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Relationships between the static isothermal susceptibility and the dynamic susceptibility as given by
linear-response theory (isolated susceptibility) are investigated by means of an exactly soluble model of a
two-level dipole moment interacting with phonons. Two forms of dipole-lattice interaction coupling are
treated: coupling to lattice strain and coupling to lattice atomic displacements (piezoelectric coupling).
In the case of piezoelectric coupling and for the temperature limits investigated, the isolated
susceptibility follows closely the behavior predicted by a simple Debye theory with a one-phonon
relaxation time predicted by the model. There are deviations from this behavior when the dipole-lattice
coupling becomes strong. Static isolated susceptibilities for various cases are compared with the
corresponding static isothermal susceptibilities. Two cases in which these two static susceptibilities differ
are discussed: the case of strain coupling and that of piezoelectric coupling with a lower-frequency
cutoff in the phonon spectrum which couples to the dipole. The occurrence of this difference is related
to the nonergodic behavior of the polarization autocorrelation function which is in turn influenced by
the existence of degeneracies in the model. It is further demonstrated that the addition of a
symmetry-breaking term will remove the discrepancy between the two static susceptibilities at the
expense, however, of creating a singularity in the dynamic isolated susceptibility associated with a

low-lying zero-phonon absorption.
I. INTRODUCTION

In this paper we discuss some problems that
arise in the theory of dielectric relaxationin solids.
Actually these problems are of more general oc-
currence, being related to the longitudinal magnet-
ic susceptibilities of paramagnetic systems and
optical absorption by electronic impurities in in-
sulating crystals. In order to keep the terminology
definite, however, we adopt the example of dielec-
tric relaxation. The problems discussed have
more general interest than for dielectric relaxa-
tion in another sense: There exist long-standing
fundamental questions concerning the theory of
dynamic susceptibilities. In this connection we
discuss the problem of the relationship between
the isolated and isothermal susceptibilities through
analysis of a class of models for which these quan-
tities can be found exactly. That a difference be-
tween these susceptibilities exists has been re-
peatedly mentioned in the literature, 1=8 put it does
not appear to be a well-known fact.

There are two ways which are commonly used to
formulate the theory of dielectric relaxation:
master equation and microscopic approaches.
Master-equation methods are based on the as-
sumption that there are Markovian® transitions
(governed by constant transition probabilities per
unit time) between states. All quantities appear-
ing in the master equations are expanded up to
terms linear in the external field and the linearized
equations are solved for the deviation of the polari-
zation from its equilibrium value. The proportion-
ality factor between this deviation and the external
field oscillating with a single frequency is the fre-
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quency-dependent susceptibility. An example of
this approach is the Debye theory, 111

For extremely slowly varying external fields the
real part of the susceptibility approaches the iso-
thermal static susceptibility, which in turn can be
found by purely equilibrium-thermodynamics ar-
guments. The master-equation approach is the
customary way of extending the isothermal sus-
ceptibility to nonzero frequencies. The reason that
the isothermal static susceptibility is recovered by
this approach, in the zero-frequency limit, comes
from the requirement of detailed balancing among
the transition rates which appear in the master
equations. 2

The master-equations approach can be applied
in almost all practical situations. The question
remains, however, as to whether this approach is
valid. If the conditions required for the existence
of constant transition rates do not hold (i.e., the
transitions are non-Markovian), then one cannot
expect the master-equation approach to produce
correct results. One must then resort to a more
fundamental approach to the problem. An effort
to do this is the microscopic approach.

A widely used formulation of the microscopic
theory of dielectric or magnetic susceptibilities is
the linear-response theory!® of Kubo.*'* This
theory is based on first-order time-dependent per-
turbation theory on the microscopic states of the
system. %! A feature of this approach is the fact
that the thermal averages involved use the density
matrix characteristic of the system before the ex-
ternal field is applied. The expression for the
frequency-dependent susceptibility obtained in this
way will be referred to as isolated or Kubo sus-
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ceptibility.

It is not trivial to understand the relationship be-
tween this approach and that of the master equa-
tions. The latter have often been derived from the
linear-response theory'®; however, always with the
help of simplifying assumptions and various ap-
proximations. The only frequency for which one
knows exactly what the susceptibility ought to be
is the frequency zero. We have already mentioned
that the master equations give the correct iso-
thermal static susceptibility. It is well known,
however, that the corresponding result of the lin-
ear-response theory formally differs from the
thermodynamic static value.'™® This has been
recognized, for example, by Kubo,! who also dis-
cusses the conditions under which this difference
is insignificant and points out that there is no such
problem if the system is ergodic. It is, however, not
easy to prove for anactual system, characterized by
acertain Hamiltonian, that the condition of ergodic-
ity is indeed satisfied in the Kubo sense. One tries,
rather, to avoid this problem by assuming con-
sciously or unconsciously that the system is er-
godic. We shall discuss here cases in which such
an assumption is incorreci. We use a simple non-
trivial model for which both the Kubo susceptibility
at all frequencies and the isothermal static sus-
ceptibility can be found exactly. The model con-
sists of a two-level system, that is, a permanent
electric dipole moment which can have two equi-
librium orientations and which is linearly coupled
with phonons. This model has been described in
literature before, ! but its application in the con-
text in which it appears here is new. We discuss
two nonergodic cases where the zero-frequency
susceptibility as given by the Kubo formula is dif-
ferent from the isothermal static susceptibility.
An ergodic version of the model is also discussed.

In Sec. 1II we first discuss some general condi-
tions under which nonergodic behavior occurs. The
model and the calculation of the susceptibilities
are described in Sec. III. This is followed in Sec.
IV by numerical results for various cases of di-
pole-phonon coupling. Our conclusions are sum-
marized in Sec. V.

II. GENERAL CONSIDERATIONS

The Kubo or isolated susceptibility of a system
which is characterized by the Hamiltonian H and
the electric dipole moment operator M is given by

i) =ilim [Zdtesot= (), m;O)), (1)
e 0

where  is the frequency of the external field, €
the field switching parameter, and M,(f) = ' #* M;e™*¥t
M; being the ith Cartesian component of M. The
symbols for the commutator and the thermodynam-

R. PIRC AND B. G. DICK 9

ic average with respect to H have their usual mean-
ing. For simplicity, we will discuss only one com-
ponent of the susceptibility tensor, say x{i(w), and
will drop the indices iz, j from now on.

Equation (1) is based on a treatment in which the
thermal ensemble averaging is that appropriate to
the system before any perturbation is applied. Con-
sequently it considers state-vector changes but not
population changes. Thus Eq. (1) is not the same
as an isothermal susceptibility, the static form,
x7, of which follows from equilibrium statistical
mechanics® %5;

xr_{*’“”)] - [ (= i, (2)

where M=M—-{M).

The difference between (1) and (2) can be seen
explicitly in an energy eigenstate (Lehmann) repre-
sentation in which

J0)=z1 % €rmen

;,,.T—E—— ((l'M‘m}lz, (3)

=x’(0)+BZ"l>?l PR M2 - gz, (4)

In (4) the sum over [ and {’ contains all states for
which E, =E,..

It has been shown formally by Wilcox® that x!(0)
<x5 <xT always holds. x° is the static adiabatic
susceptibility. Since in experiments either y* or
xT is usually the quantity measured, the hope is
that in practical cases x’ (0) becomes equal either

to xT or x5. In particular, the condition for y/(0)
=y clearly is either
(MP=2"1 20 | (1| M| 1)|? (5)
1,1

or that both sides of (5) vanish. If this condition is
not satisfied, and since x’(w) is presumably contin-
uous for small w, this would mean that susceptibili-
ties measured under isothermal conditions would
not be the same as the Kubo isolated susceptibility.
The existence of this discrepancy is indicative of
the nonergodicity of the system.

In order to gain a better insight into the low-fre-
quency behavior of (1) we consider the Fourier
transform of the correlation function {37(0)N(?))
which we will call y,(w):

xi{w) == ilim /;)"dte"“’t'“(M(O)M(t)). (6)
€0
By deforming the integration contour in the com-
plex ¢ plane as shown in Fig. 1, we can equate
X1(w) to the sum of x,, x5, and x,. Noting that y,(w)

vanishes and rearranging the difference y; — x3 we
obtain

ee/a

X (w)= cosh(Bw/2)

f dx &N M(= i) M(0))



|©

+i tanh[Bw + i€)/2] fo dte* < ([31(0), 31(0)].).
(7)

A similar but less general result has been derived

by Verboven!” for the electrical-conductivity ten-

sor.

For w— 0 the first term of (7) reduces to x’.
Therefore, the difference between xT and x/(0) can
be written as

xT = X' (0)=BK =L 1ir2ef0°° dte ([M(2), M(0)],) .
€ (8)

This result is more general than the corresponding
form given by Kubo! or Suzuki® [from his Eqgs. (1.6)
and (1.7)]:

X" = x'(0) = g{ 1im (M(0) M(#)) - (M)?} (9a)

S S
=Blim jﬁ at{M(0)M(2), (9b)

because the limit in (9a) will only exist if the inte-
gral in (8) as a function of complex ¢ is regular for
Ree>0.!® This is not the case, for example, when
the correlation function {7 (0)M(?)), oscillates at
large .

One cannot derive Eqs. (9a) and (9b) from (8) for
a general form of the correlation function. How-
ever, if the Lehmann representation is used to ex-
press the correlation function, it is easy to show
that (9b) is equivalent to (8) but not to (9a). The
derivation of Eq. (8) does not involve the Lehmann
representation, which overemphasizes the dis-
crete nature of the system in the sense that it im-
plies that the limit ¢~ 0 can be taken before one
passes to a continuum of states. This is not, in
general, correct for continuous systems.

The conditions for K in (8) being zero are thus
related to the large-¢ behavior of the correlation
function. Consider three characteristic cases:

(@) I, as t— o, (M(H)MO) -0, i.e., (M()M(0))

- (M)?%,. the system is ergodic. This is the case
discussed by Callen ef al.'® (b) If (M(#)M(0)) os-
cillates as 2 ;K;e' %!, where A; are frequencies as-
sociated with some kind of a free precession of the

u—-c

Imt
X3
B >
A X2 V Xa
X,
0 " Re t

FIG. 1. Integration contour for formula (6).
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polarization and K; are the corresponding ampli-
tudes, we have again ' (0)=x 7. (c) If (M(£)(0))
~C, where C is some constant, it follows that

x1(0)=xT-8C, (10)

so that C is the same as K defined in Eq. (8). This
is, therefore, the only case for which nonergodicity
occurs. Suzuki® has suggested a method of express-
ing K in terms of canonical averages involving all
the constants of motion of the system.

Comparing Egs. (10) and (4) we realize that in
the Lehmann representation K is equal to

K=z 22 e®=i|| M| 1)|? - ()2 (11)
(E:’:lE,l,)

It may seem plausible that the states could per-
haps be transformed by some unitary transforma-
tion in such a manner that all matrix elements
(11 M| 1"y with E, = E,, including /={', would vanish
so that K would also vanish. However, this would
lead to the paradoxical result that the trace in
formula (1) with =0 or (2) would not be invariant
under a unitary transformation. That is, if the
difference between (1) with =0 and (2) is nonzero
in some representation it must be nonzero in all
representations since it can be expressed as a
trace.

The requirement that K should vanish is equiva-
lent to Kubo’s condition of ergodicity. It cannot be
considered as an additional boundary condition on
the correlation function, because that function it-
self is entirely determined by the Hamiltonian of
the system.® In general, it is extremely difficult
to prove that the function{(M()M(0)) goes to {M)? for
large times, and one usually makes the assumption
that this is so.

III. SIMPLE MODEL FOR WHICH THE KUBO
SUSCEPTIBILITY CAN BE CALCULATED EXACTLY

We consider a system of lattice defects coupled
with the lattice vibrations. Each defect has only
two states available, corresponding to two dis-
crete orientations of an electric dipole moment.
Assuming that the defects are well separated from
one another, it is sufficient to study the micro-
scopic Hamiltonian of the lattice with only one de-
fect. This simply means that the defects are non-
interacting. The Hamiltonian can then be written

1
== 380, + 5 2{0}Q,Qq, + PP}
q

1
+5 U F,Q0, - pEo,e™ (12)
q

where o;, i=x, y, z, are the Pauli spin matrices
with commutation relations [0;, 0,]=2i€;;,0,. The
symbols w,, @,, P, stand for the frequency, normal
coordinate, and momentum of phonons with wave
vector g, where [Q,, P.,.]=ib,.. F,is a defect-



2704

phonon coupling parameter. The last term de-
scribes the interaction with an oscillating external
probe field E, p being the dipole moment of the de-
fect. The parameter A has the meaning of an
energy splitting due to some transverse static
electric field, We will be mainly interested in the
case with A=0. This is the familiar situation of
an electric dipole interacting with an oscillating
probe field and some relaxing medium, i.e.,
phonons, in the absence of any bias fields, which
frequently is used in discussing the dielectric re-
laxation in solids.

The macroscopic dipole-moment operator M
is clearly given by M=pJo,, where J means the
sum over all defects.

If A#0, Eq. (12) becomes identical to the model
for a localized electronic impurity in insulating
crystals which has been studied by Duke and
Mahan.!® For large w, ¥’ (w) corresponds to the
optical absorption by the impurity. Following Duke
and Mahan we assume that the phonons can be de-
scribed by an isotropic Debye spectrum, and con-
sider two cases of defect-phonon coupling:

(13a)
(13b)

Here, V isthe volume of the crystal, Q the Debye
cutoff frequency, and d and s two constants de-
scribing the coupling with the lattice displacements
and strains, respectively, at the defect site.

The Hamiltonian (12) without the external field
can be diagonalized exactly.!® It is convenient for
this purpose to apply a canonical transformation
of the form

F,=d/V'/2 vpiezoelectric coupling,
q

F,=sw,/(V'/?Q), strain coupling.

— s s A~ 1
H=eSHeS, with S=ig E"gpqo,. (14)
2, W,

The total Hamiltonian, including the external field,
becomes

- 1 1
H=-3A0,+ 3 E{wquQ.q+PqP-}—§?1FG|2/w§
q

-pE(0,es +0.e75) 't (15)
where
. F
S=i2, ~%P, . (16)
q wd

As usual, o,=(0,+10,)/2.
In order to evaluate the expressions (1), (2), (7)
we consider the correlation function

C() = (6, (95, (0)) = {0, ()0, (0)) = (5, (o, (0,  (17)

where the second equality follows from the fact that
0, =0,, since (0,)=0 in our model. The thermal
average indicated by () is taken using (12) without
the probe field. The time ¢ in (17) can be com-
plex. C(¢) is analytic if 0< |Im¢| < g, 2°

Using (15) and (17) we obtain
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C(t) = [cos(at) - itanh(Ba/2) sin(an)] &' ¥, (18)
with
) = (S ) oS O _ (oS (1) ,S @) (19)

The averages in (19) are taken only over the un-
perturbed lattice Hamiltonian. They can be cal-
culated, ! the result being

|2F03|2 {nq(eiwqt _ 1)+(Zq+1) (e7ivqt = 1)} ,

e (20)
with 7, = (¢®“a —1)"!. The expressions (18) and (20)
are exact and independent of the particular form of
the coupling constant F,.

Using Eqgs. (17)-(20) together with formula (1),

we finally obtain for the contribution of one defect
to the isolated susceptibility:

=2

x(w)= ilin(r)l f:dtei“’""{cos(At)[e”“ -l
P

—itanh(8a/2) sin(af)[ef ) + !}, (21)

Henceforth we set p=1.

To calculate the isothermal static susceptibility,
we need the correlation function C(f) for imaginary
times t=-4A. From Eqs. (2) and (18) it then fol-
lows that

XF =2 f:/zd)\ cosh[A(38-2)]ef "V /cosh(Ba/2), (22)

where I(-¢)) is obtained from (20) by simply re-
placing ¢ by —ix, and we have used the fact that the
integrand is an even function of X around X = 8/2.

IV. RESULTS FOR VARIOUS FORMS OF COUPLING

To proceed further we now have to consider vari-
ous cases of frequency dependence of F, and mag-
nitude of the parameter A.

1. Piezoelectric coupling, A=0

Using Eq. (13a) and the Debye model for the
acoustic-phonon spectrum, we change the sum in
(20) into an integral, and write

1(1) = X(¢) - iU(2), (23)
where X and U are the real and imaginary part of
I, respectively:

X(2) :AJ'Q %{ [cos(xt) = 1] coth(Bx/2), (24a)
0

dx . .
U(f)=A f -~ sin(xt) = ASi(Q¢) . (24b)

0
We have introduced a dimensionless coupling
parameter A =34%/(47%c®), where c is the velocity
of sound. The mode g=0 should be absent from
(20) in this case for reasons of translational in-
variance. This means that the lower limits in
(24) are actually wp,;, = 7¢/L, where L is the di-
mension of the crystal and the limit L—- « is im-
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plicit.

The integral in (24a) cannot be calculated analyti-
cally. However, closed expressions can be ob-
tained both in the high-temperature and the low-
temperature limits?é:

High temperature (8 <« 1):

24 [cos(ﬂt) -1

3 o + tSi(Qt)]

X(8) =

) zzk B8R /2
—24% o BakJ’ dy 72 sin?(yt/B) .
=1 (2R)! 0 25a)

Low temperature (80> 1):

X(H=A {ln [ﬁ-@:LCi(Qt) - 1In(Q¢) - 'y}

+4AJ‘°" dy sin®(yt/2p)
sa Y )

S (25b)

B,, are the Bernoulli numbers and v is the Euler
constant. Si and Ci are the sine and cosine inte-
gral functions, %2

It is easy to see from (18) and (25) that for large
t the correlation function decays exponentially:

BR<1: C(f)~exp[A(2/BQ - in/2)] eTAIt!/8 (26a)

B >1: C(f)~exp{A[In(2n/BQ) -y —in/2] eTA! /8
(26b)

This means that the anticommutator function in

(7) also decays exponentially, and that the system

is ergodic in this case.

The meaning of the decay constant 7A/8 be-
comes clear if one calculates the transition prob-
ability per unit time between the two eigenstates
Ik, lv) of the operator H,,, = —pEoc, due to the per-
turbation H'=2 | F,Q,0,/2. One finds in the lowest
order of the perturbation theory that the transition
rates at zero field are simply

Q
w,, =1lim léf dxx(e""—1)'16(2pE—x)=M=w,u,
g0 2 28

(27)
and the relaxation time 7 is given by 77 =w,, +w,,
=mA/B. Therefore, the exponential decay of the
correlation function is entirely due to the lowest-
order, i.e., one-phonon, processes. This re-
mains true for large A, i.e., strong coupling with
phonons. The correlation function decays for both
positive and negative times. Irreversible behavior
of the system, which is necessary to obtain dissipa-
tion, is achieved by considering only positive times
in the Fourier transform in (1). The reason there
is no periodic behavior of the system at large
times (Poincaré cycles) is apparently due to the
fact that the sum over all discrete states has been
replaced by an integral over a continuum in (24),
which means that we have used the so-called
thermodynamic limit.

It is interesting to note that if the correlation
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function is replaced by its asymptotic value (26)
over the entire range of time, and using (18) with
A =0 to find I(f), which is then inserted into Eq.
(21), one obtains for A <1 the well-known Debye
relaxation formula x/(w)=x7/(1 - iwr), where
X =B

The isolated susceptibility, Eq. (21), can now
be written as

X (w)=2 [ dte* & Dsin[U(h)]. (28)

This Fourier transform can only be calculated
numerically. The results for several values of
A for the high- and the low-temperature cases
are shown in Figs. 2 and 3. The imaginary part
of ¥’ (w) for small values of A has the typical Debye
shape with a maximum at w~1/7. There are ap-
parent deviations from this behavior at larger
values of A.

At higher frequencies, the real part of the iso-
lated susceptibility becomes negative. This be-
havior is also characteristic of a damped harmonic

1.0 T T T T T T T T T T
X/ \
b \\ PIEZOELECTRIC COUPLING
AR\ T =1000°K 7
\ N =100°K
\
\
o051 \\ .
\
\
\
025} \
ob—
A=0.01l
-0.25 - A=0.lI —
1 1 1 | Il L 1 1 1 L
0 | 2 3 4 5 6 7 8 9 10
wT
0.75F T T T T T T T T T T
X
Xy PIEZOELECTRIC COUPLING
T =1000°K
N.=100°K
0.5+ -
0.25 i
~~__A<000Il
Il 1 |
o0 ] 2 3 4 5 6 7 8 9 0
wT
FIG. 2. Real and imaginary parts, x’ and x’/, of the

exact isolated susceptibility, Eq. (28), for piezoelectric
coupling and various values of the coupling parameter

A (solid lines). Dashed lines: Lorentzian curve (Debye
theory) with r=B8/1A. For A<0.0011, x’’ becomes in-
distinguishable from the Lorentzian on these graphs.
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10 T T T T T T T T T ™ ZB sin(Q¢)
Y= 52 Tan
% T e e Lap 3 (F1HER) 92* s‘m(m)]
N=100°K el (Zk)' 2k a(nt)ak Qt )
05 h
31a)
22k BQ >2k—l . (
ozs- N Y(O)' +B§1 (2k)'(2k+1)B (2 ’ (31b)
/
N A<00Il g >1:
e KSSs——— -
sin(Q¢) cos(m) (n 2
A= Y(¢ -B[ cosech?(m¢/B)
wasl " ] ) @n @ T \B
1 | L had
T I S s S S I 2 [ ass ost t{m], (31¢)
X“ T T T T T T T T T T 1 nz ZB . BQ ]
-BnQ| P82 -2
% PIEZOELECTRIC COUPLING ¥(0)= B[Z 3 ] By ., E [n M
T=10°K (31d)

N.=100°K

FIG. 3. Same model as that of Fig. 2 but for low
temperature.

oscillator as opposed to the simple exponential de-
cay which always follows from the Markovian mas-
ter equations. In this case, the total system, i.e.,
defects plus the lattice, behaves like a harmonic
oscillator with a characteristic frequency of the
order of the cutoff frequency.

2. Strain coupling, A=0
The function I(f) in Eq. (21) is now written as
1(6) = ¥(¢) = Y(0) = V(2) . (29)
Using Eq. (13b) and introducing B=3s%/(47%c%) we

derive

B Q
Y(t)=§gj dx x cos(xt) coth(Bx/2), (30a)
0
V() = Q—Ba J;n dx xsin(xt)

- B[s'm(ﬂt) cosﬂt] (30b)

@ " (@)

The function ¥(#) in the high- and the low-tempera-
ture limits is given as follows:

BR<«<1:

Asymptotically, the correlation function now be-
haves as

C)~e ¥, (32)

and hence remains finite as f— . According to
our general analysis in Sec. II, the system should
be nonergodic in this case. It follows from Eq.
(8), or from (9a), which is valid in this case, that
the difference between xT and ¥ (0) is simply given
by

T—x"0)=pe"@. (33)

In Fig. 4 we have plotted x’(w) for B=1.1 and low
temperature (T=1 °K). The real part of the Kubo
susceptibility at zero frequency is only a few per-
cent of the isothermal static susceptibility in this
case.

The fact that C(¢) approaches a finite value at
large times is due to the absence of the one-phonon
processes at E=0, which alone were responsible
for the exponential decay in the previous case. If
one were to use the master equations here, one
would have to consider transitions in higher orders.
It turns out, however, that the matrix element for
the next higher process in the third order is exact-
ly zero. The lowest nonzero transitions can oc-
cur in the fifth order. Unless the coupling is ex-
tremely strong, or the temperature very high, the
relaxation rates for the case of Fig. 4 will be very
small, typically of the order 77'~107%° sec™. This
means that the usual Debye relaxation is extremely
slow in this case. In performing a static measure-
ment one would have to wait for times #~10°° sec,
much longer than the age of the universe, for the
system to come into thermal equilibrium after
each infinitesimal change of the external field. It
seems that in this case the isothermal static sus-
ceptibility has little physical meaning. Clearly,
in deriving x T from equilibrium considerations
one does not ask how fast the system can reach
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FIG. 4. Real and imaginary parts, x’ and x’’, of the
isolated susceptibility in the strain-coupling case at low
temperature. x7Tis given by Eq. (22).

equilibrium. One implicitly assumes that there
must be some mechanism of relaxation which helps
to establish the equilibrium, If so, the same mech-
anism should be incorporated into the isolated sus-
ceptibility, but this would then change the whole be-
havior of x T(w) at low frequencies.

The fact that Rey (w) in Fig. 4 does not fall
abruptly to zero in a narrow frequency interval of
the order of ~107% sec™ suggests that linear-re-
sponse theory deals with much faster relaxation
processes than the extremely slow rates described
above in connection with the master equations. In
this regard it is interesting to note that if one cal-
culates the one-phonon transition rates for the
strain-coupling case and includes, ad hoc, a quan-
tum of the oscillating probe field in the energy
splitting, 2pE, in the spirit of harmonic perturba-
tion theory, the result for small w and vanishing
E is

im "B (° 8x _ 1)t
wy,(w)=1im 2% dx 3(ef* -1)
E~0 0

2
X 6(2pE +w -x)=%‘;— . (34)
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Such a transition rate would be much larger than
the fifth-order processes already at very small
frequencies. If x'(w) is calculated by standard ap-
proximation methods, frequency-dependent rates
such as (34) occur. We intend to discuss this point
in a future publication.

The reason that C(¢) remains finite as ¢ goes to
infinity can be related to the existence of degenerate
states in the system. If one uses the Lehmann
representation to calculate C(f) one finds time-in-
dependent terms with matrix elements (1| M|1’),
with E, = E;,, which are the nonoscillating part of
C(#) and hence the contributors to K of Eq. (11).

At low temperatures, the degeneracy of the ground
state is responsible for the nonergodic asymptotic
behavior of C(¢). The commutator function which
appears in the Kubo susceptibility (1), [C(¢)

— C(- 9], decays in the strain-coupling case only
as 1/¢4, in contrast with the exponential decay of
C(¢) itself in the piezoelectric coupling case.

3. Piezoelectric coupling with two cutoff frequencies A =0

The one-phonon processes which gave the ex-
ponential decay of C(f) in case 1 can be removed by
eliminating the coupling with the low-frequency
phonons. Let us therefore assume that F,=d/V'/?
only if @, <w,<Q,, and zero otherwise, where Q,
corresponds to Q in the previous case, and , is
a lower cutoff frequency. This is an artifical
model for which it would be difficult to find any
physical justification. It corresponds to the defect
interacting with the phonons through a filter with
upper and lower frequency cutoffs.

With this assumption. Eqs. (24b) and (25b) be-
come:

U(2) = A[Si(Q,2) - Si(,1)); (35)
BQI > 1:
X(t) =A[Ci(nat) —Ci(a,) - ‘J'(gi‘)
_aa (" dy sin’(y1/28)
ey 3 @D ] (36)

We only consider the low-temperature case. It can
easily be shown that for large times C(¢) again ap-
proaches a constant value,

C(t)"' e-Aln(ﬂzlnl) (37)

which is temperature independent.

The results for x’(w) with ,=0.49, are given
in Fig. 5. The situation is similar to the strain-
coupling case, and many of the conclusions reached
there still apply. It is interesting to note that this
is a case in which there is a continuum of phonon
states but for which nevertheless C(¢) does not ap-
proach zero for long times. The low-frequency,
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FIG. 5. Isolated susceptibility for the piezoelectric
coupling case with two cutoff frequencies and low tem-
perature.

long-wavelength phonons are responsible for the
decay of C(¢#) to zero in (26a) and (26b), not the
continuum of phonon states. In the piezoelectric
example the infinite size of the model system, i.e.,
the existence of phonons of infinite wavelength,
rather than the infinity of its number of degrees of
freedom itself is essential for the ultimate vanish-
ing of the correlation function C(f). In the case of
strain coupling neither the existence of a continuum
of phonon states nor the infinite size of the system
can make C(f) approach zero.

4. Symmetry-breaking terms in the Hamiltonian

It has been suggested?? that the addition of arbi-
trary small symmetry-breaking terms to the Ham-
iltonian will remove the degeneracies and hence
lead to the desired static limit of y(w). In our
model this can be achieved by taking A # 0 in (15)
and (21). We should then consider x/(w) in the
limit of small A,

We consider the strain-coupling case only. For
large times, the correlation function now oscil-
lates as

C(t)~ =Y (0) [eﬂAlae-iAt+e-BA/2e¢At]’ (38)

1
2cosh(pa/2) €
and from the conclusions of Sec. II it follows that
both static limits should be the same.

The isolated susceptibility at low temperatures
is obtained from Eq. (21) with I(#) given by form-
ula (29) and V(#), Y(#), Y(0) given by Eqgs. (30b),
(31c), and (31d), respectively. The result is

x Hw) = e-Y(O)tanh(BA/z)(Zéz__AwE +in[6(w = A)

- 8w+ A)]) +2¢¥ ‘°’J dte'“e¥®) [cos(af)
0

x sin V(#) - tanh(8a/2) sin(a£)[1 - cos V(#)]}

(39)
Numerical results for A =0.15Q are shown in Fig.
6. It is clear that x/(0) is indeed equal to x” in
this case. However, the frequency dependence of
x(w) at low frequencies has been changed drasti-
cally. There is now a singularity at w =4, which
is due to the first term of (39). The §-function

T T T T

X’
X1 STRAIN COUPLING
(NON-ZERO &)
B=1I
ot~ T=1oK =
.= 100°K
4 =15%

B8(0+8)

200
1 Bw

T T T T T

STRAIN COUPLING

X (NON-ZERO &)

B =1Ll

1.5 T =1°K —
Q= 100°k

8 =15°K

05 -

o aa 50 100 150 200

Bw

FIG. 6. Isolated susceptibility for strain in the pres-
ence of symmetry-breaking term (with A=15°K) in the
Hamiltonian, The dashed vertical line indicates a 5-
type singularity corresponding to a zero-phonon absorp-
tion line.
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term in the imaginary part of the susceptibility is
physically equivalent to a zero-phonon line. The
static susceptibility is equal to the transverse iso-
thermal susceptibility, which for very weak cou-
pling becomes 7., =2 tanh(8A/2)/4, and for

A~ 0 becomes equal to the longitudinal isothermal
susceptibility. However, the singularity at w=4A
remains even when A~ 0. Clearly, the model no
longer corresponds physically to the problem of
dielectric relaxation. It describes, rather, the
optical absorption of an impurity with extremely
small energy splitting A between the ground state
and the first excited state. The singularity van-
ishes only if A— 0 before w goes to zero, but this
brings us back to the case 2 discussed earlier. We
conclude that the symmetry-breaking term does in-
deed lead to the desired static limit for the sus-
ceptibility, but at the same time totally changes
the physical character of the model.

V. CONCLUSION

The isolated susceptibility of a system of non-
interacting electric dipoles, coupled with lattice
vibrations, is strongly dependent upon the form of
the dipole-lattice coupling. When the dipole is
coupled with the lattice displacements (piezoelec-
tric coupling), the low-frequency dielectric sus-
ceptibility strongly resembles the usual Debye re-
laxation, at least in the weak-coupling limit. At
frequencies larger than the phonon cutoff frequency,
the system shows features similar to those of a
damped harmonic oscillator. The zero-frequency
isolated susceptibility is always equal to the iso-
thermal static susceptibility in this case. This
fact is related to the ergodic behavior of the polari-
zation autocorrelation function (A7(¢)3(0)) at large
times which decays exponentially with a time con-
stant determined by the one-phonon transitions be-
tween the two states of the dipole.

In the strain-coupling case, the real part of the
isolated susceptibility at zero frequency differs
from the isothermal susceptibility. The difference
depends strongly on the coupling strength and is, in
general, smaller if the coupling is large or the
temperature high. The nonergodic behavior is ap-
parently due to the absence of one-phonon proces-
ses at zero-energy splitting between the states of

2709

the dipole. This allows the correlation function to
approach a finite value at large times. The iso-
thermal susceptibility is always larger than the
isolated susceptibility because it contains the con-
tributions from the perturbed statistical factors in
addition to the perturbed states of the system. The
extra contribution contains matrix elements be-
tween degenerate states of the system, in particu-
lar, the ground state of the system, which is im-
portant at low temperatures. At low temperatures,
the transitions between the states of the dipole are
extremely slow and it takes unreasonably long
times for the system to reach thermal equilibrium.
Therefore, it is not clear whether or not it is
physically meaningful to include the pertrubed
statistical factors in the calculation of the sus-
ceptibility for degenerate systems. However, in
most situations degeneracy will be absent owing

to defect interactions, random strains, fields, etc.,
and the model Hamiltonian for the system should
contain this feature in order for either the micro-
scopic or master-equation approach to be mean-
ingful. Behavior similar to the strain case is found
in the case of piezoelectric coupling which is ef-
fective only within a phonon frequency range with

a lower cutoff.

The addition of an arbitrary small symmetry-
breaking term to the Hamiltonian restores ergodic
behavior to the system. This procedure, however,
has no value as a general way of making an arbi-
trary system ergodic because the behavior of the
system is radically changed. In the present case
it is marked by the appearance of a low-lying zero-
phonon line and an associated singularity in the
real part of the susceptibility.

In another paper we plan to use the exact ex-
pressions for the isolated susceptibilities found
here in an effort to judge the validity of various
approximation methods which are commonly used
to evaluate expression (1), which cannot normally
be evaluated exactly.
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