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It is shown rigorously that the introduction of random-hopping elements into an impurity potential in
a material with a single band does not introduce any of the new phase shifh required to generally
satisfy the Friedel sum rule in the dilute limit. With this proof it is now clear that the parameters
required to satisfy the Friedel sum rule as suggested by Schwartz, Krakauer, and Fukuy~m~ (SKF) are
artificial in spite of the off-diagonal character of their model. Other models are suggested which give
rise to phase shifts of more than one character. Also, it is demonstrated that the locator theory of
Blackmnn, Esterling, and Berk (and hence that of Shiba) is a correct s-wave theory in the dilute limit
in contrast to the chin of SKF.

I. INTRODUCTION

A great deal of useful information has been
acquired over the years concerning the fundamen-
tal electronic properties of binary alloys from
studies of the simple diagonal model of Koster and
Slater' which has a single narrow band, in which
the perturbation introduced by alloying is localized
on a given lattice site. Nevertheless, as Stems
has emphasized, this model contains only z-wave
scattering and hence does not have sufficient flexi-
bility to allow satisfaction of the solid-state form
of the Friedel sum rule. s

Several authors ' have recently reported calcu-
lations on an off-diagonal hopping-disorder model
in which the impurity potential is allowed to have
diagonal matrix elements on the impurity site and
off-diagonal elements linking the impurity site to
its nearest neighbors. Schwartz et al.' (hereafter
called SKF) have recently claimed that this extended
potential now has sufficient flexibility to generally
allow satisfaction of the Friedel sum rule.

In this comment, we show rigorously that the
terms introduced into the impurity potential by
this form of off-diagonality act only to modify the
z-wave' phase shift by a single impurity, and do
not introduce phase shifts associated with other
partial waves. This feature is explicitly illus-
trated for the case of a simple cubic lattice, and
the suggestion of multiple bands is made to give
nonzero p and d phase shifts and allow a more
general satisfaction of the Friedel sum rule than
that possible with a single phase shift. In addition,
we demonstrate briefly the correctness of the lo-
cator theories of Blackman et al. , and Shiba in
the dilute limit in contradiction to the claims of
SKF.

II. NONZERO PHASE SHIFTS IN THE HOPPING-DISORDER
MODEL

In the hopping-disorder model as discussed, for
example, by SKF, the host has a single s band,

the impurity potential V is invariant under all of
the operations of the point group of the lattice,
and the only nonzero matrix elements between
Wannier states are when at least one of these
states is that associated with the site occupied by
the impurity atom.

Because of the symmetry of V, it may be block
diagonalized in the bases of the irreducible repre-
sentations of the lattice group that span the sub-
space operated on by the impurity potential. Since
the Wannier state associated with the impurity site
is itself one of the basis states of the s represen-
tation, it is clear from group theory that in this
new basis, no matrix elements of V involving this
site can occur outside of the s block (since V is
block diagonal in this representation), and conse-
quently, the hopping-disorder impurity potential
has only s-wave scattering. As the Green's func-
tion on the same subspace is also block diagonal-
ized by the same unitary transform, the t matrix
also has only g-wave scattering, and the off-diag-
onal matrix elements in this model only modify the
g-wave phase shift.

It is generally artificial to attempt to satisfy the
Friedel sum rule with only a single scattering
channel, and, indeed, for some values of the Fermi
energy it is impossible (as has recently also been
pointed out by Rudnick and Stern for simple cubic
materials). In addition, close to these impossible
values of the Fermi energy the necessary values
of the off-diagonal scattering must be so large [see,
for example, Eq. (A4) of Ref. 9] that the system
would be extremely susceptible to order-disorder
transitions if these values occurred in real solids.
A minimum requirement on V to allow higher phase
shifts in a single-s-band model is to include changes
in the diagonal matrix elements on sites neighbor-
ing the impurity, such as would result physically
from a screening charge on these sites.

If, instead of considering an g band, we consider
a single band of Wannier states having some lower
symmetry, such as a d band, the same argument
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carries through directly by replacing the references
to the s-wave phase shift by that of the appropriate
lower-symmetry representation.

unitary transformation S necessary to block-di-
agonalize this potential in terms of the irreducible
representations of the group is

III. SIMPLE CUBIC EXAMPLE

The above general arguments will now be demon-
strated for an impurity in a simple cubic crystal.
The impurity potential operates on the subspace of
Wannier states spanned by the impurity site and
the six nearest neighbors. Arranging these seven
states in the order of the central site, followed by
the nearest neighbor in pairs of opposing atoms,
we assume the potential is of the matrix form

S= 0 a 0 b 0

0 a 0 -b 0

c e

c e

0 a 0 0 b —c e

0 a 0 0 -b —c e

1 0 0 0 0 0 0

0 a b 0 0 0 d

0 a —b 0 0 0 d

(2)

&o

5g 5p 0 0 0 0 0

51 0 52 0 0 0 0

V= 5q 0 0 52 0 0 0

5g 0 0 0 52 0 0

0 0 0 0 6, 0

0 0 0 0 0

where

and I 1) is any nearest-neighbor site.
In forming this potential, diagonal perturbations

on the nearest-neighbor sites have been included
(5o) to allow the appearance of scattering in the p
and d channels. The elements between the neigh-
bor sites have been ignored.

As discussed by Wolfram and Callaway, ' the

where a=1/v6, b=l/v2, c=l/2, d=l/W3, e
= 1/v 12. Under this transformation, the potential
becomes

~66)

65~ 5» j

V =S VS=

0 0

l
0 e, 0 0

oo6)
(6, ol
(o

The first block operates on the two s states (F,),
the second on the three fD states (I'„), and the third
on the two d states (F,o). The same unitary trans-
formation block-diagonalizes the Green's function, "
giving

G =S GS=

Goo ~6 Gobi

~6 Go& G

D D)
0 Gp 0

(O O G,

(G, O)

(0 Go

(3)

where

2

( )
1 g —,'(1+yo» —2y', )
N ~ E-Eq

and y» = —,'(cosk„a+ cosk a+ cosk, a).
The t matrix may now be written in block diagonal form, with the three blocks
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(1 0) ( 5o v65) ( Goo

f,(z)=
i

(0 1 j (W65| 5p j (1/ 6 Gpg G~ j (W65g 5p )
(4a)

t(z)=[1 —5 G(z)]'5 O 1 O

0 0 1

(4b)

(4c)

Now it can be seen that when 52 is set to zero, as in the hopping-disorder model, only the s-wave scat-
tering is nonzero and the diagonal element of the t matrix in k space becomes

5p+65sG~+ 125&(1 —65&Gps)ra+ 365|Gpp'rp
1 &oGoo 12&1Got + 3651Goi 65lGppGs

(6)

This term, which is the negative of the correction to the inverse Green s function to first order in impurity
concentration, is just the result obtained by Blackman et al. in their locator theory of s-wave scattering.

IV. DILUTE LIMIT OF THE THEORY OF BLACKMAN, ESTERLING, AND BERK

Since the accuracy of the theory4 of Blackman et al. (BEB) in the dilute limit has been strongly questioned
by SKF,7 we shall carefully expand their inverse Green's function to first order in concentration of A impuri-
ties to demonstrate the accuracy of their result. The main result obtained by Blackman et &l. for a binary
alloy is expressed in the 2 &&2 matrix equations

E —EA —CB Ug —CA W ABUs- Wa
A

Us- Wa
AB E —EB —CA U2 —CB W»

BB

CB

(6a)

—ZGp(E) =

CA

E —EA - Ug

CB
E —E —U

(6b)

where EA and EB are the cell-localized potentials associated with A and B atoms, which occur at concen-
trations C„and CB, respectively. W"„"and W, are the hopping matrix elements between the atoms in-
dicated in the superscripts, and U is the renormalized interactor defined in Ref. 4 and determined by Eq,
(6b).

The Green's function G, is given by the sum of the four elements of the matrix G„and thus the inverse
Green's function is given by

-1 (E —Eg —Cs U& —C~ W p )(E —Es —C~ Up —Cp W p ) —C~ Cp (Up —W p )
CB(z —Efl CsU1 CAWp )+CA(z Ep COUR CBWp ) 2C~CB(US Wa )

To first order in the concentration of A atoms, this becomes

E —E —U + WBB t2
G-1 E E WBB C B s k +E + U EE-EA- U,

(6)

Letting W"„—W, =6i5gpy EA EB =Op and using the values of the U; to zeroth order in C„, given by

(E Es Up)Gpp = 1 65' Gp1

(E —Es Up) Gpp = 1,
(E —Es —Ul)Gpp (1 —65&Gp&) —65~iG~Gpp,

then, the inverse Green's function becomes

(9a)

(9b)

(9c)
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G 1(g) g g gpBB G
'50 + 651G, + 1251(1—651G01)yo+ 26510Gppyo

50GOO 251G01 + 2651G01 651GOOG

which, from Eg. (5), is the exact dilute limit for
this model. Although this proof was formulated in
terms of Callaway's formalism with only nearest-
neighbor hopping, the proof can rather trivially be
extended to arbitrary forms of 8'",", 8'~, and

Furthermore, Blackman has recently
shown that this theory of BEB reduces exactly,
for the special case of separable hopping elements,
to Shiba's locator theory for a binary alloy. Hence
Shiba's theory is also an exact s-wave theory in
the dilute limit (in contrast to the claim in Ref. V).
Perhaps it should be said, however, that a proof
that Shiba's theory has the correct dilute limit is
easily formulated in Shiba's notation which is not
restricted to that of a binary alloy. Finally, the
further approximation by Brouers et al.~ on Shiba's
theory does not have the correct dilute value for
G„since Z(k) is truncated to first order in y, al-
though this approximation happens to preserve the
correct dilute limit for Goo.

V. DISCUSSION QF THE MODELS

So far in this paper, the discussion has centered
on a single narrow-band model for a metal, and

how Friedel's sum rule might best be satisfied.
Since the sum rule is a property of the whole sys-
tem, and not just of a particular band on which we
are concentrating, it is instructive to remember
that when narrow bands occur in tight-binding
metals, there are generally bands of other sym-
metries also present, such as hybridized s-d
bands in transition-metal alloys, where one might
wish to concentrate only on the d bands. In this
case, even a cell-localized potential will create as
many different phase shifts as there are bands of
different symmetry at the Fermi surface and thus
a many-band-type of potential might conceivably
satisfy the sum rule without any extension to off-
diagonal disorder. Certainly, in discussing the
importance of off-diagonal disorder for satisfying
Friedel's sum rule for the d bands in transition
metals, the effects of the s bands should be ex-
plicitly included if one wishes to make quantitative
comments.
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