depends on the two fields p, , and p, z only
through the sealing variable C or, because of the
relation (4. 10), through ita,

re« ve«(C)
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y,«(V&, I ~)

d lnx(P. ,)
2+yat I 3( I p'3) d yl, e«(&a)

(5. 12)
The effective exponent y,« is constant along the
trajectories p2. It approaches the asymptotic ex-
ponents y, and y, for p, 2-0 and p- j., respectively.
[The derivative of the smooth function }I does not
affect the asymptotic exponents because of the fac-
tor pz(1 —Iiz). ] The onset of the departure of y„,
from y, and y, can be obtained from Eq. (5. 12) by
using the expansions (4. 14) and (4. 16). In the tri-
critical region we find

d lnX 2"
&s«=ys 1+ ot+2yas dn ct +0(cg)dP2, 0

(5. 13a)
and in the critical region we obtain

1+ o, +2v„„c,+O(c.)
dP2

(5. 13b)

If the derivative d InX/d P2 in Eq. (5. 12) and the
effect of dpR/dp, OO [compare Eq. (5. 21) below]
are negligible then we can easily estimate the size
of the crossover region for the susceptibility X.
We define the crossover region as the area of the

(p„p2) space in which the effective exponent

v, „,((13) deviates by more than a fraction p (with
0&p &1) of the difference Iy„-y«I from the asymp-
totic value y„or y„. [More precisely, we can
define the crossover region in terms of deviations
of y, « in Eq. (5. 21) from y, and y, .] The size of
ordinary critical regions can be defined similarly.
According to our definition the p crossover region
(p„(p), p;, (p)) is determined by

g —p ~ 1c~1t ~2t

p
(5. 16)

This equation contains only the asymptotic scaling
indices y. The most interesting feature of the re-
sult is that the width of the crossover region 8'c„
increases strongly with decreasing y2„' i. e. , 8'~„
is larger the smaller the crossover exponent Pt.
For the 25/~ crossover region we obtain as a. rule
of thumb (by approximating y~, = y„and 9= 10)

Wca(0. 25)- 10 ~~~ . (5.17)

8 lnx
eft eff ~1d~

1 2

From Eq. (4. 8) we find

(5. 18)

SlnX 2g, 2 Slnf(rr„c, ) d1n}( 8 InC

8 p, 2 y2t p, 2 y1, 8 inc, d lnC 8 p.2

(5. 19)
By using Eq. (5. 2) the expression in large paren-
theses in Eq. (5. 19) can be cast in the form (y,«
—2/y ~,). With

Therefore, the 25% crossover region has approx-
imately a width of I/P, decades. (The 10%%uo cross-
over region extends over twice as many decades
and the 3% crossover region has three times as
many decades. ) These results hold for the sus-
ceptibility X only. For other thermodynamic quan-
tities the critical indices in Eq. (5. 16), apart from
the characteristic dependence on the crossover ex-
ponent, are different.

So far we have only considered the effective ex-
ponent along a path p2= const. To evaluate the ef-
fective exponent ye«as a function of the experi-
mental fields T and G we have to take into consider-
ation that p, 2 is a function of p, We then obtain
for the effective exponent (5. 1)

II2 (&i~(p)) = P

II,(1,.(p)) = 1 -p .

(5. 14a)

(5. 14b)

8 lnC y„y1,
s pa Ya~&2 y2e(I &a)

(5. 20)

Using Eqs. (4. 5) and (4. 10) we can calculate the

~1t,cy

I «(p)= u&.(I -P)

(1 pp~, ~~a~ p-~«~ ~2&

and the exponents (4. 12) we obtain finally

+
dI 2 ~ yt yeff

yetf e«
~2

+ yc yeff
l@, I

(5. 21)

X (I —y2) ~lol "21 IJ~&1t "Zt (5. 15)

Equations (5. 15) allow us to estimate the size of
the second-order critical region IT, (p) close to
the critical line once the metric in the field space
is known [compare Eqs. (3.20) and (3.21)]. The
soidth of the p crossover region, which separates
the tricritical region from the critical-line region,
can be characterized by the ratio

&cR(p) =
~ ( )

&a~(p)

The denominators pR and (1 —p2) in this equation
do not lead to divergencies provided y2t&y1t. This
result follows with the help of the asymptotic ex-
pressions (5.13) for y,«. However, if d p2/d p, ,
becomes large then y,«can deviate strongly from

Equations (5. 12) and (5.21) are the main re-
sults of this section.

B. Effects of almost marginal scaling fields

Here we study the case of a very small scaling
index y2„ i.e. , a situation in which the scaling
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y(Ira) = 2/yr, .rr(Ira) . (5. 23)

Because of the ansatz (3. 3c) we obtain a line of
fixed points. In general, we expect for the case
ya, =0 an equation of the form 9Ira/Sl=aIra+ ~

which leads to logarithmic corrections.
In the following we choose ya, «1. %e then ex-

pect only for very small p, deviations from the ef-
fective exponent y()ra) in Eq. (5. 23). From Eqs.
(4. 5) and (4. 10) we obtain

tia- Pa+ya, Ira(l —Ira)

x(ln(I/I r))/yl, rr(I a)+0(year)

in the region

pr» exp[ yg, ,rr(p-a)/(I —pa)yar],

(5. 24)

(5. 25)

when p,zc0, 1. Substituting this result into Eq.
(5. 12) yields the effective exponent

2
yerr(&r~ &a) = I+yarI a(I —&a)

N i,err(ILa)

x (y ir yi~)(ln(1/P&))/V&, rr(I a)
I

1 dlnX

dna „va ua

Hence, for a system with an almost marginal
scaling field the asymptotic critical exponent is
only reached extremely close to the critical point
(unless the amplitude of the transient vanishes).
Outside that region the "exponent" appears to de-
pend continuously on the scaling field p.~, and has
to be interpreted as an effective exponent.

+O(yaa, ) . (5.26)

C. Crossover phenomena in tricritical systems

Equations (3.3) with the exponents (3.4) are used
to describe crossover phenomena in systems
with a tricritical point, such as in He -He mix-
tures. " (Compare the discussion of approxima-
tions in Sec. IIIC. ) In the present section we re-
port the results of numerical calculations for the
susceptibility X, the effective exponents ~,«and

ff and the "flow diagram" in the scaling- field
space. In these calculations we have approxi-

mated X(pa) by a constant It = 1, and chose hf
=0. 5. The departure of points (T, G) and (Irr, Ira),
respectively, from the critical line and the tri-
critical point is measured in terms of the quanti-
ties Ir, and p(G) that were defined in Eqs. (3.20)
and (3.22). We present only for the exponents
(3.4) a complete set of figures.

fields ga, and gz, are almost marginal.
For ya, = 0 the Eqs. (3. 3) yield Ira(I) = const, and

the susceptibility becomes

(5. 22)

First we consider the phase diagram in the
(T, G) plane as shown in Fig. 2. We simulate an

experiment by calculating for our model the sus-
ceptibility X of Eq. (4. 6) and the effective exponent
y, «(T, G) of Eq. (5.21) along paths of G = const,
which approach the critical line at different dis-
tances p(G) from the tricritical point. Figure 3
shows a conventional double logarithmic plot of the
susceptibility. The marked crossover region is
the 3% crossover region defined by Eq. (5. 16) with

p =0.03. The 25% crossover region is marked by
two arrows. In general it is difficult to determine
experimentally the true asymptotic critical ex-
ponents or even the existence of crossover phe-
nomena by plotting data in this way. A scaling
plot of the same data for X is shown in Fig. 4.
This representation (in which It is divided by the
leading singular behavior in one of the two asymp-
totic critical regions) allows a convenient experi-
mental detection of crossover phenomena. (Com-
pare also Fig. 6 of Ref. 15. ) The best way to de-
scribe quantitatively crossover effects is by means
of effective critical exponents. For X= const Eq.
(5. 21) can be written as

@a yrc 3'rr ~P fia
(5 27)eff off +t 1d~

by using Eq. (5. 9). In Fig. 5 this effective expo-
nent, y„r(T, G), is plotted versus the logarithm of
p, ,(T, G) =1 —T,(G)/T for various values of p(G).
The effective exponent changes continuously from
the asymptotic tricritical value y, = 1 (far from the

I I I I

Critica I
~ Crc)ssover

~

Tricritica I

q2 Sap ~mi Reg~ ' Siope&
I I

QI" 8-

Qg-

o
-10 -8 -6 -P -2

Log„o [1-+(G)/T j

FIG. 3. Conventional double logarithmic plot of the
susceptibility X taken along a path of constant p(G) = 10 3.

Outside the crossover region the slopesofthecurve dif-
fer by less than 3% fromtheir asymptotic values. The
crossover region, allowing a 25% deviation from the
asymptotic exponents, is marked by two arrows.
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Fro. 4 S
T

Scaling representation of the susce tib'1'tPl llyX.
he tricritical scaling function vt(c ) defined in E

is lottedp e versus the scaled temperature variable c
y2tlyf t

a

Fi. 3

—g~t g&t. The crossover regions are defined
lg. . This representation of data allows a convenient

detection of crossover phenomena.

1.Q-
P=

-10

FIG. 5. Effective exponents p@ff {T, G) for a tricriti-
cal system with the asymptotic exponents =1.5
=2 =1

~ Sit
, y2t= . The parameter p specifies the path of ap-

proach to criticality as defined in Figs. 1 and 2. The
width of the 25% crossover region is about two decades
in the relative temperature.

critical line) to the asymptotic critical-line paine

y, = 1 (close to the critical line). This crossover
occurs the closer to the critical line the closer
the path is to the tricritical path, i.e. , the
smaller p. The width of the 25% crossover re-
gion is about hvo decades in the relative tempera-
ture p„as expected from Eq. (5. 17). [The bend-
ing of the effective exponents y„,{T,G) towards a
common value as p, ,—1 (i.e. , P-0) is caused by
the fact that in our model p~- hf becomes inde-
pendent of G in that limit. ] The results for
y «,(T, G} allow us to divide the (T, G) plane in the

neighborhood of the tricritical point into regions
of different critical behavior, an asymptotic tr'
critical region and an asymptotic critical region,
which are separated by a crossover region. This
fact is important for the correct interpretation of
laboratory experiments and computer experiments.

Next we discuss the effective exponent y ( )
of E

eff ~i~ ~xi
o q. (5.12) and the flow diagram of the model in
the (p„p2) scaling-field space. The exponent y„,
describes the degree of singularity of X along paths
of p,~= const. The two important properties of this
effective exponent are that it is constant along the
trajectories p~(pi~ pa) = const and that it its

i e y that yyf f ygyf (C), according to Eq. (5 .3).
The Pz trajectories are determined by Eqs. (4. 5)
and (4. 10}and are plotted in Fig. 6. The trajec-
tories P, , =0.25 and Pz, =0.75 bound the 25%%u,

crossover region. The asymptotic tricritical re-
gion is defined to be the area of the scaling-field
space with p&& p.a „and the asymptotic critical
region the area P2& P~, . The trajectory Pz=0
leaves the tricritical fixed point (0, 0} along the

axis, and the trajectory p, = 1 leaves the critical

„0 I

~ 0
v
N

II (

1

I

J A

:f=o

O.6-I

jt.=o,e-—-~-
I

7=i.2

06 08 1.0

F&G 6 Flow di'agram in the scaling-field space for
the tricritical s stesystem. The diagram is discussed in Secs.
V C and IV 8 of the text.

fixed point (0, 1) parallel to the p,
' I F' 6

we also present lines of /(p„p, ) = const, which can
be obtained from Eqs. (3.8a) and (3.14) or (4. 1)-
(4. 5&. It i's instructive to represent the experimen-
tal paths G = const in the flow diagram of Fig. 6 and
to stud ts y he crossover phenomena along these thcpa s

y o serving which p~ trajectories they cross.
[Figure 1 includes several paths p(G) = const. ] The
effective exponent y~s(pg, pp) scales and is only a
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i-6 I I I

6

FIG. 7. Scaling representation of the effective expo-
nent &gaff(pf p2) for the tricritical system. The exponent
is plotted versus the logarithm of the scaling variable C
defined in Eq. (4. 5). The 25% crossover region is
marked by two arrows. The dashed curves are the re-
sults for the approximate effective exponents of Eqs.
(5. 13). The approximations give a good estimate outside
the crossover region.

el~ ). Our result for the width of the crossover
region implies that it is practically impossible to
obtain the asymptotic critical exponents by series-
expansion techniques, and thus to make statements
on the universality hypothesis. %e will return to
this question in Sec. VII.

Results for the effective exponent Y,«(T, G) de-
fined by Eq. (5. 21) are shown in Fig. 8. The
changeover from the tricritical behavior to the
critical-line behavior occurs very gradually over
about nine decades in the relative temperature.
(Note that in this figure the scale of the abscissa
has been reduced by a factor —,

' compared to Fig. 5.)
Since the crossover exponent is small the approx-
imate formula (5. 26) for V,«(p„ga) can be used to
estimate the effective exponent. Therefore, for
not too small p„a leading term y(pa) = 2/y, „«(p2)
exists, which varies continuously with the irrele-
vant scaling field p2. The slope of this exponent
is

»(~.)
2(yacc Yst)& (42)9p, ~

= —0. 3y'(p~), (5.28)

function of the scaled relative temperature C of
Eq. (4. 5). A scaling plot for j;« is shown in
Fig. 7, together with the approximate effective
exponents j~, in the asymptotic tricritical and
critical regions (dashed curves) obtained from
Eqs. (5.13). The approximate formulas yield good
estimates for y,«outside the crossover region.
Figure 5 shows that the effective exponents
r,«(T, G) do not scale exactly. This is a conse-
quence of the (dpgd p, ,) term in Eq. (5.21), which
is present if one studies crossover phenomena
along the experimental paths G = const.

with 'Y(pz) varying between 0. 91 and 1.25, which
describes qualitatively Ditzian's conclusions. "

It is instructive to compare the flow diagrams in
Figs. S and 6. For the Ashkin-Teller model the
trajectories p2 have a. very large slope for not too
small p, , and bend towards the tricritical fixed
point only very close to the "critical line, " which
connects the tricritical fixed point (0, 0) and the
critical fixed point (0, 1). This behavior is char-

D. Ashkin-TeHer model

The Ashkin-Teller model in d = 3 dimensions is
characterized by the asymptotic indices (3. 6).
(Compare also Appendix A. ) Therefore, the cross-
over phenomena. in an Ashkin- Teller system are
qualitatively the same as in the tricritical system
studied in the last paragraph. The difference is
that they occur on a completely different scale.
With the exponents (3. 6) we find for the width of
the 25% crossover region Wca(0. 25)= 10, i.e. ,
a width that is a factor 107 larger than the cross-
over width for the tricritical system (3.4). 38 This
demonstrates the dependence of crossover effects
on the value of the crossover exponent.

Based on series-expansion studies it has been
recently suggested' that the Ashkin- Teller model
in d = 3 dimensions might violate the universality
principle (such as the two-dimensional Ashkin-
Teller model, which resembles the Baxter mod-

LOg„[1-TC(G)/Tj

FIG. 8. Effective exponent puff(T, G} for the Ashkin. —
Teller model in three dimensions with the asymptotic
exponents y, =2. 2, yet=1. 6, y2, =0.2. The parameter
p defines the path of approach to criticality.
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The ratio y„y, = is
(6.1) with i) =0 yields X=g,«~"'f"(0) for the suscep-
tibility in zero ie* f ld H. This result can be written
in a form similar to Eq. (3. 30),

A

X(gi, 0)=e 'f"(0) with g, =e ~i' . 6. 4

Fisher-renormalized critical exponents char-
acterize the transition in a region close to the crit-
ical temperature if the transition is observed at

't X = —8E/'8G instead of at constantconstant density
field G. %e write the constraint in the form

8FX=X(T, G) = ——

= — go —(const) (2 —o.') ' g',
8G 8G

(6. 5)

FIG. 9. Flow diagram in the scaling- '
p'n -field space for

the tricritical and critical phas e transitions of the Ash-
kin-Teller model in three dimensions. 0 = Po(T) +g, P, (T) +0 (g~i),

8G
(6. 6)

Now we solve g, =g, (T, G) in q.E . 6. 2 for G
= G(gi, T), and expand Bgi/8G into powers of g, :

acteristic for crossover phenomena wwith ver
transients. Itsmall crossover exponents or slow tran

s that the critical region is very narrow and
that the asymptotic critical behavior is app
extremely slowly.

8G
—(const) (2 —n) gi =P2(T)+ O(g, ) .

Then Eq. (6. 6) for the constraint becomes

X —Po(T) =g,Pi(T)+ gi Pz(T),

which can be written in the form

(6. 7)

(6.8)

VI. FISHER EXPONENT RENORMALIZATION

In this section we show that the FiFisher exponent
al t. 13 ls a crossover phenomeno n thatrenorm iza ion i

ith theis described by the model equations (3.3) wit e
(3. 7). Therefore, all results of Secs.

IV and V, subject only to a redefinition o e
ing fields and indices, apply to this case.

%e consider a, system with the thermodynamic
potential w icF h' h depends on three experimental
ields: the temperature T, an irrelevant ie

and the field H that couples to the "order param-
eter. " Near criticality the potential E can be
written in a scaled form,

P(go& g it gh)

=go+a'i'"f(gh/gi

h the g's are scaling fields. The field go rep-
resents the analytic contribution to E, the fie g,

th departure of the system from the
critical line T,(G) in the (T, G) plane, an g„ is

field. (It is assumedsymmetry-breaking scaling fie . i
that the transition occurs at 8= 0. ,=0. , %e assume
that both go and g, are smooth functioctions of T and G,

g 0=go(T, G), gi= gi(T, G) . (6. 2)

The phase transition observed at constant field G
is assumed to be governed by the ordinary, asymp-
totic scaling indices

y, = d/(2- n.), y „=—,'(d + 2 —i)) . (6.3)

r -g, (I - u) +g', ™
u

by introducing the reduced variables

X —Po(T) P2(T)' P,(T)+P,(T) ' P, (T)+P,(T)
'

(6 9)

These results can be interpreted in terms of the
scaling- ie a,-f' l.d pproach to crossover phenomena.
The critical temperature is defined by g, (
=0; hence

(6. 11)

d(1 —n)
y 1X 2

do.
y (6. 12)

P,(T.(X))=X .

Therefore, the field v in Eq. (6.10) is proportional
X and char-th relative temperature T —T, X, an

stemacterizes the departure of the constrained sys
from critic i y.al't We note that the metric (scale
of ~, etc. ) is determined by the details of the func-
tions P(T). From Eq. (6.9) we find that gi 7 ol

d = ' " ' for v =1. Hence v plays theU 0 andgl T

role of an irrelevant field and determines the
crossover from the unrenormalized exponent y
=2 y„w en'h «1 to the Fisher renormalized
exponent y = y, ~ ='«'=2/ =y/(I —n), when v=1. Thus,
in addition to the indices (6. 3) we can introduce
two other asymptotic indices, the Fisher-renor-
malize in ex y»' dex y and the crossover index y~,
which are given by
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%'e expect that the indices y, x, y„andy~ play for
the Fisher renormalization the same role as the
indices y~, y„, and y« for the tricritical cross-
over phenomena. By making the substitutions

T~ Pg U~P

X1X 3 1c & 31 31t & ~4 ~8t

(6. 13a)

(6. 13b)

(0 2r) 3(2-u)/& (6. 14)

For decorated Ising models with a =-,' this width is
approximately S'c„=3 ~10, in agreement with the
result in Fig. 10. The size of the inner, i. e. ,

1.44— p =1~0—

1.40t-

1.56

&' ~.~z- g

1.28

in the boundary condition (3. 28), or equivalently
in Eqs. (4. 1)-(4.5), and by observing that now

e ~~ =g„we obtain exactly the constraint equation
(6.9). Therefore, the Fisher exponent renormal-
ization (in this approximation) is precisely described
by our crossover scaling-field equations (3. 3).

Hence the results for the susceptibility X and the
effective exponents y« that were derived in Secs.
IV and V for tricritical systems apply also to sys-
tems with Fisher renormalization due to a con-
straint [with the identifications (6. 13)]. Of par-
ticular interest are the scaling function for the
susceptibility X(r, u), given by Eq. (4. 8) or (4. 9),
and the effective exponent y,'tt'(r, u) given by Eq.
(5. 21). Numerical results for y'~,' with the asymp-
totic exponents (3. 7) are shown in Fig. 10. Byapply-
ing the definition (5. 16)for the width of crossover re-
gions to the crossover region yto y~', we find for the
corresponding 25)c crossover region

I

x u(1 —u) in(1/7) + ~ ~ ~, (6. 15)

with yi gtf(u)=yt+u(ytx —yi) in the region r
exp[ $j tf(v)/(I —u)ye]. Hence it deviates only

for small r from an effective exponent ytx'(u)
= 2/y, „,(u). The "flow diagram" (lines of constant
)I, and f/) in the (v, u) plane for the constrained sys-
tem is very similar to Fig. 9 for the Ashkin-
Teller model. The only difference is that the lines
of 7= const have a small positive slope here be-
cause yU(. &yi

VII. EFFECTIVE EXPONENTS AND SERIES EXPANSIONS

Series-expansion techniques have been widely
used to estimate the asymptotic values of critical
exponents from the first n terms of power-series
expansions for thermodynamic and correlation
functions. In this section we show that the method
can easily lead to wrong conclusions for systems
with crossover effects due to competing critical in-
stabilities. %Ye define effective critical exponents
as functions of the number of terms of series ex-
pansions, and study the kind of information that
can be obtained from n terms of such series.

A. Effective exponents from series expansions

First we describe the results of numerical cal-
culations. We start from the explicit expressions
(4. 8) and (4. 9) for the susceptibility y and expand
around p,&=1,

X = Q a„z" with x = 1 —ttt .
fisto

(7. 1)

Fisher-renormalized region can be estimated from
Eq. (5. 15). The large width of the crossover re-
gion makes it probably impossible to observe ex-
perimentally the complete crossover between the
asymptotic critical exponents y and y' '. ' ' It is
more sensible to determine also experimentally
effective exponents and to try to detect the onset of
the crossover. Since the crossover exponent y~
= 0.2 is small the effective exponent y,'tt'(v, u) can
be approximated by Eq. (5. 26), i. e. ,

&eVt (~~ u)= 1+2 2

i~oft(u) yt, oft(u)

1.24

-2G
Log~ f&-Tc (&)~T]

An effective exponent y,«(n) depending on the num-
ber of terms included in the expansion (7. 1) is then
defined by the ratio method, ~

FIG. 10. Effective exponents 'Y~fj(T, 6) for a system
exhibiting Fisher exponent renormalization due to a con-
straint. The asymptotic exponents y„=l. 4, y~ = l. 6, and
y+=0. 2 are those of the decorated Ising model. The
crossover occurs from the Ising exponent p =2!y~ to the
Fisher-renormalized exponent p "~= 2!y». The cross-
over exponent yz determines the width of the 25lo cross-
over region WcR(0. 25) -3 &10 .

y„,(n) = 1 ~ " —1)a„—1 (7.2)

In general, the effective exponent y,«(n) is also a
function of the nonordering field 6, or, in our con-
vention, of p(G), i. e. , y, «(n)=y„, (n, p). This re-
sult is not in contradiction to the universality hy-
pothesis, which states that the usymptotic critical
exponents are independent of irrelevant variables.



E F FE C TIVE CRITICAL AND T RIC RITICAL EXPONENTS 309

Exact coefficients a„ in the expansion (7. 1) were
obtained numerically by solving Eqs. (4. 1)-(4.4)
to order n in x = 1- p, and substituting the results
into Eq. (3.30). Figures 11-13show the effective
exponents Y,ff(s p) f orvarlous values of p as
functions of 1/n (in the interval n = 3, ..., 20) for
the tricritical system with the asymptotic indices
(3.4), the Ashkin-Teller system with the indices
(3. 5), and the Fisher constrained system with the
indices (3.7). (As in Sec. V we choose y = 1 and

hf =0. 5. )
The most striking result is that the effective ex-

ponents y„t(n, p) appear to depend strongly on the
irrelevant field p and only aueakly on the parameter
n. From Fig. 11 we conclude that we can probe
with n= 20 terms the asymptotic critical region
only when p ~ 0. 5. The universality principle
(which is built into our model) requires that

p,~(n, p) approaches, in the limit n- ~, the asymp-
totic value y, =~~for all p&0. Figure 11 shows that
it becomes increasingly difficult to draw that con-
clusion from calculations of y,f, (n, p) based on only
20 terms, if the critical line is approached along
paths with p&0. 5. This result is obvious from
the location of the crossover area shown in Figs.
1 and 6. To get a rough idea of the tempera-
ture region that is probed by n=20 terms of
the expansion one may compare the values of
the effective exponents in Figs. 5 and 11." [For

0.1 0.2 0.3

1.34
p=o

0.1

1.2h-

Q.
c" 1.1 '-

)$

0.2

0.3

0.4
0.5

0.7
0.8

0.8L0
IIIIII I I i ! I

1/20 1/10
1/n

I

1/5 1/3

FIG. 12. Effective exponent &,ff{n, p) versus 1/n for
the Ashkin-Teller model in three dimensions. The pa-
rameter p is defined in Fig. 2. Based on a series of 20
terms it is impossible to draw conclusions on the validity
of the universality principle for this model. The expo-
nents in the limit 1/n 0 are obtained from Eqs. (7. 7)
and (7. 12).

example, along the path p =0. 1 the temperature-de-
pendent effective exponent y,ff at about p f 4&10
However, the 10/& crossover to the asymptotic
critical behavior (y,« =1.30) is only completed
two decades closer to criticality at p,, = 3X10 .]
The effective exponents y,«(n, p) in Fi.gs. 12 and

13 for the Ashkin-Teller model and the Fisher
constrained system show qualitatively the same

1.6I——-T— 0.1

1.2

O.7

0.6
0.5
Q4

1.5 0.1 0.3

@=1.0

O.B

0.8

0.7

Q4

0.9I Iiiii i~ Li~~~
O 1/2O

1/n

I

1/5 1/3

0.2
0.1

FIG. 11. Series-expansion data for the effective ex-
ponent Jeff(n, p) of the tricritical system as a function
of the inverse of the number of terms n included in the
series. The parameter p, which defines the path of ap-
proach to criticality, is defined in Figs. 1 and 2. For
all p & 0 the asymptotic value of the exponent in the limit
1/n 0 is p~= T. The figure demonstrates that this fact
is difficult to confirm by a series of only 20 terms. The
results for jeff for small 1/n and p=l, 0. 9, 0. 8, 0. 7,
0. 6, and 0. 0 are obtained from Eqs. (7. 7) and {7.12).

1.2 III'Ii|II. L~ ~ ~ J
0 1/20 1/Io 1/5

1/n
1/3

FIG. 13. Effective exponent &~&f(n, p) versus 1/n for
a decorated Ising system exhibiting Fisher exponent re-
normalization. The parameter p is defined in Fig. 2.
The series of 20 terms does not show the convergence
of the effective exponents (for p& 0) towards their asymp-
totic value p'") = l. 43 at 1/n= 0. The effective exponents
in the asymptotic 1/n region are calculated from Eqs.
(7. 7) and (7. 12).
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behavior as Fig. 11. Quantitatively the effective
exponents exhibit an even weaker dependence on
the parameter n. The result in Fig. 12 makes
it understandable that the validity of the univer-
sality principle for the Ashkin-Teller model
could not be deduced from relatively short series
for the exponent y. '

8. Asymptotic formulas for effective exponents

The effective exponent y,«(n, p) can be discussed
in analogy to the approach to y,«(T, 6) in Sec. V.
Given a path of G = const, there are hvo questions
of interest. What is the size of the crossover re-
gion as a function of 1/n? How many terms of a
series expansion are necessary to determine the
true asymptotic critical exponent'P Here we will
only discuss a third question: the convergence of
the effective exponent y, «(n, p) for large n towards
y, or r, as a function of the crossover exponent
that governs the competition bebveen the two fixed
points. In this paragraph we consider the case
@,& 1, i.e. , y2, & y„. The examples discussed in
the preceding sections fall into that category. In
Sec. VIIC we comment on the case ft), & 1, which
is relevant for the crossover in anisotropic clas-
sical spin systems.

Asymptotic formulas for the effective exponent
y, «(n, p) can be derived by starting from the ex-
pansions (4.15}and (4.17) for y. We evaluate these
exponents along paths p(G)=const, i.e. , p2=p+ri1,
in the scaling-field space as shown in Fig. 1. In
the critical region c,«1 along pa= p+rp, &

we ob-
tain from E(l. (4. 17) the leading terms

&"p)"'[1-Ac(p)p1""+O(p1 &1
"}] (7 3)

with the exponents y, and (f), defined in E(l. (4. 12b)
and the amplitude

for all n satisfying

l(()( ( )) (1 p) p rcl) 1 (7 6)

+ O(n 0.182) (V. 9)

which describes well the p dependence of the ef-
fective exponent in Fig. 12. In Figs. 11 and 13,
improved matching between the asymptotic and
exact series expansion results can be achieved by
including the next correction term to E(l. (V. V)

which is of the order n
An asymptotic formula for the effective exponent

y,«(n, p) in the tricritical region c,«1 can be sim-
ilarly derived by starting from E(l. (4. 15). For
small nonzero p one obtains

@2r(y,)y,«(n, p) =y, +A„(p), , n" +. . . ,~ &rt+Atf

with the amplitude

(7. 10a)

A1, (p)= ' + " (1-p) '«'*11p,
2o, 8 lnX

y2, S P2 02=0

in the region

n»1 and n0«&(l —p)"1 "('p 1 .

(7. 10b)

(V. 11}

For the tricritical path p2=ri1, [with r=h 2com-
pare Eq. (3.22}]the amplitude A«vanishes and the
first correction to r, becomes of the order n~t ',

Therefore, if the confluent singularities in X differ
by a small crossover exponent, Ig, l «1, then the
effective exponent y, 2, (n, p) approaches the asymp-
totic value r, very slowly. That is, for example,
the case in the Ashkin-Teller model in three di-
mensions. With the set of exponents (3. 6) we ob-
tain the equation

y (& p) 0 91+0 23(1 p) p
0,721n-0, 091

".(o)= ' ' - )0 p)i"'"". -2(T~ ~ in/

ye~ 8 Pa 3. &

(V. 4)

The nth binomial coefficient of the expansion of
(1-x)" is

(41- 1)r(y1)y„,(n, 0) = y, +A2, (D) r(
'
t t

O (
-1 2 (01-1))

with

(V. 12a)

- -r -""'
( —1) — when n

n r(y) (V. 5)
Ag, (o)=( ' ~ "

) (V. 12b)

In this approximation we obtain

r(y.) ' r(y. +@.)"

+ O(n-', n-2("(}

or, by using E(l. (V. 2),

ya22(n, p) =y. +A.(p)
I 4.lr(y, )
I '4+4m

(V. 6)

For the tricritical system with the indices (3.4)
and r=0. 5, for example, Eqs. (V. 12) lead to

y «(n, 0)=1 —D. DV05 n ' +O(n '), (7. 13)

which yields y„,(20, 0) = 0.984, in good agreement
with the result of exact series expansion in Fig.
11.

Effective exponents y „,(12, p2) along paths p2
= const can be similarly defined. Up to corrections
of order 1/n these exponents scale

(V. V) x[1+0(n '}], (7. 14)



E F FEC TIVE CRITICAL AND TRICRITICAL EXPONENTS 311

which is analogous to the result in Eq. (5.3).
Moreover, if the scaling field p, z is almost mar-
ginal, that is if ymt«1, then we find in analogy to
Eq. (5. 26) that

y.«(n, pa) =y.«(pg)+A(pm)(inn)+0(yes)

(V. 15a)
where y,«(pm) is given by Eq. (5. 23) and A(pa) is
the amplitude,

A(pm) = —,'yz, (y«-y„) pa(1 —Pa)ye«(pa) (7.15b)

1.40

1.36I—

Q.

c 128
)I

1.24'

0.1 0.2 03

2.

6—O I

This result demonstrates again the very weak de-
pendence of effective exponents on the number of
terms n of series expansions if the crossover ex-
ponent is small. Equation (V. 15) can be used to
estimate y„,(n, p), as described in Sec. VD. ~~

The results in this section show that the size
of the crossover exponent determines the degree
of convergence of the effective exponents y, ff(n)
towards their asymptotic values. This fact indi-
cates the limitations of the series-expansion meth-
od for systems with crossover phenomena.

C. Crossover phenomena with P, & 1

Classical anisotropic spin systems are charac-
terized by crossover exponents larger than 1.'
The set of critical indices describing competing
fixed points of the Heisenberg-type and the Ising-
type is

(7.16)c= 1.60 y yet= 1.45, yet=1. 81,
which yields Qq=ym, /y&, = l. 25. Although our
model equations do not adequately describe aniso-
tropic spin systems we mill use the equations here
to discuss some features of crossover phenomena
with fII) t &1. We continue to refer to the two com-
peting fixed points as the tricritical fixed point and
the critical fixed point (instead of naming them.
isotropic and anisotropic).

Figure 14 shows, for a system with the indices
(7.16), the effective exponent y,«(n, p) as a function
of 1/n for several values of p. All paths with p & 0

approach the critical line, which exhibits Ising-
like critical behavior. The curves for y,«(n, p)
show a Pronounced bending towards the asymptotic
Ising value y, = 1.25. This good convergenc. e of
the effective exponent towards its asymptotic value
contrasts with the sueak n dependence of the expo-
nents in Figs. 11-13. It is a consequence of the
large value of the crossover exponent, which here
leads to a 25% crossover region with a width of
about one decade in the reduced temperature.
(Hence, series expansion techniques can be very
useful for the study of crossover phenomena in the
anisotropic Heisenberg model as was shomn by
Jasnow and Wortis. ') The path p=O, i.e. ,
= rp. , with r= 83*, approaches the tricritical fixed

1.20'-

1.16. , JJJII I I I ) I I I I

0 1/18
1/n

FIG. 14. Effective exponents p@fg(s p) versus 1/n for
a system with the asymptotic scaling indices (7. 16). The
curves for the effective exponents along all paths ap-
proaching the critical line bend towards the asymptotic
value y =1.25.

point. We notice from Fig. 14 that the curve for
y„,(n, 0) does not extrapolate to the Heisenberg
exponent y, =1.38. How can the deviation be
explained'? From Eq. (4. 17) we find for pz
=rp, ,«1 the expansion

p, «[1 -A p, +O(p, ,~)], (7. 1V)

with the exponents

y= —+ c - $2t
31g 32t 3 ic

and the amplitude

(7. 18a)

8 f4 Pap=1
(V. 18b)

As in Eqs. (V. 5)-(V. V) we find the effective expo-
nent

4 1'(y) - .3"
y «(n, 0)=y+A &(- ~)

n-4 +0(n ~) (V. 19)

With the set of exponents (V. 16) and r =0. 5, this
leads to

y „(n, 0)=1.354+0. 041 n ' +0(n ') (7. 20)

which for n=18 yields y„,(18, 0)= 1.375, in agree-
ment with the result in Fig. 14. In the limit n- ~
neither the tricritical exponent y, nor the critical
exponent y, is approached but y = 1.354. Figure
15 gives the clue to this behavior. Because of age) t
& 1 the shape of the crossover region differs from
the one in Fig. l. [The latter figure is drawnfor a
system with the exponents (3.4).] The tricritical
path, although confined to the crossover region for
all practical purposes, approaches the tricritical
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FIG. 15. Phase diagram in the (p&, p2) scaling-field
plane for a system with a crossover exponent ft)& & 1. The
competing fixed points are located at (0, 0} and (0, 1).
The shaded area denotes the crossover region; its shape
differs from the shape of the crossover region in Fig. 1.
The effective exponent p~f&(n) along the "tricritical" path
p = 0 is discussed in the text,

fixed point finally through the critical region as the
insert in the figure shows. In other words, for
this path the amplitude exponent —2a', /ya, in Eq.
(4. 17) contributes to the asymptotic tricritical ex-
ponent.

The model equations (3.3) do not adequately de-
scribe the competition between an isotropic
(Heisenberg) fixed point and an anisotropic (Ising}
fixed point. First, we have neglected the ("singu-

j.4lar") shift of the critical temperature,

[r,(p,,) —T,(O)].„,= Dp', ~'& + ~ . ~ . ('7. 21)

This nonanalytic shift of 7, has important conse-
quences here because for P, &0 the role of the
scaling fields p, and p2 is interchanged. (The field
p.z is conjugate to the most relevant scaling den-
sity Qz, and p, is the tangent to the critical line. )
Depending on the value of D the "tricritical" path
p. &= r p, , can lead to three different sets of asymp-
totic exponents. %hen D &0 then the path p, z= rp,
crosses the critical line before reaching the tri-
critical fixed point. Consequently the exponents
are critical-line exponents. For D& 0 the most
relevant scaling density Qz determines the tricrit-
ical exponent y, which becomes v~, =2/yq, (that
is, yz, = 'Y,/P, ). In this section we have discussed
the boundary case D= 0, which yields the asymp-
totic tricritical exponent Y of Eq. (V. 18a). Second,
because of the higher symmetry of the isotropic
(Heisenberg) fixed point compared to the tricritical
fixed point we expect that for the former case the
parameter r in Eq. (3. 21) vanishes. Then the
amusing dependence of p, on the value of D in Eq.
(V. 21) does not occur.

VIII. SUMMARY

%e have presented a scaling-field approach to
crossover phenomena near critical points. In par-

ticular, scaling functions and effective critical ex-
ponents have been calculated.

Our approach differs from other formulations in
three important aspects:

(i) It is based on a description of critical phe-
nomena in terms of scaling fields. These fields
are determined by a set of coupled, nonlinear dif-
ferential equations. The specification of the initial
conditions amounts to the specification of all inter-
action parameters and of the values of all experi-
mental fields. The differential equations determine
the "flow diagram" for the transition in the scaling-
field space.

(ii} The approach extends the description of
critical phenomena into the sehole critical region.
Approximations can be made in a controlled way

by truncating the scaling-field equations. The
guidance for approximations is a classification of
the scaling fields according to their relevance.
Crossover phenomena (including "confluent singu-
larities, " corrections to scaling, etc. ) are de-
scribed by nonlinear terms in the scaling-field
equations.

(iii) The approach is based on a microscopic de-
scription. The renormalization-group procedure
allows the derivation of the scaling-field equations
from a Hamiltonian description of the problem.
An example of such a derivation was given in our
paper on "logarithmic corrections. "

In the present article we have used as a starting
point a simplified set of scaling-field equations for
crossover phenomena. On this basis we have out-
lined the sealing-field theory for crossover effects.
The model equations are constructed such as to
contain the essential features of crossover phenom-
ena. However, it is obvious from the approxima-
tions made that model Hamiltonians for various
systems exhibiting crossover phenomena will lead
to specific modifications of the equations. Further
work on this aspect of the problem is under way.

ACKNOWLEDGMENTS

The authors acknowledge with thanks the hospi-
tality of the Institut fur Festkorperforschung of the
Kernforschungsanlage Jiilich (E.K. R. ) and of the
Department of Physics at Duke University (F. Z. W. )-
One of the authors (E.K. R. ) is indebted to Pro-
fessor H. Meyer for extensive discussions on the
experimental aspects of tricritical phenomena,
which were a considerable stimulus for these in-
vestigations.

APPENDIX A: ASHKIN-TELLER MODEL

We note that the Hamiltonian (3. 5) has a special
symmetry for 7= 1 which becomes obvious if we
introduce S;T& = U, . Then H is symmetric in the
three variables 8, T, U,
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H = —K Q (8p~+ T( T~+ U( U)),

with the symmetric restriction

S(T]U] =1 .

(Al)

(A2)

ical line that is nonanalytic at the tricritical point.
We keep Eq. (3.3c) but replace Eq. (3.3a) by

egg
sf alt»( i 2) ylc(i 1 +1c i 2)i 3

At first glance the Hamiltonian (Al) looks similar
to the Hamiltonian of a classical Heisenberg model
(three-vector model). However, the restriction
(A2) leads to an effective interaction of the type
STU which is a relevant operator for the fixed
point of the three-vector model. [The operator
was denoted by Of in Ref. 25. We found y = 1 —t j22
+ O(e ) for d = 4- a. ] If the fixed point of the Ham-
iltonian (Al} can be described at all by an expan-
sion starting from the Gaussian fixed point then we
expect an expansion around the dimension d = 6
similar to Mack's. From high-temperature ex-
pansions one estimates y =0.91."

It is questionable whether this fixed point applies
to the critical behavior for 0 «7&1 since we do not
know whether the perturbation S&S&+7&T& —2U& U&,

which leads from 7=1 to 7«1, is relevant or not.
It can be shown that this perturbation is marginal
(that is y = 0) for the two-dimensional Ashkin-
Teller model, where this result follows via dual-
ity' from the eight-vertex model. If there exists
an additional fixed point for the critical behavior
in the region 0&7& 1 then we have to choose 7~
such that the perturbation by the slow transient Q~
vanishes. A good estimation for y is then ob-
tained from high-temperature expansion for T= ~@.
%e note that such a choice will not substantially
affect our results.

One may argue along the lines sketched by Wilson
and Fisher that the system behaves like an XF-
model along the critical line, which would imply
y, = 1.32. However, since the exponents obtained
by Ditzian" are quite different from this y„we
tend to assume that the Ashkin- Teller model is
governed by a different fi'xed point.

APPENDIX 8: GENERALIZED SCALING-FIELD
EQUATIONS

Here we generalize the set of scaling-field equa-
tions (3.3) to describe a system exhibiting a crit-

I

+ay, ~(l —p, ) .

This equation describes a system with fixed points
at

I(0, 0),
(u|, vf)=

trier itical fixed point
(82)

(pf'„1), critical fixed point.

Near the tricritical fixed point we find, in linear
order in p, &,

81 ~a

8Pp
-~) =yet~a ~ (B3b)

The eigenvalues are y„and y», the eigenvectors
are (1, 0) and (a, ya, -y„). For the critical fixed
point the linearized equations read

Bp,,
sf =X|e(» P~c)

—(3 |,&~, +7„4~,+ a)(n~ —1), (B4a)

8 p,2

sf =-ya~(i a-I) . (B4b}

The eigenvalues are y&, and -yet and the ejgen-
vectors are (1, 0) and (y„g,*,+y| p|++g $g +gag).
%e note that for ya, =y„ there is only one eigen-
vector at the tricritical fixed point. Similarly, for
y&, = -y&„only one eigenvector would exist at the
critical fixed point. However, we have excluded
this case by requiring y&, &0, and y&t &0.

Since Eq. (Bl) is linear in p, it can be inte-
grated. We divide Eq. (Bl) by Eq. (3.3c) and find
for p. , as a function of p.&

p g
u&(~&)=&,u2'(I- i &) "+2' " ~&(1- um)"&(I+A 2-p„3-p„. ~&)

t

or

+I p
&s(1 —&a) 'E(p„ 1 -p„2-p~' Pa)

soya~

Pt

»(v2) = &.v~'(I —p&)" + uf,'g, '~E(p, —1, —p; 1 —p . 1 —n )

—, p
'im(I~a)&(, ptI .;p2-p. ; I-~-3) .s~y at p

C
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Here the p's denote the inverse crossover expo-
nents,

Pg=yi~/yat ~ Pc= yacc/ya~ . (BV)

I' is the hypergeometric function, and C, and C,
are integration constants. ' Equation (85) is use-
ful for the discussion close to the tricritical fixed
point and Eq. (86) for the discussion close to the
critical fixed point. The connection between C,
and C, is

F(I -p.)I'(I —pi)
I'(2 P. -P-g)

(810)

Vfhen on the other hand p, = 2 —p„3—p„.. ., i.e. ,
when y, g

= 2ypg +y ~„3yp g +y „,.. ., or when p ~,
(1 -p, ) = a/ya„ then the amplitude C, in Eq. (BS)
vanishes.

The solutions (85) and (86) can be expressed in
terms of theg scaling fields g«(f) orgy(l) intro-
duced in Eqs. (3.S) and (3.12). We define

Ct=g«(I)fga~(I)l" C.=xi.(I)ha (IH" (»I)
Instead of Eqs. (3.8a) and (3.lla) we then obtain

&i(f) =xi~(I)[1+ga~(I)] '"~'
x p(, (l-p, )—

yap
(88)

Pg anna
—Ct I a+0(i a (BS)

When p, =1, 2, 3, . .., i. e. , when y„=yq„2y2„
3yat, ... , one finds

We note that E(a, b; c; x) is analytic for (x( &1
provided c neither vanishes nor is a negative in-
teger. Furthermore, for x=0, E(a, b; c; 0)=1.
From Eq. (86) we see that only the curve with C,
= 0 passes through the critical fixed point (note
that p, & 0). This curve is the critical line. It is
analytic at the critical fixed point. At the tricrit-
ical fixed point p~ = 0 and only the first termonthe
right-hand side of Eq. (85) is nonanalytic, pro-
vided p, is not a positive integer. The@. the singu-
lar contribution to the equation for the critical line
is

Pt gag

a/ya, g„(l)
+1 1, (I) F(p.~ 1'2-Pt; -za~(I))

Pt +gag (812)

»(I) =xi.(I)(1+ga.(f)1 '"'"
+ ",

)
F(p, —1, 1;1—p„-ga, (I))~+gp L'~

s/yac ga (I)

p I +g (I) F(ps' lf 2 Pc 7' 8'sc(f ))'
(813)

These results together with Eqs. (3.8b) and (3. lib),
respectively, represent the I-dependent scaling
fields on which further discussion can be based, as
in Sec. III B.
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