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A new treatment is presented for the Landau domain structure that is realized when a mag-
netic field less than H~ is applied at a small angle to the large faces of a flat plate of a type-I
superconductor. We work within the established framework of the Landau-Sharvin theory but
attempt to take into account the nonlinear aspect of the magnetic interaction energy. The re-
sult is a new expression for the domain periodicity as a function of the fraction of the sample
surface in the normal state, both of which quantities are direct experimental observables.
Recent experimental work lends support to our result.

I. INTRODUCTION

This paper presents a new theoretical approach
to the problem of the regular domain structure
that can be realized in a type-I superconductor with
the inclined-field technique. ' Such a structure is
the simplest and most regular that can be produced
in the intermediate state and is the source of our
most reliable experimental values for the funda-
mental surface-energy parameter h. The existing
theoretical treatment is Sharvin's extension of
Landau's basic theory. 3 This treatment, the as-
sumptions of which have been questioned in the
past, ' has nonetheless remained our only the-
oretical account of the problem and is indeed quite
adequate to account for the observed domain
periodicities as a function of H/H„where H is the
applied field and H, is the critical field. How-
ever, as discussed in the following paper, it
does not now seem adequate to account for some
precise new data on the periodicity as a function of
C„*,the surface fraction of material in the normal
state.

Our treatment is essentially a modification of
the Landau-Sharvin (LS) approach and so it is
helpful to first discuss the relevant aspects of that
theory. This is also done because we have found
it convenient to introduce a simplified procedure
for evaluating the thermodynamic potential. It
is appropriate to demonstrate, as we shall do in
Sec. IV, that our procedure does give numerical
results very close to those of LS when applied to
the thermodynamic potential chosen in that theory.

II. LANDAU THEORY

The Landau domain structure for the interme-
diate state of a flat superconducting plate in a
uniform magnetic field H, applied perpendicular
to the plate, is sketched in Fig. 1(a). In the bulk
of the material a normal domain has width d
which increases to d~ at the surface. If the
spatial periodicity of the domain structure is a,
then it is convenient to define the dimensionless
ratios

AC„=—(1 —C„)tan '
N

(2)

As far as we are aware, the only experimental
test of this expression for EC„is the microwave-
absorption work of Wilkinson on Al cylinders in
a transverse field. That work gave rough agree-
ment with Eq. (2) despite the fact that the domain
structure for such an experimental geometry is
probably much more complicated than shown in
Fig. 1(a).

Landau's expression for the free energy due to
the domain structure may be written with the co-
ordinate system of Fig. 1(b) which exhibits the
cross section of a single superconducting domain.
The large sample surfaces are located in the x=0
and l planes while the origin is chosen as a point
midway between two adjacent normal domains.
The domain structure is periodic in the y direc-
tion, so in writing down the thermodynamic po-
tential one only needs to be concerned with the
single superconducting interface whose interac-
tion with the x-y plane is the line, or profile,
0-a-b. Point a is the point of intersection of that
profile, y(x), with the y axis while b is some point
deep in the superconductor where the profile has
become essentially parallel to the x axis. If 4
is taken to represent the thermodynamic potential
per unit plate area of the sample, then we get
directly from Landau's paper' that

H'la H' H
4' = ' + ' (u)- y)dx+ H„ydy4@a 2ma 2@a 0

d+-d ~ d+
C = — aC =

N a t N a ~ P

Elementary arguments demonstrate that C„=H/

H, for a plate whose two other dimensions are
very much larger than the indicated thickness L.

Furthermore, using a boundary-condition argu-
ment, Landau suggested' a form for the profile of
the normal domain near the surface and with it
the dependence of 4C„upon C„:
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FIG. 1. (a) Landau intermediate state structure in a
type-I superconductor. A magnetic field H is applied
perpendicular to the plane of the plate and the normal
(superconducting) regions are shown shaded (unshaded),
respectively. (b) Coordinate system used for describing
a single N-S interface (see text).

HH, "'
+ '

(y ds —N1dx) . (3)
27Ta

In this expression H„is the y component of the
magnetic field at a point with coordinate y lying
just outside the profile. The bulk width of the
superconducting domain is represented by 2' while
b, denotes the surface-energy parameter and
ds = (dx +dy )' . The first term in the Landau
potential is the well-known excess energy intro-
duced by the existence of the normal-superconduct-
ing interface. It can easily be shown, and is in
any case evident in the Landau result [Eq. (3)],
that this term plays no role in establishing the
relationship between b,C„andC„.Its presence,
however, is crucial in establishing the periodicity.
The three integrals in Eq. (3) represent the rele-
vant part of the magnetic contribution to the ther-
modynamic potential. Subtracted from the total
magnetic energy is that contribution which would
arise if the domains happened to be perfectly rec-
tangular, i.e. , not broadened at all. It will be
shown explicitly in Sec. V that this portion does
not influence any observable quantities. The first
of the magnetic integrals represents the excess
energy of normal material coexisting in thermal
equilibrium with material in the superconducting
state. Landau chose to represent the interaction
energy between the external field and the total
induced magnetic moment m of the sample by the
term ——,'mH which leads directly to the final two

integrals. In these, the magnetic moment of both
curved and straight portions of the superconducting
domain is obtained from a consideration of the
tangential component of the local field along the
superconducting interfaces and the associated sur-
face currents. The field magnitude everywhere
along the normal-superconducting interface is

taken to be identically H, , If Eq. (3) is now min-
imized' with respect to a, while holding the exter-
nal field constant, one obtains the well-known
Landau result for the periodicity, here denoted
by a, to indicate that H is perpendicular to theplate,

a, = [u,/y(c„)]'",
where Q is a dimensionless function tabluated by
Lifshitz and Sharvin. '

III. SHARVIN'S EXTENSION (LS THEORY)

It is Sharvin's extension of the above theory
that enables one to deal with the more important
inclined-field geometry. Returning to Fig. 1(a)
it is supposed that the external field has been
rotated away from the direction shown, but main-
tained in the x-z plane so that 0= (H„O,H, ). If
p is in the angle of inclination of the field to the z
axis, then tanP= H, /H, . Experimentally, the do-
mains are observed to lie along the z axis as
drawn.

%e recall that the thickness of the plate, l, is
presumed very much smaller than both of its other
dimensions. This implies that the solution to the
z component of the magnetic field everywhere in
the normal regions can reasonably be taken as
H, . The applied field normal to the plate is, of
course, just H„. Further, the relation divR=O
shows that the x component of the field along the
interface at point f/ must be H, /C„, just as it is
in the perpendicular case. Since the total field
at point I/ must be H„one then has (H, /C„)'+H,
= K,. Setting h = I HI/H, gives Sharvin's result'
for the bulk fraction of the sample in the normal
state:

H, A, sinP
N (H2 —H2)1/2 (1 —h2 cos2P)1/2

Now, since the total field at any point along the
profile is taken to be H, and since the z component
of the field is constant everywhere, it follows that
the field tangent to the profile must be H„/C„
everywhere from a to b. Sharvin therefore ex-
tended the Landau theory by replacing H by H,
and H, by H, /C„in the final two integrals of Eq.
(3). The first integral remains unchanged since
it represents the condensation energy of the
broadened normal regions. To complete the ex-
tension, the interaction energy between the z com-
ponent of the induced magnetic moment and the
external field must be included in the free energy.
Remembering the constancy of H, everywhere in
the normal domains, this contribution can be
written

H.'
(2/ -y)dx

2%a

Adding Eq. (6) to the extension of Eq. (3) and em-
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ploying Eq. (5), one thus obtains the LS thermo-
dynamic potential

H2 ~g H2 H„4 = ' + *
z li

(u)-y)dx+ * Hy dy
4ma 2maCN „, 27Ta p

H2 b

(yds —a)dx) .
2maCN „', (7)

H2$+ H2a f H„a=
4

+
2 C, ~" ("- r)dX

4ma 2m CN c N

H.'a+ * (YL &u) dX, —
N e

(8)

where we have defined ~ = —,
' (1- C)))) and

L = [1+(dY/dX) ]'~ . This expression can now be
minimized with respect to a, holding H, and C„
constant. The differentiation is trivial, since

The general problem of deducing the relation-
ships between observables from Eq. (7) is not a
trivial one. We recall, however, that the profile
of the normal domain near the plate surface was
chosen by Landau to satisfy a set of boundary con-
ditions, as indicated in Sec. II. These conditions
amount essentially to ensuring that the local mag-
netic field magnitude is a constant along a b[se-e
Fig. 1(b)]. In the Landau theory, of course, the
field is just H, . In the inclined-field geometry,
assuming the solution to the z component of field
to be H, everywhere in the normal regions, one
finds that the local magnetic field magnitude along
a b, nam-ely, (H,

' —H', )'~', is also a constant. Thus
the same form for the profile, together with the
same dependence of hCN upon C„,might be antic-
ipated. [By placing certain constra, ints on the
possible profile, one can derive the same result
from Eq. (7) itself, as we shall show in a particu-
lar case in Sec. IV by constraining the profile
to a very simple family of curves. ] The LS the-
ory proceeds on the basis that the broadening
is indeed independent of the angle P. To establish
the periodicity it is still necessary to evaluate
the individual terms of Eq. (7). In order to
evaluate the sort of integrals appearing in Eq. (7),
Landau employed' an independent parameter, (,
which locates points along the profile. He then
introduced two functions to describe the profile
a b, y =aY(C„,() and-x=aX(C„,g), and a third to
describe the profile, O-a, y =aF(C„,t'). For
this choice of independent variables one also has,
in the LS theory, H„=(H„/C„}g(C„,$). From the
previous considerations, all these expressions
are taken to remain valid in the inclined-field
situation, although Eq. (5) is, of course, employed
to relate C„to the external field. Hence, insert-
ing the parametrized expressions into Eq. (7)
and utilizing the geometric relation 2u) = (1 —C„)a,
one obtains the LS thermodynamic potential in the
form

IV. SIMPLIFIED PROCEDURE

As mentioned previously, it is useful at this
point to demonstrate the validity of a simplified
procedure for dealing with the sort of integrals
that appear in Eq. (7).

In introducing these approximations one takes
note or some features of the LS theory itself. In
that treatment the profile y(x) has an infinite
slope at x =0 and also displays the feature y(x =r)
=—su [see Fig. 1(b)]. The simplest curve display-
ing both these features is

y(x)= a) —r+[r' (x —r)']'", 0&-x~r

i. e. , y(x) consists of a circular arc of radius r
centered at point (r, s)- r) followed by a line
parallel to the x axis, Referring to Eqs. (7) and

(8), it is further clear that an evaluation of the LS
-thermodynamic potential ~' entails a knowledge of
the function g. Again, in the LS theory one has
that H„(y=0)=0 and H„(y=u) —r)=H„/C„.Clea. r-
ly, any approximate H„must at least have the
functional form

(12)

where g is some monotonically increasing function
of its argument having g(0)=0 and g(1)= 1. The
simplest function satisfying all of these constraints
would appear to be

g(e) = sin-,' ev,

for which

J, g(e)ede=4/x'.

We further note the geometrical relations

a.C„=2r/a, 2zu = a(1 —C„).

(14)

Now, it is clear that the value of 4C„must be

each integrand in Eq. (8) depends only upon C„
and $, and the resulting expression can be im-
mediately solved for a giving

Z/2

a = (C' cot'P+ 1 '/'
N

where use has been made of Eq. (5). The function

@ in this expression is in fact the same dimen-
sionless function that appears in the Landau re-
sult [Eq. (4)] and is given explicitly by

@(C„)=2f ((u —Y)dX+2Cs f gFdF

+2C„f (Yl.—u))dX . (lo)

Thus, Sharvin's result for the inclined-field
periodicity is simply the Landau expression mod-
if ied by the factor (C„cotP+ 1 )
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0.3
+ +4m +16—2m

(16)
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FIG. 2. Surface enhancement of the normal fraction,
~C~ as a function of the bulk value, Cz. Curve 1: Re-
sult from simplified procedure [Eq. (17)]; curve 2:
Landau's result [Eq. {2)].

Note that this expression exhibits the characteristic
square-root dependence on l and b, which occurs
in the LS expression. Further, the angular de-
pendence is identical to that of LS [Eq. (9)]. Even
the numerical results are very close to those
given by the full LS treatment (see Fig. 3). Clear-
ly, the procedure that we have discussed provides
an excellent approximation to the formidable com-
plexities of the full LS theory. Without some
such procedure it would be difficult to make con-
tact with experimental quantities in the theory
that follows.

V. NEW TREATMENT OF LANDAU DOMAIN STRUCTURE
IN AN INCLINED FIELD

unaffected by changes of a at constant H„and C„.
(Such changes could be produced, for example, by
changes in the plate thickness. ) One must there-
fore have that r =Ra, where R may depend on H,
and C„,but can not depend explicitly on a. Em-
ploying this relation, together with Eqs. (7), (11),
(12), and (14) one obtains

It is our belief that the LS thermodynamic po-
tential [Eq. (7)] is not sufficiently accurate to
describe certain aspects of the inclined-field situa-
tion. Recall that its form was determined by rep-
resenting the interaction energy between the ex-
ternal field R= (H„,O, H, ) and the sample magnetic
moment m = (m„0,m, ), as —~m+, ——,'m, H, .
This representation is only strictly correct' if
the relationship between the magnetic moment and
the field is a linear one. However, an elementary
argument demonstrates that the relationship can-

+ +4m +16—2m — a,
(16)

where again &u = —,
'

(1 —C~). At this point in the
argument 4 is expressed as a function of the
variables, a, H„,C„,and R. One can now pro-
ceed to minimize 4 with respect to R at constant
a, H„,and C„,obtaining

I30—

I 20—

I IO—

I 00—

90—

tP=I0

C„(1—C„)(16+2v —v )
w'(4 —v)+ 2C„(6+2s v')— (17) 80—

Although our Eq. (17) does not bear much formal
resemblance to Eq. (2), it nevertheless gives
numerical values fairly close to that expression
as may be appreciated from Fig. 2. Note also
that b,C„(andtherefore R), has turned out to de-
pend only on C„and not on H„.

One can also, of course, minimize the C of Eq.
(16) with respect to a at constant H„C„andR.
In this manner one obtains, after some algebra,

70—
a

Js~ 60—

50—

40—

30—

20—

IO—

904

a = 2v(C„cotP + 1)
(2la)' I I I I I I I I I I

0 0. I 0,2 0.3 0.4 0 5 0.6 0 7 0.8 0.9 I .0

x 16 —(32+4v —2v ) 1 —CN

FIG. 3. Periodicity as a function of the bulk normal
fraction, C'~. Curve 1: result from simplified proce-
dure [Eq. (18)); curve 2: LS theory [Eq. {9)).



289S J. J. KREMPASKY AND D. E. FARRELL

not be linear, even in the ideally simple geometry
of perfectly rectangular domains. The magnetic
moment of a rectangular superconducting domain
is proportional to its cross sectional area and also
to the current flowing around its bounding walls.
Using Sharvin's relation [EIl. (5)] gives us that

m„~(H, /Cg)(1 —C~) ~ (H', - H )
~ —H,

I30-

I 20—

IIQ—

100—

90—

dF=dFg+dFq . (20)

If each contribution is now integrated with respect

m, ~H, (1- C )~H, [1-H„/(H,-H', )'~~] .
One immediately sees that the dependence of m,
upon 0, is intrinsically nonlinear, even in the
simplest case.

%e therefore return to first principles and ex-
amine the fundamental differential form for the
total free energy F of a magnetizable body located
in a uniform externally applied field, R. This can
be stated'0 as

dF= —SdT- m .dR,
where S denotes the entropy and m the total mag-
netic moment of the sample, while T is the equi-
librium temperature. Since the body considered
here is a superconducting plate in a field H & H„
one can explicitly recognize that it is in the inter-
mediate state and write dF as a sum of contribu-
tions due to the normal (N) and superconducting
(S) domains

80-

70—
0

60—
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ooIO—
8
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I I I I I I I I I I
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CIS

to the applied field while holding the temperature
constant, one obtains

F(T,R)=- I m dR+F„(T,O)+Fz(T, O), (21)

FIG. 5. Periodicity as a function of the bulk normal
fraction. Curve 1: result obtained in this work [Eq.
(35)]; curve 2: LS theory [Eq. (9)t.

Q. I3-

0. I2

Q. II

remembering that the total moment must vanish
at zero field. The integration constants can be
related to each other since

0. IO

f„(T,O)= f~(T, O)+H, /8v, (22)

CIGAR

0.09
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where f„andf~ are the free-energy densities.
Letting V„and V~ represent the total normal and
superconducting phase volumes, respectively, we
can write the free energy as

F(T, 8) = —f m dR+ Vf (T, O)+ H, V„/8 , v
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0 O. I 0.2 0 3 0.4 0.5 0.6 0,7 0.8 0.9 I.O
GIS

FIG. 4. Surface enhancement of the normal fraction,
~N by Eq. (32).

(23)
where V denotes the plate volume. Consider the
coordinate system of Fig. 1(b) where the normal-
superconducting (N-S) interface is indicated by
the line (profile) a-b-c-d. Points a and d are the
points of intersection of that profile y(x) with the
sample faces, while b and c are points deep within
the superconductor where the profile has become
essentially parallel to the x axis. The total
volume occupied by normal domains can be
written as C„Vplus a contribution due to the broad-
ening near the surface. For each superconducting
domain this contribution consists of the four
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130- l„l, "' l„l, "~ H yds

120—

IIO-

I 00—

l„l.
2'lt'a

(25)

90—

80—

The algebra can be simplified to some extent if
one examines the magnetic moment resulting from
a hypothetical rectangular domain profile, say,
m„. From Eq. (25) this is given by

70—

js~
60—

Hlv - Hira-
m& —

3I ~ 2&aC
+ r i 2&a

(26)
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CSI

FIG. 6. Periodicity as a function of the surface nor-
mal fraction, C$. Curve 1: result obtained in this vrork,
using Eqs. (32) and (35); curve 2: LS theory using Eqs.
(2) and (S).

corners, each of volume I,f', (w-y)d» where I, is
the plate length in the z direction. Letting l„de-
note the plate length in the y direction and recogniz-
ing that the total number of superconducting do-
mains is l„/a, we therefore have that

V„=C„V+(4l„l,/s) f (e-y)d» . (24)

A reasonable assumption of the LS theory is
that the z component of the local field is every-
where H, inside a normal domain. Elementary
considerations then allow one to write down the
components of the total magnetic moment of the
plate in terms of integrals along the profile:

H, lh H, 1 " 1
~ ' (» —» (»*~ — — «„»»»)»«.4' 2ma .~ a p

1
"

H
(»d» — »*()»«,

m aC„„,

(( f (»-»)d*)d«, (27)

Clearly, a direct minimization of Eq. (27) is out
of the question but one can make some progress by
using the simplified procedure whose validity has
been established in Sec. IV. Inserting Eqs. (11)-
(14) into Eq. (27) and performing the boundary
integrations one obtains, in this way,

Since u(=-,'a(1 —C„)it is evident that ms does not

depend explicitly on the periodicity (or, of course,
the profile). Thus, the simplifying addition of a
term f m„dRto the free energy can have no ef-
fect on any subsequent minimization with respect
to the profile or the periodicity. Finally, of
course, there is a contribution to the free energy
not recognized by Eq. (23) which arises from the
N-S interfaces and amounts to H, ln/4»a per unit
area of the plate. Including this contribution,
adding the term J ms dR, dropping constant terms
and noting that f «= 2f, f;+, we employ Eqs. (23)-
(26) to arrive at our form for the thermodynamic
potential 4 per unit plate area of the sample,

4(= ' + ' (1- —,»)R +—,[R —(1- C„)R+—, (1 —C„)]H, adH,Hl~ Ha ~ 2 1 " 4 1 24' 2m
'

m „n'C~

+ —
C

R 1 —2m +R 1 —C„-,'m-
2 H, adH, —— R 1 ——,'m H, adH, , (26)

where again the relations 2s(= (1 —C„)aand r =Ra
have been employed.

It is at once evident that the task of determining
R and a is much more difficult now that the non-
linear aspect of the problem has been recognized.
In order to minimize 4 one has first to evaluate
the integrals but an exact evaluation involves know-
ing the solution to the problem. In this situation
we content ourselves with an approximate approach

I

that we believe does bring out the essential phys-
ical consequence of nonlinearity.

We first observe Eq. (9) has good experimental
support, whereas the assumption that R (= —,

' hC„)
is still given by Eq. (2) in the inclined-field case
has had no previous experimental test. In ad-
dition, the results to be discussed in the fol-
lowing paper do not support it. We therefore
inquire what broadening would be displayed by a
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a(C„,H, ) = (C„H,/H, )a,(C„). (29)

sample for which a was given by Eq. (9). In evalu-
ating the required integrals of Eq. (28) one notes
that in the linear solution for R we have R = R(C„).
Further, one can rewrite Eq. (9}, using Eq. (5),
as

It is evidentally simplest to hold C„constant while
evaluating the integrals, rather than the angle P.
Using Eq. (5) we therefore transform to the same
variables that were found convenient in Sec. IV,
namely, a, H„CN, and R, and evaluate the inte-
grals holding R and C„constant, obtaining

4= + ' (1 ——,
'

v)R + . [R —(1- C„)R+—,'(1- C„}]aH,
4@a 2w

' m"C„
R2 Q2

+ [R (1 ——,v)+R(1 —C„)(-,' v- ,')]aH,'+ ——(1——, v)a
mCN m C„ (30)

The domain broadening can now be obtained in exactly the same way as in Sec. IV by minimizing Eq. (30)
with respect to R while holding a, H„and C„fixed. This gives

H,'C„(l—C„)(16+2v'-v')

H,c„w(4 —v)+ H,C„4(8+2v —v )+ H, 2 (v4 —v)
(31)

if Eq. (5) is employed and the geometric relation dc„=2R, one finally obtains

2C„(1—C„)(16+2v —v )
v (4 —v)(1+ Css cot'P)+ 4C„(8+2v' —v')+ 2vs(4 —v)

(32)

Note that broadening at small angles is reduced
significantly from its value at P =90' and that as
p-0, bC„-0for all CN. This crucial reduction
of the broadening at small angles is exhibited in
Fig. 4 which displays our result at P=90'and 10 .

We can now proceed to show that our approxima-
tion scheme is reasonably self-consistent by in-
quiring what the periodicity would be for a sample
which exhibited the broadening given by Eq. (32).
We therefore substitute Eq. (32) into Eq. (28),
noting that 4CN = 2R, and integrate this time hold-
ing a and C„constant. The required integrals
can be evaluated simply, giving,

JH (nC )dH —( —C„)N~C„Q'A
ln I+ A

x N x 2A2 2
—n +fs

JH(~C )dH =" C"'~~~'
2A3

A 1 A
x 1+f2 I+A/fg 2ln I+f2

(33)

f= (1+C„cotP)

4(8+2m —v )C„
v'(4 —s)

(34)

2(16+ 2vs- v )
s (4 —v)

If the thermodynamic potential is now minimized
with respect to a, one obtains, after lengthy
manipulations, the final result for the periodicity

where we have utilized Eq. (5) and the definitions

(1- Cs~» 2(f +A) 4 v A 7 4 8 . 1+A/f f~

+," ———— A- f'ln 1+~ + ", 1- — f'+A-, -2f'ln 1+~ . 35)

Note that this expression exhibits the characteristic
square-root dependence on l and b, and also the
characteristic angular factor f, both of which occur
in the LS expression and in Eq. (18). Indeed our
result for the periodicity as a function of C„is
very close to that of the LS theory as may be ap-

preciated from Fig. 5 where we have compared
Eq. (35) to Eq. (9) for the two angles 90 and 10'.

The distinction between the two approaches is
evident, however, in Fig. 6 which compares the
differing predictions for the periodicity as a func-
tion of CP, the fraction of the sample surface in
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the normal state. The large difference stems es-
sentially from the drastically reduced broadening
predicted by our approach for small values of P.

VI. DISCUSSION

Since the experimental situation with regard to
the predictions made in the previous section will
be dealt with in considerable detail in the following
paper, the present discussion will be brief.

In the first place, our conclusion that the broad-
ening is drastically reduced for small P does con-
tradict the general argument given in Sec. III fol-
lowing the statement of Eg. (I). However, we do
not believe that Landau's argument is rigorous
since he simply chose a particular profile which
satisfied the magnetostatic boundary conditions.
No proof was supplied that the choice was unique.
A recent investigation" started from the assump-
tion that the porfile belonged to a particular family
of curves. Landau's choice of profile turned out to
be quite close to the best member of that family,

selected on energy grounds, but there is no guaran-
tee that such a result will be maintained in an in-
clined field and indeed we find that it is not.

It is an indication of the difficulty of the problem
addressed by this paper that, even after employ-
ing our simplified procedure, the resulting equa-
tion [Eg. (28)j presents difficult problems. We
have here obtained an approximate solution and
indicated the consistency of our approximation
scheme. While formal improvements in our
treatment might be worthwhile, convincing experi-
mental support for our results is reported in the
following paper. In practice Egs. (32) and (35)
give numbers that are in good accord with all the
experiments reported there and some others to
be reported elsewhere. '

We conclude that the hitherto unrecognized non-
linear aspect of the Landau structure problem has
important physical consequences. An approximate
treatment has been developed in this paper which
accounts very well for recent experimental data.
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