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The isotope effect of polar phonon modes in crystals has been treated with a phenomenological

method. The coherent movement of the minor-isotope system was considered as additional phonon

modes. The oscillator strengths of the isotope modes were found to be proportional to the

concentrations of the isotopes. The TO-LO splitting and relative intensities of the phonons associated

with the minor-isotope species can be calculated solely from the frequencies of the TO and LO modes

associated with the major-isotope species. A generalized Lyddane-Sachs-Teller relation, which includes

the isotope effect, has been derived; moreover, the effect of isotopes on the static and high-frequency

dielectric constants has also been discussed. Upon application of the phenomenological method described

above to the optical-phonon modes of RbC10, , excellent agreement is obtained between the calculated

values and experimental data.

I. INTRODUCTION

It is difficult to separate the various isotopes
from their natural mixture. Most pure and pe~-
feet crystals contain a finite concentration of iso-
tope impurities and experimentalists must often
tolerate this type of crystal imperfection. It is
the purpose of this paper to discuss the collective
effect of the isotope impurities in a crystal with
polar phonon modes.

Herman et al. and Ziman treated the minor-
isotope species in a crystal as scattering centers
and showed that a considerable part of the thermal
resistivity of many crystalline solids at room tem-
perature was contributed to by the scattering of
phonons from the isotope impurities. However,
the isotope impurities not only act as scattering
centers, but also oscillate in the crystal with cer-
tain frequencies different from the normal-mode
frequencies of the host crystal. %hen the con-
centrations of isotope impurities are comparable
to that of the major-isotope species, the impurity
local oscillators will couple to each other and form
additional phonon branches. The coherent motion
of the minor-isotope system is called the isotope
mode.

Maradudin and Oitman3 have considered the pres-
ence of a finite concentration of impurities in alka-
li halide crystals, and shown that the coherent mo-
tion of the impurity system can generate a macro-
scopic electric field. This field can act back on
the impurity modes to split them into TO-LO pairs.
The Maradudin-Oitman theory can be extended to
cover the isotope impurities in crystals. However,
the sole difference between the isotope modes and
the major modes (or, more precisely, between the
modes associated with the minor-isotope species
and the modes associated with the major-isotope
species) is their mode masses. The oscillator
strengths of the isotope modes can be related to

those of the major modes directly. With the sim-
ple phenomenological discussion presented in this
paper, the behavior of the isotope modes can be
understood completely without carrying out the
tedious Ewald transformation as do Maradudin
and Oitman. 3

II. THEORY

The dielectric function of a crystal can be ana-
lyzed with the harmonic-oscillator formalism.
The optic vibrational modes with polar direction
along one of the principle axes j are treated as a
collection of N~ damped oscillators with vibration-
al amplitudes W„&, effective charges Z„z, mode
masses M„&, restoring force constants M„&&„,,
and damping constants y„&. Here N,. is the number
of normal modes predicted by group theory without

considering the difference between various isotope
species. In a crystal with more than one isotope
species, the total number of normal modes be-
comes nN, , where n is the number of distinguish-
able ways the primitive cells can be constructed
with various isotope species. Since the chemical
properties of different isotope species are identi-
cal, the atomic positions and electric charge dis-
tribution in all of the primitive cells should be the
same. Therefore, the isotope modes and the major
modes are subject to different mode masses, but

subject to the same effective mode charges and re-
storing forces.

The normal-mode analysis of the unit cell is a
classical problem and can be found in standard
solid-state textbooks. Knowing the normal-mode
frequencies of one of the isotope species and the
structure, the force constants can be calculated. '
Using the same force constants while varying mode
masses, the mode frequencies of other isotope
species can be obtained. But inside a crystal, both
minor- and major-isotope modes will split further
into TO-LO pairs owing to the long-range electro-
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static force associated with the polar optical modes.
A formalism including the effect of the macroscop-
ic electric field must be used.

Let us consider the simplest case of the isotope
effect. Assume that (i) only one element contained
in the crystal has isotope impurities, (ii) there are
only two isotope species of that element, and (iii)
each primitive cell contains only one atom of that
element. (It is straightforward to generalize the
theory to crystals containing any number of iso-
tope species. ) There are only two distinguishable
ways to construct the primitive cell and there are
therefore two sets of normal modes. Let 1 and 2
denote the set of modes associated with the isotope
species of percentage concentrations c& and ca.
Then the equations of motion for W„,.(1) are

M„(1)[W„(l)+y„(1)W„(1)

+~'„,(I) W„,.(1)]=Z„,(I)z„&=i,"
and for W„&(2)

M„,(2) [W„,(2) + y„,(2)W„,(2)

+(d„&(2)W„&(2)]= Z„&(2)E&, v =1, ' ' ', N~.

Here E, is the component of the macroscopic elec-
tric field along the j axis.

The dielectric function t„~(~) relates E, and P, by

q;((d)E; = El +4vP, )

p pel ectronic + pion i cj
P, '"""'is the contribution due to the motion of
electrons and is given by

(4)

Pet ectro))22 (I/4v) (c I)E (6)
P~""' is the contribution due to the displacement of
ions and is equal to the dipole moment of each unit
cell multiplied by the density, i. e. ,

Ny

P"'"= Z Zvl(1)wvl(1)
v

Ny

+ ~ZZ„, (2)Wvy(2)2 (6)
v

where V is the volume of a primitive cell.
Consider only the harmonic plane-wave excita-

tion of W„&(1), W„,.(2), E,, and P, . Assume their
space- and time-dependent part is exp[i(q ~ x —(dt)]
Equations (1) and (2) yield

(I) Z„,(I)E,
M„,(I}[u'„,(I) -(u'- t(cy„, ( I]}

'

( )
z„,(2)z,

M„, (2) [(d„l(2) —(d' —i(dz„, (2)]
'

Substituting Eqs. (7) and (8) into Eq. (6) and then
substituting Eqs. (4)-(6) into Eq. (3), we obtain
the dielectric function

(7)

(8)

where P,. is the jth component of the total polariza-
tion and is the sum of two terms:

V22„~(l)[ 2~(1) — ' —'
y.,(1)] V22„, (2)[ 2„(2) — ' —'

y., (2)])
As discussed before, the modes associated with different isotope species are subject to the same effec-

tive charges and force constants, i. e. , Z„l(1)= Z„~(2) and M„,(1)(d'„~(1)= M„, (2)(d'„~(2). We can therefore de-
fine the total oscillator strengths S„, as

S„, = 4]lz„q(l)/ VM„,. (1)(2)„,.(1)= 4vz„l (2)/ VM„, (2)(2)„,(2) .
Equation (9) then becomes

( )
~ p c1 )22Mv2(l) c2$vJ(2 vJ(2}

~,&(() — —'
y„&(1) „&(2)— —1 y„&(2))'

Equation (11) gives the dielectric function along
the j axis and indicates that the total number of
phonon modes is twice that predicted by group
theory alone. Each phonon mode splits further
into a TO-LO pair. Equation (11) also shows that
the effective oscillator strengths are S„,(1)= clS„;
and $„J(2)= C~S„,-, and are linearly dependent on the
isotope concentrations.

Usually, the TO and LO frequencies and damping
constants of the major modes can be obtained from
Raman and/or infrared data, while the minor-iso-
tope modes are difficult to resolve because of their
weak intensities and small shifts from the major
modes. With the approximation that y„&(1}= y„&(2),

~

Ct SVl (dvt ( t)t(()l= 2t)t+ ('~ P '2 .2
v i &vy&&&

(12)

the only unknown parameters in Eq. (11) are S„&.
These N~ unknowns can be obtained by substituting
the N, LO major-mode .frequencies into Eq. (11)
and solving the simultaneous equations. There-
fore, both the TQ and LO frequencies of minor-
isotope modes and their intensities relative to those
of the major modes can be obtained solely from the
known data of the major modes.

Let us rewrite Eq. (11) for the general case that
there are n sets of isotope modes. Neglecting the
damping terms, Eq. (11) becomes
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Equation (12) has 2 nNj poles at + &u„j(t) and 2 j5Nj
zeros at + &u„j (i) .Therefore the right-hand side of
Eq. (12) can be written5 a.s a product of the terms

Q) &y S CO Cc7&g 2 CO

that is,

(13)

where z& is included as a factor to yield the proper
value of cj(~).

Letting ~=0 in Eq. (13), we obtain the general-
ized Lyddane-Sachs-Teller (LST) relation which
includes the isotope effect

&j(0) rr rr (u j (i)
j v j (Opj (5}

(14)

Ng

Ej (0) = fj +Z 2 c;S„j

Ny

=ej+Z S„j

since Z", c; =1. S„j is given in Eq. (10) and is iso-
tope concentration independent. The high-frequen-
cy dielectric constant &~ is due to the electron
movement only, and crystals with different isotope
concentrations have the identical electron distribu-
tions. Therefore, crystals with different isotope
concentration ratio not only have the same &&" but
also have the same ej(0). The optical-phonon data
of RbC10~ were analyzed to serve as an example of
the application of the above theory.

Equation (14) is perfectly general and applies to all
crystals containing isotope impurities even when
the isotope concentration is - 50%. Although Eq.
(14}has additional factors due to the isotope modes,
and the frequencies of both the major and minor LO
modes are isotope concentration dependent [as can
be seen from Eq. (12) and will be seen in Fig. 2],
we can prove that the static dielectric constant is
isotope concentration independent. Letting (d = 0
in Eq. (12), we have

III. APPLICATION TO RbC103 CRYSTALS

The chlorine element exists in nature as a mix-
ture of 75. 4%p Cl and 24. 6% Cl. It is one of the
most common elements with two isotope species of
comparable concentrations. The Raman and in-
frared spectra of the chlorate ion, C103, in aque-
ous solution, 9 in alk li chlorate crystals, 6 10 12 and
in doped solid solutions' ' have been studied ex-
tensively. Isotope splitting of some of the C103
internal modes has been reported. 6' '

Hollenberg and Dows' have calculated the isotope
splitting of the internal modes of the chlorate ion in
NaC103 crystals using a normal-mode analysis.
The isotope frequency shifts they predicted are
reasonable. However, a direct comparison of the
result of Hollenberg and Dows with the experimen-
tal data is not possible since their calculation does
not include the effects of factor-group splitting or
long-range electrostatic forces in the crystal.

RbC103 is an uniaxial crystal with a monomolecu-
lar rhombohedral primitive cell. ' The spectra of
normal and oblique optical phonons of this materi-
al have been reported recently. ' Group theory
predicts 3A&+4E phonon modes each of which is
simultaneously Raman and infrared active. The
polarization direction of A, modes (E modes) is
parallel (perpendicular) to the c axis. Two of the
A, modes and two of the E modes correspond one to
one to the internal vibration modes v &, v2 and v~,
v4' of the free C103 ion. Only the isotope splitting
of the 2A, (TO) and 3A, (TO) modes has been re-
solved. ' The TO and LO frequencies and damping
constants of the phonon modes associated with the

Cl isotope and the available experimental data on
the Cl isotope modes are given in Table I.

As is the case with chlorine, rubidium contains
two isotope species with the following natural
abundance: Rb —72. 15%& and Rb —27.85'.
Therefore, in a RbC10~ crystal, each of the 2A,
+2E internal modes will split into two isotope
modes; while each of the 1A, +2E external modes
will split into four isotope modes. However, the
isotope-mode mass differences of the external
modes are small and their theoretical maximum
isotope splitting can be shown to be 0. 5 cm '.
Thus, in the following calculation, we concentrate
our attention on the internal modes and neglect the
isotope effect on the external modes.

Using Eq. (11), the dielectric function of RbC105
can be expressed as

and
s& g $vE (g„E p C55@EM„E(35) c55

@Earp

~(37)E
4PE —(aP „-5 5 (d„E(35) ~ ~ E(37) M (17)
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3 Cl and Cl isotope phonon modes in. RbC103 at room temperature. The value

given in columns 2-4 and inside parentheses in other columns are experimental data. Unless
otherwise indicated, the frequency measurements were accurate to +1 cm '. Only the iso-
tope effect of the internal modes was considered.

Mode
~~(35)
(cm ')

q(35)
(cm-')

(u (37)
(cm-')

ITo (37)
ITo (35)

ILQ(37)

I"(35)

1A(
2A, (v2)
3A j (v()
1E
2E
3E(v4)
4E(v, )

81
612
928
104
141
486
943

119
621
935
130
150+3
492

1013

2. 4
2. 6
3. 5
3. 8
4 4
2. 0
3.6

606. 6 (608)
921.5 (921)

484. 9
931.7

607. 5
922. 4

485. 1
934.2

2. 6817
0. 0727
0. 0366
2. 1384
0. 1281
0. 0748
0. 3879

a
0. 34

a
0. 004

0. 37 (-O. 3) O. 04
0. 38 (- 0. 3) 0. 07

~No peak associated with the minor isotope mode exists since the isotope splitting is
smaller than the line width.

g„[(u~o,(35)]=0, X =1, 2, 3

~, [~', o(35)]=0, ~ =1, 2, 3, 4.

(18)

(»)
Solving the simultaneous equations (18) and (19)

yields S„„and S„~. Substituting the values of S„„
and S„s back into Eqs. (16) and (17), we find two
more roots in each equation. These roots are the

Here II and I refer to the directions parallel and

perpendicular to the c axis. We have assumed
zero damping constant in Eqs. (16) and (1V). Since

y„&/&u„& «1, for all j, this assumption makes no es-
sential difference in the frequencies of the modes.
The second term of Eq. (16) and first summation
of Eq. (17) denote the external modes. The iso-
tope splitting of the external modes is not included
in these equations. The last summation terms of
Eqs. (16) and (17) correspond to the internal modes.

The isotope splitting of the internal TO modes
was calculated from a normal mode analysis. ~ The
Cl-0-Cl angle n and Cl-0 distance d are 109.53 '
and 1.443 A,

' respectively. From the four TO
frequencies of the internal modes arising from the

C103 ion, the force constants were calculated to
be f~=5. 476 lx0d5yn/cm, f~~=0. 552x10 dyn/cm,

f /d'=2. 290xl0' dyn/cm, f,/d'=0. 780x10' dyn/
cm. Here f~ and f«are bond stretching force con-
stants and f and f are bond bending force con-
stants. The bond bending force constants shown

above have been divided by the square of the bond

length d to yield the same dimension as the bond

stretching force constants. By keeping the same
force constants while changing the atomic mass of
chlorine, the TO frequencies of C103 internal
modes were obtained and are listed in the fifth
column of Table I.

Now the only unknown parameters in Eqs. (16)
and (1V) are S„„,and S„s. Equations (16) and (1V)
become zero at the LO-mode frequencies. Sub-
stituting the values of the LO frequencies of the
major modes into Eqs. (12) and (13), we get

IlTI [6~(GJ j j
TO[

0-

0.06

004

002

LO

= 200

LO
-0

—l2

0—
900

I t

950 [000
&(cm )

0
1050

FIG. 1. Imaginary part of the ordinary dielectric func-
tion Im(&~) and imaginary part of its inverse Im( —1/&~)
of RbC102 crystal in the frequency region of the 4E
phonon mode. Note the relative gain is indicated by G.
The Raman intensities of the TO and LO modes are pro-
portional to Im(&~) and Im(-1/&~), respectively.

LO frequencies of the C103 internal modes. The
results are listed in Table I.

The dielectric function given by Eq. (17) is
plotted in Fig. 1 for the frequency region of the
4E mode. The proper damping constants have been
included. '~ The damping constants of the 3'Cl
modes are assumed to be equal to those of the 'Cl
modes.

The dielectric formalism relates the Raman in-
tensity to the dielectric function as follows: I
~ Im(e) and I ~ 1m(-1/e). Comparing the peak
values of Im[&, (~)] at ruT~o (37) in Fig. 1, we find
that the theoretical intensity ratio, Ie, (37)/I 4z (35)
=0.34, which is almost identical to the concentra-
tion ratio of Cl and Cl, c37/c35=0. 33, and agrees
well with the experimental result. " Comparing the
peak values of Im[-1/e, (u)] we find that I4 (37)/
I~4o(35) = 0.004. Therefore, the 4E LO mode of
3'Cl is not expected to be observed at all. ' The
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IC20—
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FIG. 2. Calculated TO and LO frequencies of the
isotope modes of the 4E phonon in RbC103 crystal vs the
percentage concentration of the 37Cl isotope. The solid dots
indicate the measured frequencies of the natural-isotope
mixture. The dashed parts of the lines indicate that the
intensities go to zero theoretically.

relative intensities of other isotope modes are
given in the last two columns of Table I.

To understand the concentration dependence of
the isotope effects, the mode frequencies of the
4E phonon were calculated from Eq. (17) with dif-
ferent isotope concentrations. The mode frequen-
cies are plotted in Fig. 2 as a function of Cl iso-
tope concentration. We note that ~4~ =1016 and
1004 cm ' for pure Rb ClOS and pure Rb C103,
respectively. Upon changing the concentration of

Cl from 0 to 1, the major LO mode moves from
1016 to 1004 cm ', while an additional minor LO
mode appears and moves from &o4s (37) to up4s (35).
The frequencies of the LO modes are almost but

not exactlv %nearly dependent on the isotope con-
centration.

The product in the generalized LST relation,
Eq. (14), theoretically should run over all isotope
modes to yield the correct ratio of &z(0) and c,".
However, in the case of small isotope splitting or
small isotope impurity concentration, some of the
isotope modes may not be resolvable and the in-
clusion of all isotope modes in the L-S-T relation

is not possible.
We notice from Eq. (12) and Fig. 2 that (i) the

TO and LO modes occur alternati~ly, i. e. , if
u o(1)«uTo(2), then ~ (1)«u~ (l)&~ (2)
& ~"o(2); (ii) when one of the isotope concentra-
tions approaches zero, the frequency of the LO
modes approaches the frequency of one of the TO
modes. Therefore, if either (i) the isotope split-
ting is small, or (ii) the concentration of the iso-
tope impurities is small, inclusion of the isotope
effect in Eq. (14) constitutes the addition of some
factors, ~" /&u =1, to the product. Hence, con-
sidering only the major modes and the observable
minor modes in the LST relation is a good approxi-
mation for crystals that satisfy conditions (1) and/
or (2) above. For example, in RbC103, the maxi-
mum isotope splitting gives a ratio m4s (35)/~~ (37)
= 1.012 even though the isotope impurity concen-
tration is c3~=24. 6/0. Equation (14) yields e„(0)
=4.99 and e, (0) = 5. 20 when all the isotope modes
are included. The values obtained by considering
only the major modes are z„(0)=4.97+0.14 and

a,(0) = 5. 17+ 0.11. The discrepancy is only 0. 5%
for f~ (0) and 0. 6% for e, (0) and within the experi-
mental errors.

IV. CONCLUSIONS

The isotope impurities in crystals not only act
as scattering centers for phonons, but also form
additional phonon modes. The isotope modes will
split further into TO-LO pairs if the modes are
polar. We have shown that the frequencies and in-
tensities of the minor isotope modes can be cal-
culated from the frequencies of the major modes.
Although the minor isotope modes are hardly re-
solvable, the available data on the isotope modes
of RbC103 agree well with our calculation.
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