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The dynamical solutions for the emission of Mossbauer y rays from crystals are examined. It is found

that enhanced-intensity "anomalous-emission" Kossel lines occur in the early development of an active
source as a consequence of the fact that the electronic scattering absorption of the lattice is

predominantly E1, while most Mossbauer transitions correspond to the emission of
higher-order-multipole waves. The sensitivity of the Mossbauer scattering to the magnetic field and

electric-field-gradient tensor at the nucleus gives rise to "magnetic Kossel cones" which uniquely exhibit
the structure of the internal fields when it differs from the chemical structure of the crystal. Faraday
effects are also important in describing the polarization state of the emitted y quanta. The phase of the
x-ray structure factor of (molecular) crystals can be determined by Kossel-cone analysis. Applications of
the theory to the problems of obtaining enhanced highly collimated Mossbauer-y-ray sources, and the
problems of magnetic and chemical structure determinations by Kossel~ne analysis are presented.

I. INTRODUCTION

In the preceding paper' we developed the theory
for the emission of Mossbauer y rays from single
crystals. In this paper we examine the dynamical
solutions for the cases of emission into Laue,
Bragg, off -Bragg, and grazing -incidence channels, and

give applications of the theory to the problems of ob-
taining enhanced collimated sources and the problems
of magnetic and chemical structure determinations.

Interesting new features arise in the emission
of Mossbauer Z rays from crystals. These fea-
tures were discussed qualitatively in the introduc-
tion to paper IIIA. The present paper gives the
first treatment of the anomalous-emission effect,
the magnetic Kossel effect, the Faraday effect in
emission, and the first discussion of the possible
use of Kossel-line analysis to determine the phase
of the unit-cell structure factor.

In Sec. II we consider emission into Laue
channels. %e discuss in particular the anomalous-
emission effect and its application to the problem
of obtaining enhanced collimated sources, the mag-
netic Kossel effect, and the frequency spectrum of
Kossel lines from Zeeman-split sources. In Sec.
III we treat emission into Bragg channels and dis-
cuss the problem of phase determination by Kossel-
line analysis. In Sec. IV we consider off-Bragg
emission and the related Faraday effects, and final-
ly in Sec. V we treat emission into grazing-inci-
dence channels.

II. LAUE CHANNELS

The most striking feature in the single-crystal
x-ray or Mossbauer emission pattern is the Kossel-
line structure. If R denotes an observation point
sufficiently far from the source, then the Kossel
lines occur for k=(&u/c)R satisfying a Bragg condi-

tion with some set of crystal planes. These lines
are observed on a photographic plate as conic sec-
tions which have an intensity somewhat greater or
less than background intensity and, under high
resolution, have a dark-light fine structure. There
will be two different types of Kossel lines, for k
corresponding to a Laue (or Borrmann) transmis-
sion channel (Laue case) and for k corresponding
to a Bragg-reflection channel (Bragg ease). We
shall consider the latter in Sec. III.

Explicitly the radiation field above the top layer
of the crystal is given by Eq. (62) of IIIA:

A„(R) = J A„(k) exp[i K ~ (R —zz z )j dQ~, z )z„.
For large R, from Eq. (90) of IIIA,

2w -
~ exp(ik I R —z„21)

ik " IR —z zt
rh

with k= kR, so that the direction of observation R
determines the "channel" k = kR at the top of the
crystal which contributes to Az(R). Unless k is
near a Bragg angle for some crystal planes

A„(k) =D,"(k, k) J,(-k, td; j) (off Bragg)

and channel k at the top of the crystal is "fed" only

by the waves emitted into the channel k by the
emitting atom at Rz. For these directions D,". (k, k)
is a slowly varying function of k, merely represent-
ing the transmission of the coherent wave through
the crystal without scattering.

If k is near a Bragg angle for the Laue case,
then with k, (k) given by Eq. (61) of IIIA,

k, = [u' - (k 7,)'P" z+ k„, T, — (I)

where r, is some Piano& reciprocal-lattice vector,
the near- Laue condition is given by [Eq. (60b) of
IIIA]
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( g —g&)d = 2vm + 25, (2)

A„(k}=—V'„(k, k)e ' '& J (- k, (d; j) (4)

9'„(fk,) . e ' "i, J,( —k„; ')),

k ~ R

m+I—
fll

FIG. 1. Schematic representation of a Laue emis-
sion channel. The wave fed directly into the k channel
by the source is indicated by the double line, and the
wave reflected into the k channel from the k& channel
which interferes with the direct wave is indicated by the
single line.

where g=—k, =(k —k„„)~, and 6 is small (6=0 is
the exact Bragg condition). If (I) and (2) are satis-
fied we say that k and k, are Laue (transmis-
sion) channels. In this case we have [Eq. (66) of
IIIA]

A„(k) =D~(k, k)J,(-k, &o; j)
+D~s(k, k,)J,(-k, , (d; j), (Laue) (3)

and channel kat the top of the crystal is "fed" co-
herently by both the waves emitted by the atom at
R~ into channel k and into channel k, . For k in the
vicinity of a i,aue channel, D(k, k) and D(k, k, )
are very rapidly varying functions of k and give
rise to the appearance of the (Laue} Kossel
cones in these directions.

If we reverse the sign of g, so that k„& 0, in
Eqs. (1)-(3), we have the conditions for the Bragg
case, the corresponding k and k, being "Bragg-
reflection channels, "which we discuss in detail in
Sec. III.

In Fig. 1 we indicate the two channels at the
emitting atom, located at Rz in the mth layer, feed-
ing the k channel at the top surface (Mth layer).
The channels k and k, are Bragg reflected into each
other by the crystal planes indicated in the figure.

6 in Eq. (3) is given in terms of the deviation
&rp = (9) —p }of the rocking angle y from the exact
Bragg angle Q by, 6=(kd sine)by/2 sing„where
e is the scattering angle (Fig. 1).

The coherent wave propagator matrices D&" can
[Eq. (76) in IIIA] be expressed in terms of the f'

matrices, W'„(k, k) and f„(k,'k, ), which were
defined in Eqs. (71) and (72) of IIIA. With the aid
of Eq. (76) of IIIA we may rewrite Eq. (3) in the
form

(f „(k, k))»--[ csoM&p„+iv„( isnM&p„) p/„]

x exp[iM&(o(~+ gd —6)] (5a)

where M& = M —m&+ 1 is the number of layers below
the surface where the emitter is located, and p,
= r& —R,. is the position of the emitter taking the
origin as the lattice point of the unit cell in which
the emitter is located.

The &~&(k, k) and 9„.(k, k~) give the amplitude in
channel k at the top of the crystal for unit amplitude
wave incident at the layer m; in channels k and k„
respectively, and the remaining factors give the
amplitudes (complex amplitude, including phases)
with which the two channels are fed by the emitter
at p&.

A general procedure for obtaining the & matrices
was given in Sec. III of II. ' In the general case of
strong polarization mixing numerical procedures
must be resorted to. However, there are three
important cases in which there is no "polarization
mixing" and simple analytical expressions may be
obtained.

The first two of these cases are (i) no Zeeman
splitting and (ii) Zeeman splitting, but the quantiza-
tion axis (direction of the internal magnetic field
and symmetry axis of the quadrupole field) at each
Mossbauer nucleus is perpendicular to the scatter-
ing plane (k, k,). Case (ii) can hold, of course,
only for two points on a given Kossel cone.

If in these two cases we choose the polarization
basis vectors for each of the two channels as shown
in Fig. 1 with the E„'s in the scattering plane and
perpendicular to their respective k's, and the E,'s
perpendicular to the scattering plane, then (v')„,
=(&) =o.

The third case is that of a ferromagnet with
strong Zeeman splitting (so that the interference
of the different resonances can be neglected). ' The
concentration of the resonant scatterers is large
enough that the electronic scattering absorption is
negligible, and finally the nuclear transition is a
pure (LX) multipole. In this case there is no po-
larization mixing if we choose as polarization basis
vectors for a given channel k, ez~(k) = Yl, „(k)/

I Y~"„)(k)(, and a second e~~(k) perpendicular to it.
An &z,„~(k) polarized photon in fact will not scatter
or be absorbed, and so in this third case it is only
the el„„(k) polarization which is relevant. Y~("„~(k}

is the vector spherical harmonic for the LM& tran-
sition and is given explicitly by Eqs. (A2)-(A2")
for E1 (L = 1, X = 1), E2 (L = 2, X = 1), and Ml (L = 1,
& = 0} transitions.

Now in the case of no polarization mixing [cases
(i)-(iii) with the choice of polarization basis vectors
indicated above] the 1' and D matrices are diagonal,
and (l(k, f,))» and (l(k, R))» are given by Eqs. (53)
and (54} of II, respectively. We have



2812 HANNON, CARRON, AND TRAMME LL

(&„(k, k«)}„~=fE~~(k, k«)[sinM&P„}/P ]
x exp[i M&(n„+gd —5)] . (sb)

Here &= @ or Y, or for the ferromagnetic case
& =L~ corresponding to the e»„polarization. Mz
=M —mz is the number of layers below the surface
at which the decay occurs. The remaining terms
are given by

&«=6+ a[E~(k, R) -E„«(k«, k&)], (6a)

n„=a[E (k, k)+E (f, k )], (6b)

p„= [&'„+F»(k, k, )E~(k„k)]'~, Im p„&0. (6c)

5 is given by (2} and the planar scattering ampli-
tudes are given by

+ V"««~(k, k,}e '"«'~ J,(-k„u); j) . (4 ')

It is easily seen that V' and S' are the same func-
tion of E' as 8 and 4I are of E jot„, P„, « „[Eq.(6}]
are invariant under E-F').

Finally the transition currents in (4) or (4') are
given by Eq. (15) of IIIA for a radioactive decay or
by Eqs. (29}or (39) of IIIA for currents resulting
from incoherent scattering. The explicit form of
these currents for E1, Ml, and E2 transitions are
given by Eqs. (Al) -(A2").

F««, (k~ ky)= . Zf «(e„(k,), K~ e„,(k«, ), kg}
nba p

x -« (7e

where n is the density of unit cells (cm '}, the sum
is over the unit cell, p is the position of an atom
in the unit cell relative to the Bravais lattice point
in that unit cell, and f '" is the elastic coherent
scattering amplitude for the atom at p [the sum in
(7}is simply the unit-cell structure factor].

Since the Jacobian I'dQ /dA~I'= sin4«/sinC««always
enters as a factor multiplying the "cross channel"
terms, e.g. , &(k, k,} in (4) or (R(k, k,}in Eq. (82)
of IGA, it is convenient to include this factor in the
definition of the t and S matrices. Similarly, the
factor fk/2«« in (4) and in Eq. (82) of IIIA is con-
veniently absorbed in the definition of A. In fact
we see from Eq. (90) of IIIA that A'„(k} in (8a) is the
amplitude of the emitted wave at large distances
from the emitter. We define

A~(k) = (2w/ik)A~(k), (6a)

l'(k k, }=(sing @sing, ) & (k„k««}, (Sb)

6t' (k„k,) = (sing J'sin4«, )dl (k„k~), (8c}

E'(k k~}=(sin4«J'sin4«, }E(k k«,}. (8d)

With these substitutions (4) now takes the form

A„'(K) =9 ~ (k, k) e "'~J,(-k, (d; j)

Hereafter, for brevity we will call the k channel
the 0 channel and the k~ channel the 1 channel, and
shall write E'(k, k, ) as F ', c„(k) as e«0, etc.

If the emitter is deep in the crystal, i.e. , MJ is
greater than the off-Bragg extinction depth(lmn„) ',

then the dominant contribution to (4') comes from
the exponential terms depending on the difference
between e& and P&. Thus for the source deep in
the crystal, the wave emitted from the crystal in
a Laue channel is

A'„(k}= 2 i„"'K„(5, &u; R,.)e'"~"«-«« ' (9}

where

K„=2[e ' 'f f„' '.J, (-k, u; j)(1—v, /p„)

—e ' «'«t„'" JP(- k &u; j)(E,„'/P„)]. (10}

The exponential factor in (9) determines the
penetration depth f„(5) of the I.aue channel emis-
sion,

f«(6) =dlim(&i —p~)l '.
If a source is located within a depth l„ from the
surface, radiation will be emitted from the crystal
in a Laue channel unless the interference term
K), is destructive, as is the case for x-ray optics.
The penetration depth is, in general, different for
the two polarizations E'„and E,. Initially the pene-
tration depth is that of the x-ray "Borrmann case."
For a developed source, the Laue penetration
depth for the recoilless fraction depends strongly
on the concentration and multipolarity of the reso-
nant scatterers.

The factor K„ in (9) gives the interference of the
waves in the k channel which are set up by the
source coherently feeding the k and k, channels, as
indicated schematically in Fig. 1. Depending on
the multipolarity of the source and the location of
the source, e.g. , regular lattice site or intersti-
tial, the interference term can be constructive, in
which case the emission is enhanced, or destruc-
tive, so that the emission is suppressed.

A. Anomalous emission effect

The phenomena of crystal emission into von Laue
channels arising from sources located at lattice
sites deep within the crystal is peculiar to Moss-
bauer emission. In contrast such emission is
strongly suppressed in x-ray optics. We shall see
that such emission occurs for both the recoilless
and recoil fractions from Mossbauer sources of
multipolarity M1 or higher in the "early develop-
ment" of the source crystal when the concentration
of resonant scatterers is small, and that the emitted
radiation is linearly polarized everywhere tangent
to the Kossel cone. We will refer to this effect as
the "anomalous-emission effect. "

The anomalous-emission effect is closely related
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FIG. 2. Schematic representation of the x-ray Borr-
mann effect. The solid wavy line represents the standing
E wave with nodes at the crystal planes. The dotted wavy
line represents the standing B wave (or electric field
gradient) with antinodes at the crystal planes.

to the Borrmann effect' of x-ray optics, indicated
schematically in Fig. 2. The Borrmann effect
shows that radiation incident near a Bragg angle
on a set of Laue planes of an absorbing crystal.
may have orders-of -magnitude-greater penetration
depth than that incident at ordinary angles. This
occurs because the two diffracting waves set up a
standing-wave pattern with nodes at the atomic
planes which leads to a suppression of atomic ab-
sorption processes and hence to much deeper pene-
tration of the radiation within the crystal.

Similarly a photon emitted from within a crystal
in a direction satisfying the Bragg condition for a
set of Laue planes will propagate much farther
than one emitted in an ordinary direction. We
might then expect that a thick perfect crystal doped
with active Mossbauer isotopes could serve as a
highly enhanced source of very-well-collimated
Mossbauer y rays.

In x-ray optics no such phenomenon is observed,
and in fact the Kossel lines are characterized as
much by a minimum in intensity as by a weak maxi-
mum. This limitation to the brightness gain in the
Kossel cones for x-ray emission stems from the
fact that the two interfering waves which are re-
sponsible for the anomalous Borrmann transmission
through a thick crystal are each fed by the spherical
outgoing E1 wave from the source with relative
phases such as to cancel the transmitted waves
(shown schematically in Fig. 1}. This result also
appears from the use of the von Laue reciprocity
theorem, which for x-ray optics, where one has
E1 sources and scatterers, may be stated as fol-
lows'6: "If a source of radiation and a point of ob-
servation are interchanged, the intensity, measured
in terms of the electric displacement, is the same
at the new place of observation as at the old. " Now

in the anomalous transmission of a wave incident

2cos(8/2) 1

nc, 1 —f~(8}&
'

2cos(8/2) 1

cc, ) —coc(C)f (C))
'

(12)

Here 8 is the scattering angle as indicated in Fig.
1, fD(8) is the Debye factor, o, is the total absorp-
tion cross section, and n is the unit-cell density.
We have assumed that the Bragg scattering planes
contain only one atom from each unit cell, and for
simplicity we have assumed a symmetric Laue
channel for which the scattering planes are perpen-
dicular to the crystal surface. For the "good" E,
polarization which lies parallel to the Bragg planes
and is able to establish nodes at the lattice sites,
the maximum penetration is greatly enhanced over
the off-Bragg penetration depth,

l~(8) = 2cos(8/2)/no„

the enhancement being

(13)

from outside the crystal, there is near cancellation
of the electric field at the regular lattice sites deep
in the crystal; but by the reciprocity theorem this
implies that an E1 wave emitted from such a site
will not be emitted from the crystal.

On the other hand for Mossbauer-y-. ray optics
anomalous emission will occur in the early develop-
ment of a crystal containing Mossbauer emitters of
multipolarity M1 or higher: The two Borrmann
waves are fed constructively by such emitters, or
from the standpoint of reciprocity [generalized as
in Eq. (51) of IIIA to account for the higher-order
multipolairty ],whi1e the electric field vanishes at
lattice points in Borrmann transmission, the mag-
netic field and electric field gradient do not, as
indicated in Fig. 2, so that there will be strong
coupling to an M1 or E2 oscillator located at such
a site. Therefore, according to the reciprocity
relation [Eq. (51}of IIIA to account for the higher-
order emission from an M1 or E2 source located at
a lattice site deep in the crystal.

The linear polarization of the anomalous emis-
sion results because it is only the "good" a, polar-
ization which lies parallel to the Bragg planes (and
hence to the Kossel cones) which is able to estab-
lish a Borrmann effect, i.e. , to establish nodes at
the lattice sites.

Explicitly, in the "early development" of the
source the fraction P(t) of resonant scatterers is
sufficiently small that the electronic scattering ab-
sorption processes dominate the nuclear scattering
absorption processes and hence during this period
the penetration depth I,(5} and the interference K,
are determined almost entirely by the electronic
processes. The maximum penetration depth is
then the Borrmann depth,
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,/I=[ -fD( )] 2stn2(8/2) (x2)

B1
2mv (x)' (14)

CRYSTAL
PLANES

leO PHASE
CHANGE AT

REFLECT ION

TRUCTIVE
ERFERENCE

NSTRUCTI VE
ERFERENCE

where x is the displacement of an atom from its
equilibrium position due to zero point and thermal
motion, and where in the second line we have used
the Bragg condition ksin8 = mv/ds, where ds is the
interplanar distance for the particular set of Bragg
planes. For the &„ polarization, the enhancement
is

I,/los = [1—cos8fn(8)] ' = [2sin~(8/2)] '. (15)

El SOURCE

E I SCATTERING

Ecrd d =dy

ko

Ml SOURCE

EI SCATTERING

E&M xk M= Mz

kO

For an iron lattice at liquid-He temperature, and
8 =20', the E, enhancement is = 2. 2X10, and the l,
enhancement is =17.

Of course as we have already noted, the question
of'whether the radiation emitted from an atom lying
deep in the crystal [within a depth /~(5) of the sur-
face] emerges from the crystal depends upon the
interference term K„, which depends on the nature
of the source current. The expressions for the
transition currents JIO(-k, &u; j) for El, Ml, and

E2 are summarized in the Appendix.
For a symmetric Laue channel, the interference

term at exact Bragg (5 =0) is

K„(5=0)=-,(l S„)e ' -~e.„' ' ~ J (-k, u&; j),
(16)

where

(~01 (1) ~ T fOI

Ii p s(0) .Tfo( $,& j)

For a lattice-site emitter, the Bragg condition
gives exp[i(k, -k) p&]=+1. Assuming the scatter-
ing planes only contain one atom from each unit
ceil, the factor Eo»/p, (5=0) =F»'/[Ff„'E„'~~]'@= +1,
the sign depending on the multipole nature of the
scattering medium (the sign arises because P„ is
taken with positive imaginary part). In the early
development of the crystal, when the scattering is
predominantly nonresonant isotropic E1 scattering,
F»/P„=+1 for &=x or y (for scattering angles 8
& v/2). As the source develops, the sign may
change when the nuclear absorption dominates the
photoelectric absorption. In this limit the sign de-
pends on the polarization, the multipolarity of the
scatterers, and if the resonant scatterers have
Zeeman splitting, then there is a dependence on
the specific Zeeman transition involved (i.e. , upon

M) and upon the orientation of the quantization axis
with respect to the scattering planes. Here we will
restrict our attention to the early development
(E,„'/P„= + 1). We will consider developed sources
in a later section.

With exp[i(k, -k) ~
p&] and E»0'/P„both given by + 1

the nature of the interference is now determined by

(b)

FIG. 3. (a) Schematic representation of the interfer-
ence between the direct and reflected waves for El and
Ml sources with E1 scattering from the lattice. (b) gives
a "snapshot" of the E waves being fed into the k and kI
channels by a linear E1 oscillator (i.e. , a ~= 0 transi-
tion) which oscillates along the y axis, arid a linear M1
oscillator which oscillates along the z axis. Both send
out e„polarized E fields.

the relative phase and magnitude of the source feed-
ing of the two channels, c„' ' J(-ko) and a„'" J(-k,).
If there is no Zeeman splitting of the source, then
the magnitudes are equal. In this case if the source
source current feeds both channels "in phase, "
i.e. , both with +z„polarization, then e„'" J(-f,}/
i~0 J(-k)=+1, so that S„=+1, K~=0, and the in-
terference is destructive. On the other hand, if the
channels are fed "out of phase, "i.e. , one with
+ E„polarization and the other with —E~ polariza-
tion, then S„=—1, K„=1, and the interference is
constructive. This is shown schematically in Fig.
3(a}. The behavior of K~(5) as a function of 5 for
"in phase" (I K I ') and "out of phase" ( IK, I') feed-
ing is shown in Fig. 4. (It should be kept in mind
that if exp[i(k, -k) ~ p&]E»/P„= —1, which, as we

discuss in later sections, can happen if the source
is at an interstitial or as the source develops, then
the roles of "in-phase" and "out-of-phase" feeding
with respect to producing constructive or destruc-
tive interference are reversed. }

If there is no Zeeman splitting of the source the
quantization axis 2' can be chosen arbitrarily. For
an E1 source it is convenient to take z' parallel to

as shown in Fig. 3(b), while for an Ml source
we take z' in the crystal plane and perpendicular
to i~ as shown in Fig. 3(b). With this choice of
z', the M= 0 transitions radiate the "good" 8,
polarized radiation into the k and k~ channels (of
course for the M1 transition there will also be an
c„component for the M= +1 transitions, but the
"feeding" of the channels is "in phase" for these
transitions).
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220
K„(&= O) = —iK '(O) sin(8/2) (Ml, M = O),

where

(2o)

K (0) = —c(J 1J ' iii 0) &&@le

"*Idio}

&&(~r„}'"[~ E —e, +E,+ e, + .'iT]-—'.

1.0

05- ~»—
- IRF I IRF, I

FIG. 4. Plots of the interference term )K ) and the
penetration depth l„(g)/loz as a function of the deviation g

from exact Bragg condition for a Laue channel. The
K+ (K ) curve is for constructive (destructive) interference
between the direct and reflected waves.

For an E1 source, the M = 0 transition feeds the
k and k, channels "in phase, "i.e. , both with + c,
radiation. As shown schematically in Fig. 3(a),
the k wave reflected from the k, channel then in-
terferes destructively with that resulting from the
"direct feeding" of the K channel. Explicitly this
destructive interference of the Kossel interference
term for an E1 transition is seen by substituting
expressions (A2), into (16), which gives

K„(6= 0}= 0 (E1, M= 0) . (18)

The M = +1 E1 transitions give e„radiation, and
here there is a constructively interfering compo-
nent,

K„(&= 0) = K (+ 1)sin(8/2) (E1, M = s 1), (19)

where

K (+1)=+
6

C(~01~ ' iii ~1)(ale '"'l~a&

&&(&F„)'+[~—(E +e )+(E,+e~)+-,'iT] '.
Classically this is the interference term for an El
oscillator vibrating in the x = z direction shown in
Fig. 3(b). The P El oscillator feeds the channels
"out of phase "(i. e. , + e,' ' and —e,'") and this leads
to constructive interference. The factor sin(8/2)
gives the geometrical projection of the oscillator
perpendicular to the R channel. The fields from
the third independent oscillator in the y' direction
interfere destructively. Thus for an E1 Mossbauer
or x-ray emitter located at a lattice site, there
will be emission in a Laue channel of E„radia-
tion to a depth l„(6= 0), but the deeply penetrating
c, component is suppressed and there is no anom-
alous deep crystal emission.

An M1 source, however, feeds the channels "out
of phase "with e„radiation, as shown in Fig. 3(b),
which leads to constructive interference for the 4',

component:

For the E„radiation the interference is destructive:

K„(6=0)=0 (Ml, M=0, +1). (21)

The sin(8/2) factor in (20) again gives the projec-
tion of the oscillator perpendicular to the R and k,
channels.

Thus for an M1 source, there will be anomalous
emission from deep crystal lattice sites in the
Laue channels, and the radiation will be 4, po-
larized, i.e. , everywhere tangent to the Kossel
cone.

For an unsplit E2 source, with z axis taken as
for the M1 case above, E, radiation is fed construc-
tively by the M= +2 transitions,

K,(6 = 0) = K,'(+ 2) sin(8/2),

where

(22)

K'(+2) =+i C(J02J„; m„+2}
16m'

(x, l
e'f *Ixg(xr„)'"

v —E„—& +E +&&+
—iT

Thus an E2 source also gives rise to anomalous
emission from deep crystal lattice sites, and more
generally this is true of any source of multipolarity
M1 or higher.

B. Enhanced p-ray sources

In two previous papers, '7 we have discussed
some potentially important applications of Moss-
bauer-y-ray diffraction studies. The feasibility of
some of these experiments, e. g. , the determina-
tion of the structure of biological molecules, ' is
controlled by the accessibility of intense well-col-
limated Mossbauer-p-ray sources. These experi-
ments have been impeded by the brightness limita-
tions on the present sources of Mossbauer radia-
tion. Hence a question of particular importance
is whether coherence effects can lead to enhanced
Z-ray emission in well-defined directions.

The principal factor limiting the intensity of the
source is the self-absorption occurring within the
source, which limits the effective source thickness
to the order of the absorption length for the y rays
in the source material. However, as we have just
seen, anomalous emission occurs for sources of
multipolarity M1 or higher in the early development
of a radioactive crystalline source. In this case
the effective penetration depth for emission into the
Laue channels is orders-of-magnitude greater
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than the off-Bragg penetration depth, and it is pos-
sible to achieve an enhanced intensity in the
Laue channels.

For a thick-crystal source containing a uniform
distribution of parent isotopes, in the cases of "un-
split" M1 or E2 transitions the maximum intensity
in the Kossel cone will be eahanced over the neigh-
boring off-Br@gg intensity by a factor of

P„=1—(2E) ',
where E is given by (23).

(25)

E = k sini(8/2)(1 fn(8)—) + 1

=-,' X'/(x')+1,

and will have a narrow collimation on the order of
~&2ReE,„, or

5Q ( 8vL~nZro/sin8 . (24)

In (23) the first term is the ratio tK~I /I e„JI of
the intensity of the good e, component emitted into
a Kossel channel relative to the total intensity
emitted into a neighboring off-Bragg point, times
the enhancement of the penetration depth I„/ll.
This term gives the relative contribution to the in-
tensity due to deep crystal emission. The second
term, 1, represents the contribution of the first
(I/n, ) layers from which all the radiation emerges.
The enhancement of the Kossel line is determined
by the ratio of the squared wavelength to the mean
square vibrational displacement. As we have noted,
the enhanced beam will be primarily polarized
tangent to the Kossel cone, i.e. , E, polarized, the
ratio of the intensity of the &„ component to the
total intensity being

Finally, we note that these estimates hold for
the recoil fraction as mell as for the recoilless
fraction.

In Table I, we list several Mossbauer isotopes
and give the enhancement E, the polarization I',
and the collimation 5P(&& sin8) which can be achieved
in the Laue channels at T=0. For Co" in Fe
at 4. 3 K for 8 =20', these estimates give an en-
hancement of 4. 4 which is 8So E, polarized and
collimated to &8& Q. 8x10 4 rad=17 sec of arc about
the Kossel cone. The exact theoretical curve for
the intensity is shown in Fig. 5.

The maximum source enhancement shown in
Table I is for the lorn-energy 8. 4-keV y ray of
89Tm for which the source enhanceme nt is 13. 9
with 96% E, polarization with beam collimation 58
& 48 sec for 8 = 20'.

For»Ge ' the source enhancement is 5. 0 with
90/o e, polarization and a collimation of 58( 10 sec
for 8 =20'. An interesting aspect of this case is
that the anomalous-emission effect can be used to
separate the 13.5-keV Mossbauer y ray from the
much more intense 10-keV x rays which follow in-
ternal conversion [the (x ray)/(p ray) intensities
=10 ]. This can be accomplished by building a thick
crystal source such that there are no active sources
to a depth of 2&&10 cm, which is 4 times the off-
Bragg penetration depth of the x rays, la~ ——5& 1Q

cm. For the emitters located below this depth, the
Mossbauer y rays will be emitted from the crystal
in the Lane channels by the anomalous-emission
effect since the y transition is E2. On the other
hand, for the x rays there is no emission in
Laue channels since the x-ray transition is E1.
Furthermore the off-Bragg x-ray emission is down

4'& ~0

1/2
p

2 1(20'0Isotope E„(keV) E = g %2/(9)+1 P = 1 —{2E) '
fy {10 cm2)

TABLE I. Estimates for various Mossbauer isotopes for the enhancement E, the polarization P, the collimation
gftlxsing, and the lifetime tf/2 for the "super" Kossel lines from thick uniformly doped crystal sources. We have taken
T = 0 in computing (~2), and the resonance absorption cross sections a.

p include the effect of the finite width of the source
p ray. The lifetime is computed for a 100%-enriched source.

bPx sine
sec) f70'{10 " cm2) ~f/2

26Fe57

32Gev

36Kr
83

s "'
5p n

14.4

13.5

9.3

23. 9

E 151

D 181

~Tmf68

80 g
201

21.6

25. 7

8.4

32. 1

628m 22

4. 4

5. 0

2. 7

3.7

2. 3

2.4

2. 0

13.9

1.5

0. 89

0.90

0.82

0. 87

0.78

0.79

0.75

0.96

0.67

5. 8

4

5. 0

1.8

1.6

1.8

16.5

1.9

11.8

0. 011

9.4

6.6

2. 0

1.2

1.0

0. 05

0. 06

0. 15

0.10

0. 03

0. 08

0. 09

0 ~ 07

0.35

0. 08

270 days
(Co")
76 days
(As73)

83 days
(Rb)
38 h

(Sb1i8)

106 days
(E 148)

120 days
(Gd151)
6. 9 days
(Tbf61)

32 days
(ybf 68)

74 h
(T1201)

0. 10 days

62 days

0. 13 days

0. 82 days

1.6 days

0. 02 days

0. 22 days

59h
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FIG. 5. Intensity of the Laue-Kossel line relative
to the off-Bragg intensity for a thick Co 7 source at 4.3,
8=20 . 6 gives the deviation from the exact Bragg con-
dition. The solid line gives the intensity during the early
development, and the dotted line gives the intensity when
the nuclear and electronic scattering processes are of
comparable magnitude. E„and E, give, respectively,
the nuclear and electronic contributions to the planar
scattering amplitude.

by a factor of 10 due to extinction. The y-ray in-
tensity in a Laue channel will then be about 4
times as intense as the off-Bragg x-ray intensity. '

C. Developed sources

The anomalous-emission effect is suppressed for
the recoilless fraction in developed sources which
contain an appreciable fraction of resonant nuclei.
This suppression is due to increased resonant ab-
sorption which limits the Laue penetration depth,
and to destructive interference which builds up as
the scattering becomes more Ml (or E2, etc. )
in character.

For a thick crystal containing a uniform distribu-
tion of Mossbauer atoms, in the case of an "un-
split" M1 Mossbauer transition, the Laue pene-
tration depths for the recoilless fraction compared
to the penetration depths at time 1= 0 are

,((o, t) I P(t)o„&)(1—cos8&i
'

l, (&u, 0) 6 0 . o~ & El —fa(8)i
(26)

l„(ru, t)
l,(&u, 0) 6=0

where P(t) gives the fraction of resonant Mossbauer
atoms and 0'„ is the resonant absorption cross sec-
tion given by E|I. (A4}. From (26} we see that the
penetration depth of the resonant c, component is
strongly suppressed due to the presence of the
resonant Ml scatterers when Po„&a„while the E„
component has the same Laue penetration depth
as in the early development. This is an obvious
result since the i„polarization is the "good" polar-
ization for the M1 scatterers, corresponding to an

(Q o,
1/2 g2 g 1/2 ~

00'n
(27)

where 7, /2 is the half-life of the parent isotope.
For the E2 case the results are very similar.

In particular, the expression for the ratio l, (&u, t)/
l„(~, 0) is the same as that given in (26) for the Ml
case, and hence the half-life t, /2 of the anomalous-
emission effect is again given by Eq. (2 t).

In Table I we give t« for the various isotopes
listed with Po taken as 1 (i.e. , a 100%-enriched
source). For a source consisting initially of 10-
at. % Co uniformly distributed in Fe at 4. SK, then
t, /2

=1 day. Of course even for a highly developed
source, the penetration depth /„ of c„radiation at a
Laue angle is greater than the off-Bragg pene-
tration depth, I„/los =(1 —cos8) ', so that Laue
emission can occur deeper within the crystal. For
a uniformly populated thick crystal, there will be a
weak enhancement, E= +4, of the Laue intensity at
exact Bragg over the off-Bragg background as
shown in Fig. 5.

For the 8. 4-keV y ray of 69Tm' a 10-at. Vp

source of Yb' will have an anomalous-emission
half-life of 5 days, while for the 13.5-keV y ray of
»Ge, the half-life will be on the order of 70 days
regardless of the concentration of As '. This is
because of the dominance of the electronic scatter-
ing absorption (o, = 1.5 && 10 8 cm ) over the reso-
nant scattering absorption (co= 1. 1&&10 ) which is
suppressed by the very large internal conversion
amplitude. For most cases, however, we see that
the anomalous-emission effect rapidly decreases
as the source develops.

&y polarization for B, which can set up an M 1 Borr-
mann effect (i.e. , a cancellation of the l3 field at
the lattice sites, so that there is no coupling to an
Ml oscillator; hence there is a suppression of ab-
sorption}. On the other hand, the e, component
will always have a nonvanishing 8 field at the nu-
cleus, and hence there will be strong absorption.

Although a, radiation has a much deeper Laue
penetration depth than E, radiation in a highly reso-
nant M1 medium, there is no crystal emission of
e„radiation from a deep crystal lattice site (depth
=l„}because the Laue interference term K„ for
C„emission is destructive, as given by (21). (For
lsotroPlc Ml scattering, F„JP„(5=0)=+1 so that
the previous results (20) and (21) are still valid. )
Thus there is no deep crystal emission from an
M1 source in a predominantly M1 lattice, just as
there is no deep crystal emission from an El
source in an E1 lattice.

The emission of &y radiation is constructive, as
given by (20), and occurs to the Laue depth l,
given by (26). The penetration depth for the recoil-
less fraction will be down by k when P(t) = K o,j
((x )o„), or after a time
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D. Interstitial emission

The results are quite different if the emission
occurs from an interstitial site rather than a regu-
lar lattice site. The distinction between lattice-
site and interstitial emission has been discussed by
Alexandrov and Eagan, " and has also been pointed
out by TrammeQ. ' A similar phenomenon occurs
in the emission of x rays or electrons from crys-
tals and in the fluorescence scattering by foreign
atoms. "

When the emission occurs from an interstitial,
all the considerations of the Laue penetration
depth are unchanged, but the interference effects
are, naturally, quite different.

For lattice-site emission into a Laue chan-
nel, the relative phase factor exp[f(k —k, ) ~ p&] be-
tween the two contributions to K„ in (17) is (+ 1).
For an interstitial emitter, however, exp[i(k
—k~) ~

p&] =(—1)" for a Bragg condition (k —k~) ~ Zs
= 2nm, where d~ is the interplanar vector for a par-
ticular set of Bragg planes (for which pq is an in-
terstitial halfway between the planes). Thus for
interstitial emission into odd-order Laue chan-
nels, the previous cases of destructive interference
become constructive and vice versa.

For example, there will be very strong deep
crystal emission for an E1 Mossbauer of x-ray
emitter if the source is located at an interstitial
position, and similarly there is deep emission
from M1 sources in an enriched crystal if the
sources are interstitial. However, the "intersti-
tial effect" cannot be applied to obtain enhanced
thick-crystal sources because the uniform distribu-
tion of "interstitials" then become "lattice sites. "

Finally we note that the sensitivity of the emis-
sion pattern to the position of the emitter can be
utilized in determining the location of the emitter
within the unit cell.

hibiting the structure of internal field. We will
call these additional lines "magnetic Kossel lines. "
Thus, for example, analysis of the magnetic Kos-
sel-line pattern of rare-earth metals and alloys
will permit accurate determinations of the spiral
structures, and of their dependence on temperature
and strain, which hitherto have been determinable
only by neutron diffraction.

For example, if a magnetic crystal has a spiral
axis z with a spiral angle 8, then there will be
Bragg or Laue channels k and k, open when (k —k&

+ n8) is equal to a reciprocal-lattice vector,
where 8 = (8/d, )z and d, is the interplanar distance
along the spiral axis z. The channels for n&0 would
normally be closed for x-ray scattering, so these
channels uniquely exhibit the magnetic structure.
These lines will, of course, only appear for "de-
veloped" crystals where there is appreciable reso-
nant scattering, and only if the internal fields are
strong enough to cause appreciable Zeeman split-
ting.

For the general magnetic Kossel" case, one
must resort to numerical methods for solving the
dynamical equation. However, as a simple exam-
ple, we consider a simple bcc antiferromagnetic
crystal as shown in Fig. 6(a), and a symmetric
magnetic Laue channel for which (k —k, )
~ (R,

' —RJ) = v where R; and R,'. denote the positions
of the two atoms in the jth magnetic unit cell. The
chemical unit cell contains only one atom, and the
wave vectors do not satisfy a Bragg condition for
scattering from the chemical unit cells. We will
assume that the y transition is M1.

First we note that for an antiferromagnetic crys-
tal magnetic Kossel cones will only occur for the

E. Magnetic Kossel effect

Quite aside from considerations relating to
sources, the Kossel-line pattern itself is of con-
siderable interest. The Kossel pattern exhibits the
crystal symmetry and affords a sensitive measure
of crystal parameters. In x-ray optics, Kossel
pattern analysis has been used to make precision
determinations of lattice parameters and orienta-
tion, and to determine the variation of the param-
eters with temperature and strain, the components
of the strain tensor, and the degree of crystal per-
fection. " In Mossbauer-y-ray optics these fea-
tures are also present and a new phenomenon can
occur: The Mossbauer scattering is sensitive to
the direction of the magnetic field and electric-
field-gradient tensor at the nucleus, arid if the in-
ternal field "unit cell" is greater than the chemical
unit cell, there will appear extra Kossel cones ex-

I

() (»
I

I(8) /Ipb

-)F„f
"

)F„/

(b)

FIG. 6. (a) Schematic representation of the magnetic
Kossel effect for a bcc antiferromagnetic crystal. The
wave vectors satisfy (k-k~) (R,'-R&) = ~, where R~ and

R& denote the positions of the two atoms in the jth

magnetic

unit cell. (b) gives the intensity of the magnetic Kossel
line relative to the off-Bragg intensity as a function of
the deviation 6 from the magnetic Bragg conditon.



MOSSBAUER DIFF RAC TION. III. E MISSION OF. . . B. . . 2819

F,', = —E ' =2i sin8(F„&,» —F„&»),
(26)

where F, is given by nba/sin/0 times the electronic
contribution (A4) to the forward-scattering ampli-
tude and

E m=
3vt& ndP(f) exp(- k'(x'))

2 '(2JO+ 1)singo

I'y g C (Zo 1 d„; mo M)" r (,M)- (28')

gives the planar coherent (forward-) scattering
amplitude for the 4J, =M transitions for M = 0, +1.

For our special orientation, the e, polarization
couples only to the M = + 1 transitions, the E„ to
M=0. According to (26), F„'„vanishes, and so
there will be no &magnetic scattering for the M=0
radiation, as we discussed above. For the M = +1
transitions, the unit-cell scattering amplitude Eyy
for the magnetic Bragg case has a sin8 dependence,
so that the maximum effects will occur for large
Bragg angles near «/4 (scattering angles 8 near
v/2). The maximum penetration depth for either
an M =+ 1 or —1 resonance is

I (5 = 0}= dI 21m[E, + (1 —sin8)F„&,»] j
for ~ =b.E(+1), (29)

so that for a "magnetic Bragg angle" near 7&/4, the
M=+1 resonances have a maximum penetration
depth at Laue limited primarily by the photoelec-
tric effect.

The emitted intensity is the incoherent sum of

M = + 1 transitions. For an M = 0 transition the
scattering amplitude is invariant under the reversal
of the quantization axis (z„- —z„), therefore there
is no distinction in the polarization or amplitude of
the resonantly scattered waves from the two orien-
tations (+zs). However, the scattering amplitude
for an M = +1 transition is not invariant for z~- —z~: The angular dependence of the scattering
amplitude varies as

e~ ~ YI~&( g, + H)Y&~&(ko, + zs)* ~ ey —[z~ ~ YI~&(kg, —zs}

Y,",,'(k„-z„)* ~,]*

for the M = + 1 transitions.
For a general point on the Kossel cone, the gen-

eral solution accounting for the polarization mixing
must be used, but for the point where k (and k, ) are
perpendicular to the magnetization axis +z„, the
solution (4) or (4 ) is valid. In this case the scat-
tering amplitudes for the magnetic unit cell (taking
R; as origin} are given by

=E =2E, +2F„(,q)+2E„( q),

the squared amplitudes for emission from the R'
sites and the R' sites. In Fig. 6(b) we give a plot
of the recoilless intensity for the +&- + &, M=+1
transitions of Fe' for Co in a thick antiferromag-
netic crystal for P(t)=0. 1, 8=90'. The curve
shows the intensity of the M=+1 components ver-
sus &, the deviation from the magnetic von Laue,
for the case in which the shifts and resonances are
identical at the R' and R' sites (so that an M=+ 1
transition at an R site is exactly in resonance
with an M=+1 transition at an R' site}. For this
case the magnetic Kossel line at the Laue angle
occurs is a minimum in the recoilless intensity be-
cause of the destructive interference of the two
waves feeding the Laue channels.

F. Sources with large Zeeman splitting

Magnetic information can also be obtained from
the anomalous-emission effect: If there is large
Zeeman splitting in the source then the frequency
spectrum of the recoilless part of the Kossel line
is very sensitive to the orientation of the internal
magnetic field at the emitter with respect to the
crystal planes and to the scattering plane contain-
ing k and k, . This occurs because a particular
oscillator, i.e. , a particular &J, transition, can
only constructively feed Ey radiation into two chan-
nels for a limited range of orientations. As an
example, if the magnetic field H lies in a crystal
plane a.s shown in Fig. 3(b), then for the segment
of the Kossel cone for which H, k, and k, are co-
planar, only the M= 0 transition constructively
feeds &, radiation, and the recoilless fraction of
the anomalous emission line will contain only the
M = 0 frequencies. On the other hand, for the seg-
ment of the cone for which the scattering plane is
perpendicular to H, only the M=+1 transitions
contribute. These features are shown in Fig. 7
where we give the frequency spectrum of the re-
coilless fraction for 0 ~~ z, H ~] z+x, and H ~~ x,
where z bisects k and k„and y = E„as shown in
Fig. 3(b}. The dotted lines give the relative inten-
sities of the lines that would be obtained for the
same orientation of k relative to H for off-Bragg
emission.

Similar considerations also hold for developed
sources although in this case the effect on the fre-
quency spectrum of the relative orientation of the
magnetic fields and crystal planes is much less
pronounced.

G. Recoil fraction

The emitted radiation pattern for the recoil frac-
is the same as that of the recoilless fraction coming
from an nnsPlit source when the crystal is in its
"earl~ develoPment, " i.e. , when there is essen-
tially no resonant scattering within the lattice.

Thus for an Ml or higher-ord r-multipole emit-
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of course, only the chemical cell Kossel lines. The
recoil Kossel lines can thus serve as useful "bench
marks" for the magnetic Kossel lines formed by
the recoilless fraction, just as in neutron diffrac-
tion the scattering from the nuclei serves as a
"bench mark" for the electronic magnetic scattering
of the neutrons.

H Ilz+x

III. BRAGG CHANNELS

For the Bragg channels R is near a Bragg angle
for some set of crystal planes and the wave field is
determined by the k channel and a reflection channel
k&, with k&=-g, z+k +v', Eq. (1), which travels
in the —z direction (i. e. , k, ~ z & 0) as shown in Fig.
8. The Bragg condition is now [Eq. (2) withe& = —g, ]

H II x (go+g&)d = 2nw+ Ã . (30)

Mi~
FIG. 7. The dark curves indicate the frequency spec-

trurn in an anomalous emission Kossel line from a Zee-
man split Fe source for three different orientations of
the magnetic field. g lies perpendicular to the Bragg
planes and S is parallel to the intersection of the Bragg
planes and the scattering plane. We have assumed a
symmetric Laue channel with 8=20 . The dashed
lines indicate the frequency spectrum which would be ob-
served at a neighboring off-Bragg point.

ter, the recoil fraction will exhibit the anomalous-
emission effect, and the deep crystal emission for
the recoil fraction will not disappear as the source
develops, since the recoil radiation is not reso-
nantly scattered.

For a thick-crystal source the recoil Kossel
lines will be enhanced relative to the background
and will be predominantly linearly polarized paral-
lel to the cone. The enhancement E and polariza-
tion P, are given by the previous expressions, Eqs.
(23) and (25), and in particular the tabulated values
in Table I hold for the recoil fraction. As the
source develops, the recoil contribution will domi-
nate.

Although the recoil fraction is, of course, un-
suitable for Mossbauer studies, viewed as an x-ray
source the recoil fraction is an extremely mono-
chromatic (frequency spread -zs 0. 1 eV) source
of radiation which can be used for chemical struc-
ture studies in scattering experiments.

The recoil Kossel lines themselves can be ana-
lyzed to give precision determinations of lattice
parameters of the crystal, and the change of these
parameters under temperature and strain varia-
tions.

In magnetic crystals, the recoil fraction exhibits,

& is again given by & =(kdsin8}&$/(2sing, ) where
8 is the scattering angle and &P is the deviation of
the rocking angle @0 from the exact Bragg angle $0.
A„(R) is now given by Eq. (82} of IIIA in terms of
the & and 8 matrices.

For simplicity, we shall again concentrate pri-
marily on the case of no polarization mixing. The
wave emitted from the crystal due to a decay at Rz
is [Eq. (82) of IIIA]

A'„(k) =D" (K, k)e '~'~ J,(-k, &o; j)
(31)

+D" (k, k, )e ' ~'~ J,( k„e; j-).

As is the previous section, in the limit of no po-
larization mixing the D matrices of (31) are diago-
nal, as are the W and 6t matrices of Eq. (82) of
IIIA. Substituting Eqs. (43) and (47) of II for the
f' and 8, matrices into Eq. (82} of IIIA, we obtain
after some algebra

(D (k, k))„„=Q& exp[iM&(a~+ P +god —5)], (32)

(Dm~@ ~84i =f~iF~~@i

x exp[fM, (a„+P +god —&)], (33)

where, as in Sec. II, &=x or y or &=a»„ for the

~ R

rll +I
fllj

m -I
j

kl CHANNEL~
1 F k)

FIG. 8. Schematic representation of a Bragg Kossel
channel.
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various cases of no polarization mixing, and I' is
given by (7) and (8}, and

n„= g(Fu E~)00 11

'}~= 6+ 2(Fu+Eii),
and where

q ~g +
1 e24Njp~

+ fm'„(q, —P~)(l —e '"&~&),
(36)

where

X "Xyy

xexp[iM&(n„+ P~+gd —5)],

e(0) .f fo( k ~. )&
IR py

~

~

~01
Al e ),Jjo( k ~. .

) -ajar ~
~

+ p
)t x ls &g ~

(36)

(37)

As before, the factor K„ in (36) gives the effect
of the interference of the two waves in the k channel
which occur because the source feeds both the k
and k, channels, and the maximum penetration

i(1 —easmysz)

(4+p, ) —e" »(f4 —px)'

As before, M& =M —mz gives the number of layers
below the top surface of the emitter, and mz gives
the number of layers above the bottom surface.
For an emission near a Bragg angle from a site R&

close to the bottom surface (such that m&P, «1),
then m„=' m~; while for a thick crystal (for which
we will generally have m& p~ » 1), then m'„f(q~„+ p„)
The denominator Q„also has a simple dependence
for thick or thin films: Q„=1 for thick crystals
(mzp~» 1, but no restriction on M&}, and @~=1
—iM&(r(„- p„) for thin films (M& p, mzp«1).

Just as in the Laue case, we see from Eq.
(31) that the wave emitted in the Bragg channel is
the superposition of two waves: D(k, k) again gives
the amplitude of the wave in the k channel at the
crystal surface which arises from the direct feed-
ing of the k channel at R~, while D(f, k, ) gives the
wave in the k channel at the crystal surface which
arises, due to Bragg scattering within the medium,
from the feeding of the k, channel at R&. Again the
amplitudes and phases with which the two channels
are being fed at R, are given by Po(-k„&u; j)e ' &'x

for k, =k, k
In the remainder of this section we will restrict

our attention to the thick-crystal limit [Q„=1, m~
= i/(q, + P„)], which will hold in almost all cases.
In this limit the expression for the emitted wave
simplifies to

A'„(k) = Z e,' 'K„(6, (o; R~)

depth l„ for the e„polarization is determined by the
exp[fM&(n„+ P„)] factor, i.e. ,

l„(5)= dtl (n, + p„)] ' . (38)
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FIG. 9. (a) The interference term ) g ) as a function
of the deviation g from exact Bragg condition for a Bragg
reflection channel in the limit that the nuclear scattering
is small compared to the electronic. The K, (K ) curve
is for constructive (destructive) interference between the
direct and reflected waves. tb) The penetration depth as
a function of (5 for two different ratios between the imag-
inary part of the forward scattering amplitude and the
real part of the k~ k scattering amplitude. (c) Plots of
the interference I K I

' and the penetration depth l„|I5) for
the recoilless radiation when the nuclear and electronic
scattering are of equal magnitude.

The nature of the interference and penetration
depth of Bragg emission Kossel lines is quite dif-
ferent from the Laue case. As shown in Figs.
9(a) and 9(c) for a symmetric Bragg channel, the
interference terms K„(6}goes through a sharp
maximum or minimum on the "lower" edge
(6 = RED„' -RE~) of the "total " reflection region
(6+RF00) ~ +RE~»', with a width on the order of
AE„„'. The destructive interference occurs if the
two channels are fed "in phase" (i.e. , both with
+e or+ad, " and +e„' }while the maximum occurs
if the channels are fed "out of phase. " As noted
before in connection with Fig. 3, for an E1 or M1
source only the linear component of the oscillator
bisecting k and f, will lead to constructive inter-
ference for a lattice-site emitter, and the amplitude
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%,0'~ 1/2

8wro(x )rF(8)fn(8) sin'(8/2) (40}

for the process is decreased by the geometrical
factor sin(8/2). Thus the interference term for
latNce-site emission is primarily a sharp mini-
mum. For interstitial emission the nature of the
interference is reversed and will be primarily con-
structive.

The behavior of the pepetration depth l„depends
upon the strength of the absorption relative to the
strength of the coherent elastic scattering. As
shown in Fig. 9(b), for a weakly absorbing crystal
(i.e. , fE~» «RF~~~) the penetration depth decreases
from its off-Bragg depth and abruptly minimizes in
the total reflection region. This sharp cutoff of
the penetration depth in the early development of a
crystal is well known in x-ray optics and is made
obvious by the reciprocity principle, since the
penetration depth of an external plane wave is re-
duced sharply in this region due to the strong elas-
tic scattering from the electrons. On the other
hand, if there is relatively strong absorption (i.e. ,
&E» ~ RE»~}, then the penetration depth maxiniizes
just at the lower edge of the total reflection region
(5 =RED» RE~~) an—d then abruptly minimizes. The
enhancement of the maximum penetration depth
relative to that off-Bragg case is

(:f)~=I'(1-8,)I (' ) 8.'("8")I'~,
(39)

where a„=IEo»'/(IE~») and b„=RE»'/(IE„O~). In the
"early development" of a crystal when the scatter-
ing is primarily electronic and we generally have
a„«b„, then

f4 I 4&E(8)fn(8)&0(I —fn(8)) &)
"'

pg )I

4.0

5.0—

2.0—

1.0—

Ff} && Fe
(l
II

L

IN TE RSTI T IAL

/ 1

r

LATTICE SITE

~ }(J

as shown in Fig. 9(c}(where for a Fe crystal en-
riched with P = 10-at. % Fe' and for a, scattering
angle 8=20', l„*/los =[4 sin (8/2)o, /Po„j '~ =13) .
This occurs because when a crystal containing
resonant nuclei is excited at a Bragg angle, there
is an enhancement of the effective coherent elastic
radiative width and a consequent suppression of
absorptive and inelastic processes. '

If the absorption is normally very strong (i.e. ,
I'»I'„}, which is often the case for Mossbauer
atoms, then the suppression of the absorption pro-
cesses at Bragg angles causes enhanced transmis-
sion even though reflection is also strongly in-
creased. It should be noted, however, that the in-
crease of the penetration depth here is much less
than the increase in the Laue case, so that
there is no anomalous deep crystal penetration.
For the iron example just considered, the enhance-
ment in the Lane case is [from E(ls. (14) and

(28)l

Pe„
I„*/l()e=2 .

~(8/2)
"=3.4X10 .

Returning to the early stage of the development
of a source, we see that there is no anomalous-
emission effect for Bragg Kossel emission, and
there is no strong dependence on the multipolarity
of the emitter. This is a consequence of the gen-

and

48F(8)f/8) coss r (1 —cossf (8)) lo'
ko'~

( o }1/28, 40'
E 8wKroE(8) f (8) cosH sin'(8/2) i

10.0—

1.0 =

Fo =Fe
RECOIL LESS
EMI SSION

ly
INTERSTITIAL

TTICE SITE

where the notation is that of E(l. (12).
For Co' in Fe, 8 =20', T =4.3', there is a weak

enhancement, E =1.7, of the c'„penetration depth,
while there is no enhancement for the i„radiation.

On the other hand, for a strongly resonant sam-
ple a„» 5„, and the maximum penetration depth is
given by

fv/I ~ (1 sa}-nfl (41)

In this case the penetration depth at the (effective)
Bragg condition can be much greater than off Bragg,

IR (F~ -F~')I

FIG. 10. Rocking curves for the Bragg-Kossel chan-
nel intensity relative to the off-Bragg intensity for a thick
Fe crystal source uniformly populated with Fe~v emitters
at lattice sites or interstitials. The interstitial curves
are calculated assuming that the fraction of interstitial
emitters is very small. The curves E„«E,are for the
"early development, " and the curves E„f= E~ are for the
recoilless emission in a developed source.
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erally destructive nature of the interference term,
and, more importantly, because there is no anom-
alous deep crystal penetration. As shown in Fig.
10 for a uniformly doped thick-crystal source, the
Bragg Kossel lines will be characterized primarily
by a minimum if the source is at a lattice site and

by a maximum if the source is interstitial. If the
source exhibits strong Zeeman splitting, a particu-
lar resonance frequency can exhibit a maximum in
the Kossel-line region though the source is at a
lattice site. As in the Laue case, which reso--
nance frequency will exhibit the maximum depends
on the orientation of the magnetic field with respect
to the crystal planes.

Magnetic Kossel lines will also occur for the
Bragg case for resonant magnetic crystals which
have a larger magnetic (or EFG) unit cell than
chemical unit cell. The general considerations and
features are the same as for the Laue case.

A. Phase determination

The problem of determining the structure of com-
plex molecules by x-ray diffraction is greatly
complicated by the fact that the reflected intensity
only gives the magnitude of the unit-cell scattering
factor and not the phase. For this reason, con-
siderable effort has been devoted to devising meth-
ods for extracting phase information.

Typically one utilizes the interference between
scattered waves to determine the phase of the unit-
cell scattering amplitude relative to the phase of
the wave scattered from a limited number of im-
purity sites. For example, in Mossbauer diffrac-
tion one substitutes resonant Mossbauer atoms into
the sample to be studied. Because of the exceed-
ingly sharp resonance, it is then possible to vary
the phase and amplitude of the resonantly scattered
wave by Doppler-shifting with negligible variation
in the nonresonant electronically scattered wave.
Consequently the interference between the waves
is easily varied in a controlled manner. As dis-
cussed by Black, ' and as demonstrated by Parak
et al. , it is then possible to extract the phase of
the chemical structure factor of the unit cell rela-
tive to the structure factor due to the resonant
scattering at the Mossbauer sites. The problem is
then reduced to determining the relative positions
of the Mossbauer atoms within the unit cell. In
practice, of course, these experiments are very
difficult and, as discussed by Parak et al. , there
are formidable problems in applying this procedure
to the analysis of significant biological molecules.

Although Kossel-line studies have been used to
make precision determinations of crystal symmetries
and lattice parameters, "Kossel-line analysis ap-
parently has not been utilized to obtain phase in-
formation. The purpose of this section is to point
out that Kossel-line analysis offers an alternative

l(5)= E N(()( ) Z Z J d

where

01 2

d&} I&) '& (-k & p)~ .

(42)

e(0) ~ i'0(-k, (u; p') ' (43)

In (42) N(t) is the number of y-ray decays per sec-
ond in the crystal, we have assumed that there are
v emitting sites per unit cell located at positions
p', and 2J„+1 is the multiplicity of the excited
Mossbauer level. The factors a~, P„and q„are
given by (34}. We assume that the scattering is
primarily Rayleigh scattering from the atomic
electrons, then the planar scattering amplitudes
are given by

F'„„'= (KC,/sin p, )A„e"),

F,' (K0~C„/sing )A„oe '~",

F „=(K/stny )Z f '„"(k,k}, (44}

F',)', = (K/sing, )2f „'„"(k„k,), = (sinS)0/sinu, ) F„„,
where X=xor y, C, =1, C„=cos8, E=ngd, n is
the density of unit cells, 8 is the scattering angle, and

A„e")=Z f„'„"(k, k,}e """1' '
P

(46)

method for phase determination: The interference
of the direct wave emitted in a given direction with
that Bragg reflected into this direction (Fig. 8}al-
lows the phase of the latter to be obtained from the
intensity distribution within the Kossel line, as in
the holographic technique where phase information
is obtained by "beating" the diffracted wave with a
primary reference wave.

We recognize that this procedure for obtaining
phase information will also present formidable ex-
perimental problems. In particular, accurate in-
tensity measurements of the various Kossel lines
are difficult because of the low contrast and narrow
widths of the Kossel lines. Typically for a perfect
crystal the Kossel lines wi11 only be a few times
background intensity at most, and with an angular
width of a few second of arc.

To be explicit, we consider a thick molecular
crystal with y-ray sources (radioactive isotopes,
or, e.g. , resonant Mossbauer atoms whose in-
coherent scattering when illuminated constitute
sources) substituted into the unit cells near the top
surface of the crystal Iwithin the total reflection
extinction depth I, =d/Im(o. ,+ p,)]. From E(I. (42)
of IIIA and E(I. (36), the emitted flux in a Bragg-
Kossel line region is then given by
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is the unit-cell scattering amplitude, with A„ the
modulus and P„ the phase, for the Bragg reflec-
tion h.

We take the sources to be isotropic M1 emitters,
and for simplicity we first assume only one emitter
per unit cell located at p'=0; then we find from
E(ls. (A2') and (42)-(44) that the intensity of the e«
component in the Bragg-Kossel region relative to
the off-Bragg intensity is

((a}} z Biny )'+=1 -C„cos8I„siy,

If cos8 is small and q}p = q}, (Bragg planes paral-
lel to the surface) then (46) becomes

f«(k q ')/f«pe =
I
I —e""[&' +(n" —I)'~] ' I' (48)

If then 0 & (t}«& w, I„(t«rp')/I„M will go to zero at
some point in the total reflection region Ig'I& 1,
whereas if w& P„& 2m it will become 4 at some point
in this region. In the general case, we have for

I vy'I &1

1(tkq '} &c, siw, )'=1 —2C), cos8I~ sing~

x [}7'+(}7"—I)'a] 'cosy„

~ f g ~ 2 i/2 -2
+"."~' ~ + ~ —I . (46)

u'»

In (46) Q« is the phase of the structure factor for
the Bragg reflection "h "; ~» is half the angular
width of the total reflection region, the thickness
of the Kossel cone, for this reflection; h, y' is the
difference of the cone angle of k and that of the
center of the Kossel cone taken in the sense that
&q} & 0 for directions lying within the cone (as is
well known &y' differs from ~y, the deviation from
the "kinematic" Bragg angle, by a few seconds of
arc because of refraction); finally 8 is the scatter-
ing angle i('(k„k).

Explicitly,

w«« = nX«A«C„(wsin8) '(sins},/sinq}p)', (47}

and h(Ip' = &q}+nX(}Ap(2w sin8) (sin(I(}p/sinq}&+ 1),
where the second term represents the deviation of
the center of the total reflection region from the
kinematic Bragg angle, with &p the forward-scatter-
ing structure factor [k = k, in (45)]. Ap has a small
positive imaginary part.

In E(I. (46) the first term, 1, represents the in-
tensity of the wave emitted directly into the 0 di-
rection, the last term that Bragg reflected into this
direction, and the second term the interference of
these two waves.

For Ihy'I& so» the reflected wave has modulus

(sin(I(}p/sinq}, )'i [hence total reflection, since waves
emitted in the solid angle dA, are Bragg reflected
into solid angle dAp = (sin(I(}&/sinq}p)dAg]' its phase
is fixed by the stipulation that Im[(n q}'/w~) —I]'i«

&0. The phase of the reflected wave amplitude

r«(n q}') = —e' «[rl' + (rl' —1) ] (sin((pp/sin(((}&)

(46)
with }7'—= n (I(}'/w~ is thus (t}« for }7'& —1 (outside the
Kossel cone), (t}«+w for })' &+ 1 (inside the Kossel
cone}, and (t}«+w —tan ~[(1-q'«)~i«/})'], for I }7'I& 1

(within the width of the Kossel line). The phase of
r„ increases by r as q' goes from —1 to +1, and it
is this that allows P„ to be inferred from intensity
measurements.

WP [ }
(

}« I)1/«] 2

sinyj
(50)

where the radical is positive if g' & 1 and negative
if q'& —1; and for Iq'I&1

= 1 —2C„'cos8
Ip~

" sing)

x [q'cos(t}«+ (1 —}I' )'+sin(t}«]+
sing~

'

(5o')
Comparing (50) and (50') we see that the antisym-

metric term (about rI' = 0) ~ cos8 cos(t}«, whereas
the symmetric interference term c sing~ cos8.

In Fig. 11 we plot I(t«y')/Ipe (with cos8='1,
q}~ =(I(}p) as a function of g', for several values of

The shape of the line is clearly a very sensi-
tive function of Q„, and the line usually contains a
bright ring (intensity maximum) and a dark ring
relative to background. In a centrosymmetric
crystal, with the emitting atom at a center of sym-
metry, $«=0 or w. Then if 8& w/2 the Kossel cone
will have an inner dark ring and an outer bright
ring if $«=0 and the opposite if (t}«=w. If 8 &w/2

there is a reversal of order. Thus P„can be ob-
tained for all the reflections of a centrosymmetric
molecule by qualitative examination of the Kossel
cones recorded on a photographic plate.

It is apparent from (50), (50'), or Fig. 11 that
high resolution measurements of the Kossel-cone
structure would determine A„and P„. Unfortunate-
ly the widths of these lines, u}«[E(I. (47)], are ap-
proximately a few seconds of arc. To obtain the
Kossel lines with a resolution approximating the line-
width would require that the detector be located at
a distance 10 x(linear dimension of the crystal).
Practically, A„should be determined by x-ray-
diffraction techniques, then Q„can be determined
by measurements using "poor" resolution, say
10-50 sec of arc.

Consider the integrated relative brightness ex-
cess

4 4
s =2 j [( (aP',}—( ae}d(a P } f ( o d(aw '\'
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'I s '
=(do)'r ' —1)d(osd)

h 110B

~ +„„sin+0
M sing~

x, (1 ~ code} — cosd . s'Singe
sin/0

(51}
where ur»is givenby (47} with &=y. If dth is known,

then measurement of the integrated intensity in an
angular region 2h centered on the Kossel line will
determine sinph through (51}. The correct quad-
rant (first or second, third or fourth) ca.n then be
determined by qualitative observation of the dark-
bright ring order (Fig. 11) as in the case of the
centrosymmetric crystal. The value of the ex-
pression in ( }'s in (51) is denoted by S in Fig. 11.
We see that it is a sensitive function of P„varying
from a minimum of S= —0.47 for ph = w/2, to a
maximum of S= +5.81 for ph=3v/2.

As an example 2wh = 2. 6 sec of are for the (020)
Bragg reflection in K,Fe(CN)h. If we take 24 = 10
sec then (51) gives Shh= 0. 33, an excess counting
rate over that of background of 33 counts per hun-
dred. In fact, Q„ is zero for this reflection, but
if instead ph were, e.g. , v/2 or 3v/2, then one
would measure excess relative intensities S~~
= —0.08 or + 0. 74, respectively. For the (800) re-
flection in myoglobin ' 2u„= 0. 52 sec of arc. Again
taking 24 = 10 sec arc we get S2~ = 0.07. Q„ is also
zero for this reflection. If it were w/2 or 3v/2,
then S2~ would be —0.013 or + 0. 14, respectively.

Naturally this method of phase determination for
large molecules will present difficult experimental
problems. The intensities and contrast are low,
and the lines are very narrow. On the other hand,

cos4 h j cos(4 h+ Qn} s

sinPh- pain(Ph+Q„),
(52)

where p, e'~" is the structure factor for the emitting
sites,

if the emitted radiation is recorded, e.g. , on a
photographic plate, one would obtain simultaneously
the Kossel cones from all (or a large fraction of)
the Bragg reflections. This does represent a
straightforward method for phase determination by
what is essentially a holographic technique, and it
may be the best way to obtain the phases for large
mole cules.

In the above development we have assumed a
single emitting site in each unit cell fixed at p =0.
It is simple to take the zero point and thermal mo-
tion of the emitters into account and to allow as
well for several emitting sites in the unit cells.

We first note that the Kossel cones of the Dop-
pler-shifted (recoil) y rays will generally differ in
angular position from those of the recoilless y rays
by less than the width of the Kossel cone, ~„. This
comes from the fact that when a phonon is created
or absorbed in the radiation process it will general-
ly shift the energy of the y ray by less than about
0. 1 eV. If the individual atoms are to be resolved

0
than y-ray wavelengths less than 1 A or y-ray en-
ergies greater than 10 eV are required. Thus
5k/k(10, and since the shifts in positions of the
Bragg angles 5rp~= 5k/k we obtain 5ys( 10 ' rad
= 1 sec arc ~ ~„.

If now there are v emitting sites in each unit cell,
the formulas we have obtained for the relative in-
tensities must be modified according to the follow-
ing substitutions

4

I

p=o

S =2.67

I I I

f= w

S = 2.67

I 1 I

7T

4

S = I.IO

5'

S =4.24

l I

2

S=-Q47

3'
2

S =5.8I

E I

377
4

S = I.IO

7~
4

S =4.24

FIG. 11. Rocking
curves for the Kossel-line
intensity (relative to the off-
Bragg intensity) for a sym-
metric Bragg reflection chan-
nel for different values of
the phase angle ft}g of th'e unit-
cell scattering amplitude.
The region I g' I &1 corre-
sponds to the Bragg total re-
flection region. The values
of 8 give the integrated in-
tensities (relative to off
Bragg) for the various curves.

-I 0



2826 HANNON, CARRON, AND TRAMME LL

pe""= —Z (exp[- i(k —j&,) p']),
V pg

=-~-H--.'([(k-k,).(- -R )l'&]

&& exp[- i(j& —k~) ~ R '], (53)

where R' = (p')'are the equilibrium positions of the
emitters, and where in the second line of (53) we
have used the Debye-Wailer approximation.

If v & 1 it is necessary to first obtain the relative
positions of the emitting sites together with their
Debye-Wailer factors so that p, and +„may be
computed; then with these values and our previous
expressions modified in accordance with (52} P„
can be determined by Kossel-line analysis. If
there are only a small number 6f emitters per unit
cell then their positions should be ascertainable by
Mossbauer and/or x-ray-diffraction experiments.
If the sources are isotropic El or E2 emitters
rather than M1, the only change in the previous re-
sults is in the interference term. Thus for E1
emitters (46) becomes

Ix(at} sinpo }~'

x)e'~" + 1 +c.c.
~

tU~p,

-
(+ i 2 1/2 -2

sing,

that the major features of the Kossel cones are the
same for E1 and E2 as for M1 emitters, there are
only minor quantitative differences.

B. Superradiant decay

A point of theoretical interest is the existence of
superradiant decay into Bragg modes. That is, an
excited nucleus located in a crystal of identical
resonant nuclei will decay into the Bragg modes
with a radiative width I'„„which is greatly en-
hanced over the radiative decay width I'„of an
isolated nucleus. This of course is closely related
to the enhancement of the radiative processes at
Bragg discussed in II. This phenomenon was first
pointed out by Trammell' and Muzikar, ' and cor-
respondS to Dicke's superradiant emission states.

To illustrate this behavior, we consider a crystal
of resonant Ml scatterers in their ground state, and
an excited source at Rz. For the "good" E„polar-
ization, a symmetric channel, and one atom per
unit cell, we have P„=(5 +25E„)' from (34) and
(A3}. Since P, -O as 5-0, the thin-film limit
should be used as &-0 even for a thick crystal.
We then have

A'„(5-0) ~ e,'0'=[i,' ' j» (-ok)+im~F e'" j ~0(-k )]

~e-' &»'[~-~E+i-,'(r+r„„)]-', (56)

where j (-k) is the Fourier transform of the transi-
tion current density as given by Eq. (16) of IIIA,
and

and Sz~ [Eq. (51)] becomes
2'&X2ndP(2 J„+1}e

(2'+ 1)sin/0
(59}

u' a sinyo
2& sing,

singx —', (1+cos8) —2w(1+ cos 8) . ' sing„.
sinyo

(55)
And in the case of isotropic E2 emitters

l„(llp), Sl g

)= 1 —C„cose
I~gg s in'|}'g

ay' &a(p' &'
&&ie'" +i i

—1 +cc
i

and

sin(po ~y'
+ . + —1

sin~& wv, u v
(56)

~,„sing o
2 2d sxn9 1

sln+ g
&& y4(1+cos8) —icos 8 . ' sin@„. (57)

sin(go

In (56) C,'=cos28 and C,'=1. Comparing these with
our previous expressions (46) and (51) it is seen

From (56) we see that the radiative width for
decay into the Bragg mode is enhanced by F„

As a consequence, the resonance radiation at al-
most exact Bragg will be frequency broadened, or
in time-coincidence experiments, the decay into
the Bragg mode occurs more rapidly than isolated
d&icay. This behavior of course only occurs at
very near exact Bragg, «& I/M~, I/m~. As an

example, for Fe" with m~ = M&
—- 10 and I' = sin(t)o

then the enhanced width is F„=6&&10I'„, but
this behavior occurs only in the extremely narrow
collimation &P «10 ' rad (1 sec of arc) about exact
Bragg.

It is important to note that these considerations
do not contradict the assertion in the Appendix of
IIIA that the effective total decay rate I' of the
atom in the crystal is very nearly equal to the
decay rate I' for an isolated atom, so that it is
valid to take I"=I' in Eq. (7) of IIIA for the excited-
state propagator 6 of the nucleus in the crystal.
This is because the effective total decay rate in the
crystal is determined by the average decay into all
modes k, and while there is enhanced decay for k
very near Bragg, there will be a suppression of
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decay in other modes, and for most modes the
decay rate is essentially unaffected (e. g. , off
Bragg).

IV. OFF-BRAGG CHANNELS

The most interesting effects in off-Bragg emis-
sion are the magneto-optical effects involved in the
propagation of the photon through the surrounding
medium. In particular, the polarization state of
the recoilless photon emitted from the crystal will
differ from the polarization state at the emitter be-

cause of Faraday effects.
Off Bragg only the single k channel need be con-

sidered. The problem is then formally identical
to the off-Bragg external source problem' ' ";
therefore we obtain that the coherent wave emitted
from the crystal due to a decay at R~ is &Sec. IIB
of II}

A'„(k&=Dq (k, k) J,(-f, (();j), (6O)

where the 2&2 coherent-wave-propagation matrix
D is given by

'f f~ '-e(,)+e( )
f~

I A fB-
D)"(k, k) =

f f-
(+) &-)

(61}

n(R, ;R&)= —+ )Tr{D&n D~" )R 4 Sc
(63)

where for g = 1, 2,

f„(k, v) = a Trf +(- I)'~"I &(Trf)' —detf](~'
(62a)

= (f..+f„}+( I}'""t(-'(f..-f)'+f.,f-l",
e„,(k, &(); M, R;) = (e' )'& se( "~)e'"&'&&~ (62b)

l, (k) =M&d/sin/0 is the distance the photon travels
within the medium in the direction of emission,
and fD, (a, b = x or y) is related to the unit-cell co-
herent-forward-scattering amplitude for scattering
an I i„k& photon into an I eD, k& photon by

f„(k, u&} =)(OnZ f ' (iD„)k; e„k; ur), (62c}
P

where n is the unit-cell density, the sum is over
the unit cell, and it is understood that the coherent
averages are taken at the time of emission, 7+.
Here &„and c, can be any orthogonal basis perpen-
dicular to k.

The photon flux at R is then

(&,()(;j)= '. ,=2 ( ~ 5 (;(k, ),). (85m)
Trn0 2 g g

The polarization state is then described by the
Stokes parameters

$& (k, ~) = Tr( po(r&), (65b)

where 0&, i =1, 2, 3 are the Pauli matrices. In
terms of the Stokes parameters the degree of po-
larization P is

are generally nonorthogonal and have different
complex indices of refraction, n„=1+f„. This
leads to Faraday and selective absorption effects,
and as a consequence, the polarization state of the
recoilless photon emitted from the medium will
generally differ from the polarization state at the
emitter.

The density-matrix formalism gives a convenient
description of the polarization state. At the
source site the density matrix is

where no is the (unnormalized) density matrix for
photon emission at R~, P()( )=(E &{) (65c)

"0(» ~' j) =&IJ "(-k, (o; R;)&&J "(-k, &o; R,&I& ~

(64)
The expression for no for a pure (L)(}multipole
transition is given by Eq. (A5).

The matrix D describes the propagation of the
emitted photon I

J~ (- k, v; R&)& through the medium.
As discussed in II, and Refs. (23) and (24), for a
given frequency ~ and direction of propagation k,
there are two eigenwaves e„(k, &o), g = 1, 2, which

p(f, (();j)=D~"noD~" /Tr(D~ noD~" ) . (66)

The Stokes parameters and degree of polarization
at R are then given as above.

In general the change of the Stokes parameters

External to the crystal, the photon density matrix
due to emission at R; is
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FIG. 13. (a) Plots of the interference term IKI 2 and
the penetration depth / vs the rocking angle ft} for Fe 7

in Fe. The solid curves (f„«f~) are for the early de-
velopment, and the dashed curves (f„=f,) are for the
recoilless fraction in a developed source. ft), = 3.8
x10 rad is the critical angle for total reflection. (b)
Plots of the intensity emitted at the grazing angle P from
a film with a uniform distribution of emitters relative to
the intensity obtained off Bragg from a thick crystal uni-
formly populated with the same fraction of emitters.

The purpose of this paper has been to present a
comprehensive investigation of the emission of

relative intensity at grazing incidence is «1 due to
the shallow penetration depth and the destructive in-
terference in this region. Within a narrow region
ft) &Q„however, there is avery rapidincrease in the
relative intensity although the penetrationdepth is
still relatively shallow. As a practical matter, some
advantage can be obtained from this behavior in
preparing collimated sources. For example, if
Co" is spread over a film surface of (lx 250l} to a
depth of 750 A, the source will have a bright spot
2. 3 times background at y =4&10 ' rad which will
be 73% as intense as a normally oriented thick
source of surface area E, which contains the same
density of Co' to the off-Bragg penetration depth
of 6~10 A. Although the intensity is down by 27%%up,

only surface deposition is required and only 3 as
much source material is required.

VI. SUMMARY

We would like to acknowledge useful conversa-
tions with R. L. Mossbauer and F. Parak during
the early stages of this work.

APPENDIX

For reference, we summarize here some useful
multipole formulas.

For a pure (LMX) multipole transition from an
excited Zeeman level (J m ) to a ground state
(Ja, ma), the transverse component of the source
current Eg. (15) of IIIA is given by

J~'(-k, &u; l)=c '(X.pie '"'~IXO}

&&[(u+E(Ja ma) + eq -E(J„m„}—so+ il'/2] '

&& C(JO LJ„; mo Mm„}[X&I'„(LX}]~~aY~e'(k), (A1)

where C(JOLJ; maMm ) is the Clebsch-Gordan
coefficient for the transition, I'„(L&) is the radia-
tive width associated with the emissioi. t' (L, X)

multipole radiation, and Y~"„' is a vector spherical
harmonic. For an E1 transition (L =1, X=1), the
spherical harmonics are given explicitly by

~A

Y[0'(k) = —(3/8v)'~ sinaea,

Y,",', (k) = (3/16w)'+e" ~ [+cos&e, —fe ] .
(A2}

Here e~ and e~ are the usual spherical polar unit
vectors, and 8 and Q are the polar and axial angles

Mossbauer y rays from single crystals, and to
examine in particular the emission into Laue,
Bragg, off-Bragg, and grazing-incidence channels.

Initially our primary motivation in this investiga-
tion was to see if coherence effects in the emission
from single crystals could lead to enhanced col-
limated sources of radiation. Our conclusion on
this point is that a limited short-lived enhancement
can be achieved in the highly collimated Laze
channels during the early development of an active
source of multipolarity M1 or higher due to the
"anomalous-emission" effect. However, quite
aside from the question of enhanced sources, and
of potentially greater importance, the Kossel pat-
tern itself is of considerable interest. In particu-
lar, the Bragg or Laue channel "magnetic
Kossel lines, "which are a feature unique to the
Mossbauer case, offer a sensitive probe of the
magnetic (or electric-field-gradient) structure and
its dependence on temperature and strain. In addi-
tion, accurate intensity measurements of the Kossel
lines will give phase information about the unit-cell
scattering amplitude. For off-Bragg or grazing-
incidence emission, the most interesting aspect is
the Faraday effects which occur for the Mossbauer
case. Also grazing -incidence emission offers some
practical advantages for producing intense colli-
mated sources.

ACKNOWLEDGMENTS



2830 HANNON, CARRON, AND TRAMME LL

specifying the emission direction k, with the z axis
coinciding with the quantization axis at the nucleus.
For an Ml transition (L=1, &&=0) the spherical
harmonics are

YIO&(k} =i(3/8&&} ~ sin8e~,
(A2')

Y&,&&(k) =(3/16&&) ~e"~(e 8+icos8e~),

E1
M1
E2

Ctt Ctt
XX

1
cos8
cos8

gtoti

cos8
1

cos28

TABLE II. Tabulation of the angular function C~~ (8)
for the El, M1, and E2 multipole cases.

and for an E2 transition (L = 2, && = 1),

Y2&0»(k} = —(15/32»)&~a sin(28)e~,

Y"'(k) = (5/16&&)'+e" ~

&& [+cos(28) e&&
—icos8e~],

Y&»(k}- (5/16«)&+/&a+

&& [2 sin(28)e~ + isin8eo ] .

(A2")

C~ (8) is a function of the scattering angle 8 be-
tween k, . and k, which depends upon the multipo-
larity of the transition. In Table II we tabulate
C~ for the E1, Ml, and E2 multipole cases. For
all cases the total absorption cross section is
given by

o = —Imf4&
Tf k 'gtl

The planar scattering amplitude F'„'„. entering into
the multiple-scattering equations (58) of IIIA is
related to the atomic coherent elastic scattering
amplitude f",=f(e„(k,), k„' e„.(k, .}, &,.; ~) by Eq.
(7). The general multipole expansion for the reso-
nant nuclear scattering contribution to f'„'„. is given
by Eq. (4) of II. In the limit of no Zeeman split-
ting, for a pure L~ multipole transition, the nuclear
contribution becomes

ftt —$ &l &x & II ~ illl %8) (A3)
2d, +I I' z(d„, d,)-i '

Here x = 2[E(J„)-E(JO) —Ko]/I' is the deviation of
the photon frequency from exact resonance in units
of the half-width, q = x or y refers to the linear
basis vectors a„"', E,"' discussed in Sec. II, and

(A4)

The electronic contribution to the coherent elastic
scattering amplitude is

f„„=i'„" ~ i&~'fD(8)[- roF(8)+i(l&0/4&&)o ], (A5)

where q = x or y again refers to the linear E„, a
bases, fD(8) =exp(-2 ([(k, -k, ,) x]')) is the Debye
phonon factor, ro=e /mc, F(8) = (e lgo&e«"*&leo~
is the electronic form factor, and 0~ is the photo-
electric cross section.

Finally, the (unnormalized) density matrix (64)
for the recoilless emission of a If, v} photon from
a pure (L&&) multipole transition for which d, = m is
a good quantum number is given by

g g P(m„)C (JOLJ„; moMm„)
[&d —E(J„m„)+E(Jqmo)]a+ I'a/4

[d'"(8)]'1N

l( 1)&"'&d& &(8)d&zg&8)

(- I}'~+ d ~'(8)d '(8}&}

[d",.'(8)]'
(A6)

Here P(m„} is the probability that initially the nu-
cleus is in the excited state ld„m„), 8 is the polar
angle from the quantization axis z to k, the notation
for the rotation matrices d'„„'(8) is that of Rose,

and the constant

Z=c-2e-' '" &~ r 2L+12

87r

Work supported in part by the National Science Founda-
tion. Early stages of work supported in part by the
Office of Naval Research under Contract No. N00014-

68-A-0503.
Tpresent address: Mission Research Corp. , P. O. Draw-

er 719, Santa Barbara, Calif. 93102.
J. P. Hannon, N. J. Carron, and G. T. Trammell, pre-
ceeding paper, Phys. Rev. B ~9 2791 (1974). We will
refer to this paper as IIIA.

J. P. Hannon and G. T. Trammell, Phys. Rev. 186,
306 (1969). We will refer to this paper as II.

3V. A. Belyakov, Fiz. Tverd. Tela 13, 2170 (1971) fSov.
Phys. -Solid State 13, 1824 (1972)].

40. Borrmann, Z. Phys. 42, 157 (1941). For a discus-
sion of the x-ray Borrmann effect see Refs. 5 and 6,
and also P. P. Ewald, Rev. Mod. Phys. 37, 46 (1965).

~Max von Laue, Rontgenstrahleninterferenzen (Akade-
mische Verlagsgesellschaft, Frankfurt am Main,



MOSSBAUER DIP F RAC TION. III. E MI SSION OF. . . 8. . . 2831

1960), pp, 430-448.
R. W. James, The Optical Principles of the Diffraction
of X Rays (Cornell U. P. , Ithaca, N. Y. , 1965), pp.
413-457.
J. P. Hannon and G. T. Trammell, Phys. Rev. 169,
315 (1968). This paper will be referred to as I.
P. J. Black, Nature 206, 1223 (1965).

~F. Parak, R. L. Mossbauer, U. Biebl, H. Formanek,
and W. Hoppe, Z. Phys. 244, 456 (1971).
An alternate and experimentally much simpler method
of separation is to reflect the initial x-ray-y-ray beam
from any single crystal with the orientation chosen such
that the 13.5-keV y ray will be Bragg reflected. The
Bragg-reflected beam will then be an almost pure p-ray
source.

"P. A. Alexandrov and Yu. Kagan, Zh. Eksp. Teor.
Fiz. 59, 1733 {1970) [Sov. Phys. -JETP 32, 942 (1972)j.
G. T. Trammell, paper presented to the Budapest
Mossbauer Conference, May, 1969 (unpublished). An
investigation of this effect was carried out by F. von
Erdman, Ph. D. thesis (Technische Hochschule MQn-
chen, 1970) (unpublished).

3R. E. DeWames and W. F. Hall, Acta Crystallogr. A
24, 206 (1968).

' B. W. Batterman, Phys. Rev. Lett. 22, 703 (1969).
See, for example, R. Tixier and C. Wache, J. Appl.
Crystallogr. 466 (1970).

'6G. T. Trammell, Chemical Effects on ¹clear Trans-
formations (International Atomic Energy Agency, Vienna,
1961), Vol. I, p. 75.

7C. Muzikar, Zh. Eksp. Teor. Fiz. 41, 1168 (1961).
D. F. Zaretskii and V. V. Lomonosov, Zh. Eksp.
Teor. Fiz. 48, 368 (1965) [Sov. Phys. -JETP 21, 243
(1965)].

'~A. M. Afanas'ev and Yu. Kagan, Zh. Eksp. Teor. Fiz.
48, 327 (1965) [Sov. Phys. -JETP 21, 215 (1965)].
Max von Laue, Ann. Phys. 31, 705 (1935).
For a discussion of the crystalline properties of myo-
globin see G. Bodo, H. M. Dintra, V. C. Kendrew, and
H. W. Wyekoff, Proc. R. Soc. A 253, 70 (1959); or F.
Parak, Ph. D. thesis, (Technische Hochschule Munchen,
1970) (unpublished).
R. H. Dicke, Phys. Rev. 93, 99 (1954).
M. Blume and O. C. Kistner, Phys. Rev. 171, 417
(1968).

4R. M. Housley, R. W. Grant, and V. Gonser, Phys.
Rev. 178, 514 (1969).

5J. P. Hannon, Nucl. Phys. A 177, 493 {1971).
See for example A. I. Akhiezer and V. B. Berestetskii,
Quantum Electrodynamics (Wiley-Interscience, New
York, 1965), pp. 13-17.
M. E. Rose, Elementary Theory of Angular Momentum
(Wiley, New York, 1957), pp. 32-48.


