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Structural and lattice-dynamical data contain a large amount of information about the interactions in
ionic or partially ionic crystals with complex structures. As the complexity of the structure increases,
i.e., as the number of ions per unit cell, n, becomes large, these become even richer sources of
information. These data already exist for a large number of materials, but only recently has it been
systematically used to determine interactions in very complex (n >20) crystals. Very good agreement
with experiment was obtained using the rigid-ion approximation with adjustable charges. The object of
this paper is to provide the reader with an essentially self-contained treatment of the statics and
dynamics of rigid-ion crystals and show how the experimental data may be effectively used to
determine the interactions. For very complex crystals the model is primarily determined from the
structural data alone using static-equilibrium conditions. This is fortunate since the static-equilibrium
conditions are relatively easy to solve compared to the dynamical problem. Methods for making the
most of the structural data are discussed. Lattice dynamics in the rigid-ion approximation and the
transformation to symmetry coordinates are reviewed. Rotational invariance is shown to be a
consequence of the static-equilibrium conditions. Practical considerations which arise in solving the

dynamical problem are discussed.

I. INTRODUCTION

The purpose of this paper and the following pa-
per! is to describe a method for determining inter-
atomic interactions in ionic or partially ionic sol-
ids. The method is especially powerful for crys-
tals with very complex structures, i.e., those
with a large number of ions per unit cell, and it
is on this aspect of the problem that we focus our
attention. Specifically, we assume that the ions
are point charges and that the short-range interac-
tions are central and pairwise (rigid-ion model).
Noninteger charges are permitted to allow for par-
tially ionic bonds and compensate for the fact that
the ions are themselves polarizable.

In principle the problem is very simple. One
assumes the measured structure is in static equi-
librium under the combined influence of the Cou-
lomb and short-range forces. The resultant static-
equilibrium conditions? (SEC) impose constraints
on the first derivations of the short-range poten-
tials (with respect to bond length) while the dynam-
ical problem depends also on the second deriva-
tives. Both the static and dynamic problems de-
pend on the ionic charges. The object is to deter-
mine the correct charge distribution and short-
range potentials from structural and dynamical
measurements. This basic approach is, of course,
nothing new and, in fact, originated in the classic
work of Kellermann on the lattice dynamics of
NaCl.® He determined the first derivative of the
short-range energy between Na* and C1” from the
lattice constant by invoking static equilibrium and
the second derivative from the compressibility.

One finds that as the crystal structure becomes
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increasingly more complex more and more about
the interatomic potentials can be learned from the
SEC. Raman and infrared spectra also become
richer sources of information, but for very com-
plex structures the primary input is obtained from
the structure through the SEC. In fact, recent
lattice-dynamical calculations on Gd,(MoO,), show
surprisingly good agreement with x-ray, Raman,
and neutron scattering data using a rigid-ion mod-
el with only three adjustable parameters.* The
first derivatives of eight short-range bonds were
determined from the SEC while the three additional
parameters, two second derivatives and one relat-
ing the distribution of charge in the MoO,? group,
were determined from Raman scattering data.
However, in this work we did not make the greatest
possible use of either the structural or the lattice-
dynamical data. The SEC were only approximate-
ly satisfied, and since we did not perform a sym-
metry analysis of the modes the comparison with
Raman measurements was only semiquantitative.
Although this was sufficient for our purpose of
predicting the essential features of the transition
in this material, it was clear that more could be
learned about the interatomic potentials by im-
provements within the rigid-ion model. More re-
cently this method has been applied to another ma-
terial, fluorapatite [Ca,o(PO,)¢F,], with the goal of
squeezing the maximum amount of information
from the SEC and Raman spectra given the rigid-
ion approximation. Results of this investigation,
which are reported in the following paper,' show
very good agreement between experiment and the-
ory and further demonstrate the power of this
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method when applied to very complex structures.
Striefler and Barsh,® and Cran and Sangster® have
also employed SEC in determining models for
moderately complex crystals.

For the most part the major difficulties which
arise in applying this method to very complex
crystals result from the sheer size of the dynami-
cal matrix. Clearly these difficulties have to be
overcome by effectively using the computer. In
other words, the dynamical problem must be pro-
grammed in the most general way possible, thus
reducing the human effort. For the rigid-ion mod-
el it is a relatively simple matter to program the
general expressions for the dynamical matrix, and
a package of subroutines has been written for this
purpose. Thus, given only the crystal structure,
the mass and charge of the ions, the first and
second derivatives of the short-range potentials,
and the wave vector, the dynamical matrix is de-
termined. This is surely possible for more so-
phisticated models as well although we have not
yet attempted it. Programming the transforma-
tion to symmetry coordinates in its complete
generality is not so straightforward, but certainly
possible. In fact, we have written a subroutine to
do this job which is considerably shorter than that
required to construct the dynamical matrix, and it
computes the transformation matrix in only a frac-
tion of the time needed to compute the dynamical
matrix. This subroutine, consisting of 132
FORTRAN statements, is listed and described in
detail elsewhere.’

The main purpose of this paper is to review the
lattice-dynamical problem emphasizing those as-
pects which are important in dealing with very
complex crystals. The static equilibrium condi-
tions are also discussed, but to a lesser extent.

In Sec. I we present the basic theory for the
lattice dynamics of rigid-ion crystals in the har-
monic approximation. Numerous other sources,
notably Born and Huang® offer equivalent treat-
ments but here the discussion is more concise
since we limit ourselves to this model and treat it
classically. Also, the introduction of periodic
boundary conditions and associated jargon is from
a somewhat different point of view. In addition we
show that static equilibrium with respect to macro-
scopic strains is necessary and sufficient for ro-
tational invariance.

In Sec. III the symmetry properties of the dy-
namical matrix are reviewed and the construction
of symmetry coordinates is discussed using group-
representation theory. Again, more general and
detailed discussions may be found elsewhere; e.g.,
see the review of Maradudin and Vosko.?

In Sec. IV we discuss practical considerations
relating to the application of the SEC and the dy-
namical theory to very complex crystals.

II. LATTICE DYNAMICS AND THE RIGID-ION MODEL

Consider a perfect crystal of point ions with »
ions per primitive (Bravias) unit cell. Let x,([,k)
= x4(1) + x, (k) be the ath component of the position
of the (7, k) ion in the static lattice with respect to
a Cartesian coordinate system. In general we use
the index I to denote a set of three integers (1,1, 1ls).
Here they are the components of X(I) with respect
to the primitive lattice vectors a,, 3,, andiy; i.e.,
%(0)=1,a, + L3, + [j3,. In the following discussion
we use /=0 and !~ to mean (0, 0, 0) and (7, - I;,
l,-1I;,l3—-1). The index & labels the ions within
a single cell, and x(k) is the position of the ath
ion in the /=0 cell.

Now suppose the ions are displaced slightly to
new positions (I, £)=X(I, k) +U(l, k). We define
T, kE')=T(, k) - F(, £') with X(11) kE') and
U(ll', k') similarly defined. Since the sites X(l, &)
are those of the undistorted lattice we may write
X, kR ) =X(1 -1, k') =X - I') + X(k) - X(R).

Considering only central pairwise interactions
the potential energy of the crystal may be written

8=22 T o(ril',kk)) @)
2 11 kR

where ¢ denotes the fotal interaction between the
ion pairs and #(I1', k") = |T(1l',kE')|. In the sum-
mation, % and %’ take on values from 1 to » while
land I’ are summed over all possible triplets of
integers. We account for the fact that a given ion
does not interact with itself by imposing the condi-
tion ¢ ({1, %)) =0 for all Z and k.

Expanding ¢(7) to second order in U about X for
each ion pair,

& =§E L Aol = 1, k) + 20 [1 = ', k') yu (U1, RE')

11 ke

1 ’ ’ ’ ’
+5 2 [1=0, bk log ug(U, kR Yty (0, )}, @)
aB
where

[1-1,kk' =0 (x) -’iﬁ

®)

)
X=X(1=17, kk*)

(1-1,%k ] [( ¢"(x) - 9}"—) Xafs

X

¢’ (x)
+ "x_xdaa] (4)

b
x=x(1=1', kk’)

and the primes denote derivatives with respect to
bond length.

The zero-order terms do not enter into the dy-
namical problem and can be scaled to zero. Since
the positions X(/, ) are assumed to be the equilib-
rium positions of the static lattice, the first-order
contribution also vanishes. The resultant static-
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equilibrium conditions (SEC) are discussed in Born
and Huang,® and recently, Boyer and Hardy? have
pointed out their importance in dealing with com-
plex crystal structures. In the later work, the
Coulomb and short-range contributions are writ-
ten separately with the Coulomb portion given in
terms of Ewald sums.

Having imposed the SEC the potential energy
becomes

1 ’ ’ ! ’
=220 D01 = 1 kR Vygug U b Y (I RE') . (5)
11 kR' aB
Now suppose the crystal is displaced by an ar-
bitrary infinitesimal rotation given by

wy (I k) =03 x,(1 = U, kE") = 0, x3(1 = I, kE'),
(1 kR )= 0, x5(1 = U, kR") = 03, (1 = 1/, RE), (6)
us(1' k)= 0, x, (1= 1", kR = 0, x,(1 = U, RE'),

where 6, is the magnitude of the rotation about the
a axis. Substituting Eq. (6) into Eq. (5) & reduces
to
’ ’ ’
12229 s o' (x(1 -1, "))

2 -1kt
i (1= 1, kE) (L= 1, kE')

Xxg(L=1',kE") . (7)

The terms in the sum over [ and !’ depend only on
I-17, and &, must vanish for all possible infinites-
imal rotations; hence,

¢ '(x(1, kE"))
?E *(1, kR")

for all @ and B. These are precisely the condi-
tions required for static equilibrium with respect
to macroscopic strains. Thus, inthe harmonic
approximation, satisfying the SEC automatically
ensures the rotational invariance of the potential
energy.

The potential energy takes the form

xo (L kR )23 (LEE') =0 (8)

= %Z) 202000451 = 1 kR Yug (L g (I k) (9)

11° k&' aB

when we define

n_§ Tl kE" )5 for (1, kE')=(0,kE)
oally bk )—{ (L,kk']s  otherwise . (10)
Notice that
® 45(0, kR) = =20 ®,(L, kE) . (11)
1R

A more common approach is to begin with the po-
tential energy in the form given in Eq. (9) (which
has the appearance of depending on the absolute
displacements) and invoke translational invariance
to obtain Eq. (11). Here, we have chosen to begin
by writing the potential energy in terms of rela-
tive displacements and, as a result, we obtain

9
Eq. (11).
The kinetic energy is given by
T"'z‘z wz(l k) (12)
lka
where
wo (L, k)= (m,) 2u, (1, k) (13)

and m, is the mass of the kth ion.
ordinates the potential energy is

In these co-

ZEED,,B(l-z kR Ywo (l, R)ws(1,B), (14)

ll' RR' aB
where

Do (L k)= @ 5 (L kR ) (my my ) V2 (15)

Now we assume that the dynamical state of the
system is periodic in a superlattice with primitive
lattice vectors La,, Li,, and L3, where L is some
positive integer. Specifically, we require (7, %)
=U((1, + L, b, L),k) = u((z,, L+ L,13), k) =U((Ly, 1, Iy + L), k)
and similarly for i. Having imposed these period-
ic boundary conditions, we need only consider the
energy of one supercell (primitive unit cell of the
superlattice). In other words, the sum over [ in
Eq. (12) is such that I, Z,, and I, take on any L con-
secutive integers, while in Eq. (14) we restrict
either 7 or I’ to one supercell and sum the other
index over the entire lattice. The 3xL? indepen-
dent coordinates are coupled through Eq. (14).
This, of course, renders the dynamical problem
intractable in these coordinates for any reasonably
large value L, since the solution would require
the diagonalization of a matrix of rank 3nL3.

In general, if f(p) is a periodic function of the
discrete variable p, where p is any integer, and
f(®)=F(p+ L), then f(p) may be written

1) =;Z7 gb)e

i(2r/L)pp’ R (16)

where

g(p)= %Ef(p') i@ /L’ (17)
b’

and the sum over p’ includes any L consecutive in-

tegers. Clearly, g(p) is also periodic with a per-

iod of L. The validity of these expanded forms

results from the fact that

+_)L if p is a multiple of L
i(2r/Lipp’ _
? ¢ {0 otherwise, (18)

as is easily demonstrated by substituting Eq. (17)
into Eq. (16) or vice versa.

The assumption of periodic boundary conditions
therefore allows us to write

wa(l,k)=§;Wa(k’l/)ei(ar/Lnl.l s (19)

where
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U 1=l + Lly + I3l (20)

and the sum over [’ is such that 7}, Z,, and I; take
on L consecutive integers.
The displacements must be real and hence

Wk )= Wk(k,~1) . (21)
We define
Daa(kk’,l)EEDaB(l',kk’) e-@r /Lyt , @22)
”

where I’ is summed over all integer triplets, and
Dos(LkE') is given by Eq. (15). D(kE,1) is an
element of a Hermitian matrix of rank 3n. We de-
note its jth eigenvalue by w?(j,!) and the (a, %) com-
ponent of the corresponding eigenvector by e, (kj,1);

j=1,2,...,3n. Thus,

%)8 Dos(RE', 1) eg(RY, 1) = 0?(4, 1) eo (R 5,1) (23)
From Eq. (22)

D 4(kk' 1) =Dy (Rl , - 1) , (24)
and hence,

(3, D)= w?(j,- 1) (25)
and

ey (ki 1) = ki, = 1) . (26)
The eigenvectors satisfy the closure condition

? eX(kj, 1)eg(k'5,1) = 6 450 pae 27

and the orthonormality condition

27 ek (kj, Dey(ki',1) =60 . (28)
ak

Thus we may expand W, (k1) in a linear combina-
tion of either e*(kj,!) or e, (kj,1):

Wolk, 1) =22QUj, Deg(ki 1) (29)
where
QUi 1) =20 W, (k, eX(kj1) . (30)

From Egs. (21), (26), and (30) we have
Q5,0 =Q*(j,=1) . (31)

When Eq. (29) is substituted into Eq. (19) and
the resultant expression substituted into the poten-
tial energy [Eq. (14)], with similar substitutions
for the time derivatives into the kinetic energy
[Eq. (12)], the Hamiltonian is completely decoupled
into a sum of 3nL® independent oscillators with
frequencies w?(j,1):

-5 DIGIE G+ G,0RG DRG]

1

The derivation is straightforward and makes use
of the facts and definitions expressed in Eqs. (18),
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(22), (23), and (30). From Eqgs. (13), (19), and (29)
the displacements become

ua(l, k) - (mk)-qu Q(]; l,)eu(kj, ll) el @r/L)1’-1 .
it (33)
The reality of the displacements is assured because
of the conditions expressed in Eqs. (26) and (31).
There are two modifications of the above theory

that commonly appear in the literature. First of
all, we are free to replace (I'-1) by

U 1=(L/2md(’)-x@) , (34)
where X(I) is given by

xa(l)=?A,BlB , (35)

Agg is the pth component of the primitive lattice
vector i,, and (/) is defined by

1= T a1y, . (36)
Ly

q(l) has dimensions of inverse length and is said to
be a “wave vector” of “reciprocal space.” Those
wave vectors for which [, 7,, and I/ are each a
multiple of L are “reciprocal-lattice vectors”

Q. (=212A%1, . (37)
B

Two wave vectors are, of course, equivalent if they
differ by a reciprocal-lattice vector. Since any
value of wave vector can be attained by suitably
choosing ! and L we often drop the artificial / de-
pendence of () in future discussion.

The above theory can be modified further by in-
cluding the phase factor e***® in the expansion of
the displacements [Eq. (19)]. This necessitates
the factor ¥ [X(R-2(¥)1 jn the definition of the dy-
namical matrix [Eq. (22)]. Whereas the choice of
the signs in these exponentials was completely ar-
bitrary in the foregoing analysis, one must now be
careful. The choice of expanding Wa(k,ﬁ) in terms
of e,(kj,q) or eX(kj,q) [see Eq. (29)] is no longer
available. If the signs in the two exponentials are
chosen to be the same then only the e*(kj,q) expan-
sion will decouple the potential energy, but if the
signs are opposite, then e“(kj,i) is the correct
choice. We chose to write the displacements as

o (L) = (m) V220 Q5,1 ey (kj, 1) T4 R D
" (38)
which necessarily leads to the definition

Dw(kk',c‘l)EEDw(l,kk')e'ia';“'w) (39)
!

for the dynamical matrix.

In the previous discussion the pairwise potentials
¢ were assumed to include both Coulomb and short-
range interactions. Owing to the long-range nature
of the Coulomb interaction the form given above
for the dynamical matrix is not absolutely conver-
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gent. However, the Coulomb part, C,(kk',d), can
be written in a rapidly convergent form using
Ewald’s method. The result is

Co(kk',q) = (—m—ffn—z;k)m [G oo (BE',) + H g (kR )]

- —3—5,,,.2) 240 [Cop(kR") + Hog(RE",0)],
3 I’ (40)
where
(Qq(2) + q4)9%(0) +g5)
1Q() +§ 12

aY -2
><exp[— %EL + (1) -i(kk’)]}

Gos k') 5}2{

4
= Ouwbas gy 5 (41)
rel ’ 4
Gos(kE') = G og(kE',0) = -UE ol 42)
Haa(kk':’) = —Ehaa(i(l,kk')) o TR, k) _ Sarehias (0),
x (43)
and
hqe(x)=[erfc(x<)+ %.1‘7’2‘, e-,z.z][3i%‘xﬁ _ g;f_]
4 x %, 22
YA Tl (44)

In the above expressions erfc is the complementary
error function, v is the volume per unit cell (tri-
ple scalar product of the lattice vectors) z, is the
charge of the kth ion, and ¢ is an arbitrary pa-
rameter which is chosen to ensure rapid conver-
gence.

Notice that C,(k%’,q) is not regular at §=0 and
depends on the direction of § as §~0. The non-
regular part is related to the macroscopic electric
field oscillations that accompany the long-wave-
length vibrations.! However, it is still meaningful
to treat the =0 dynamical matrix, where =0
implies the nonregular part is omitted, since in-
cluding it only affects the infrared active modes.

II. CONSTRUCTION OF SYMMETRY COORDINATES

InSec. I we saw how the translational symmetry
of the lattice reduced the dynamical problem from
that of diagonalizing a matrix of rank 3nL3 to di-
agonalizing L% matrices, each of rank 3n. Now
we shall see how additional symmetry operations
can further simplify the dynamical problem.

Let the ions be permanently labeled by the in-
dices (7, k), and allow the Cartesian coordinate
system to undergo an arbitrary transformation
consisting of a rotation and (or) reflection plus
a translation of is origin. The ath component of
the position of the (%) ion with respect to this new
system is given by

L. L. BOYER 9

x°(L k) =226% x5 (1, k) + 2%, (45)
')

where 6° is the rotation and (or) reflection matrix
and ¥ is the translation vector with its tail at the
origin of the transformed frame and its components
taken with respect to the transformed frame.

Since X(J, k&) denotes the position of the (I, 2) ion
relative to the (0, %) ion,

x°(1 kE') =226 x5 (1, kE') (48)
8

does not depend on . Substituting Eq. (46) into
Eq. (4)

(1 ek Yoo =22 [1, K D005 » 47)
and thus, from Eqs. (10) and (15),

D’“(l,kk')=§D,°(l,kk')6§,0§° . (48)
Clearly, D%4(kk’,q) is defined by

Df,a(kk',ﬁ)szl)pga(l, kE) g TR R (49)

and its eigenvalues w?(j,q) and eigenvectors
e’ (kj,q) satisfy

g DZy(kk',8)eb(R'5,3) = w2(5,d) €4 (k1,T) - (50)

Substituting Eqs. (48) and (46) into Eq. (49) we
have

D2y(kE',Q) =?§ D,(1, k)02, 62

xexp[—iaifq,ezux“(z,kk')]. (51)

Making the definition
98=263, 0, (52)
8

Eq. (51) becomes
D:s(kk',ﬁ) =2Dm(kk,,a’)9379§o . (53)
0

Substituting Eq. (53) into Eq. (50),

?ﬁzzDye(kk:ﬁp)eﬁﬂé’oeﬂ(k'ﬂﬁ)=w§(j,ﬁ)e§(kj,ﬁ)- (54)
of: R

Since 9 is an orthogonal transformation,
2168,68,=2160,605=04 - (55)
14

r
Multiplying both sides of Eq. (54) by 82, and sum-
ming over a, using Eq. (55), the resultant equa-
tion is
21 21 Doy (k' T)650e8 (k5 D) = w3, DL 02tk D,
-3

(56)

which implies that w?(j, ) = w?(4, ¢°) and
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eq(kj, @) =§ 0548k, @) . (57)

We now assume that the transformation p [Eq.
(45)] is a symmetry operation. Thus, for every
ion (7,&) there is an ion (i,,&,) such that

(L, k) =%(1,,k,) (58)

k and %, refer to symmetrically equivalent ions
and, therefore, have the same mass. Clearly,

(-1, k) =%(1, - 1, k,k,) (59)
and from Eqgs. (4), (10), and (15)
05 (1= 1" k') = Dy (1, = 1, R k) - (60)

Substituting Eqs. (59) and (60) into Eq. (49)

D2(kE, @) = 20 Do (1, = 1y b, k) € 15515 Rk (61)
-

where ["=1-1"and [, =1,-,. Summing over 1"
is the same as summing over [,. Hence,

D2 (kE',Q) =D (B, R0, Q) . (62)

Substituting Eq. (62) into Eq. (50) requires w?(j, )
= w?(j, 4) and

ea(kj,q) = e4(k, ,4) . (63)

Substituting Eq. (63) into Eq. (57) yields the fol-
lowing important result:

o ki, @) =20 5k, 5,062, - (64)
B

The set of all symmetry operations is a group
known as the space group and the set of all lattice
translations is an invariant subgroup of the space
group.!® Nothing in Eq. (64) is affected by lattice
translations and thus one needs to consider only
the factor group F of the space group with respect
to the subgroup of lattice translations. Further-
more, we only need to consider those elements of
F for which @” and q are equivalent, i.e., differ
only by a reciprocal-lattice vector. These ele-
ments form a subgroup of F, called the group of
the wave vector §, which we denote by F;. Equa-
tion (64) defines a 3xnx3n representation of F
that may be used to further simplify the dynamical
problem in the manner prescribed by group-repre-
sentation theory.

It is convenient to define the indices ¢ and j from
the pairs (ak) and (B&') by i=(a - 1)n+k and j
=(B-1)n+k so that the elements of the dynamical
matrix and representation matrices are written
D;;(@ and R;;(p). One constructs the unitary ma-
trix U;;(q), which block diagonalizes the dynami-
cal matrix, from symmetry coordinates obtained
from the projection operator

P@=2xX(p, DRy;(p), (65)
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where x,(p, q) is the character of the pth operation
in the vth irreducible representation of F; and the
summation is over those p in F;. The characters
are those of the point group 6° with p in F;. The
number of linearly independent coordinates, ob-
tained by applying P*(§) to arbitrary 3x-dimen-
sional column vectors, is the dimension of the vth
irreducible representation, d,(3), times its multi-
plicity,

(@) = ;—,Ex:(p, Do), (66)

where x(p) is the character of R(p) and g; is the
number of elements in F;. When orthonormalized
and arranged in groups with the same v these co-
ordinates form the matrix ‘I-J.(E). The block-diag-
onalized dynamical matrix

B =T"(@DE)TE) (67)

consists of p(q) matrices of rank d,(q)m,(d), where
p(&) is the number of irreducible representations
of F;.

IV. PRACTICAL CONSIDERATIONS

The static-equilibrium conditions (SEC) are a
set of linear equations in the unknown first deriva-
tives of the short-range potentials. Specifically,

E)(p'(x(l;kk'))—“—’;(gl’kkkk_)).,_Fa(k')zo (68)
and

153 o 1y ol kR ) 352, kR")

2 J,ﬁi,— =

2%31@'4) (x(1, 22")) X, k) +fes=0, (69)

where ¢ denotes the short-range potentials, and
Fo(k) and f,4 are the Coulomb contributions to the
SEC and are given explicitly in Ref. 2. Equation
(68) results from minimizing the potential energy
with respect to internal strains and requires that
the net force on the %’ ion is zero. Equation (69)
comes from minimizing with respect to external
strains and says that the Coulomb stress tending
to collapse the crystal must be balanced by the
short-range stress trying to explode the crystal.
The number of independent SEC is the number of
parameters required to define the crystal struc-
ture. The crystal structure is given by the three
lattice vectors &,, &, and @, and the » basis vec-
tors X(k). For the most general case, there are
6+3(n—1) independent SEC. The six external-
strain conditions correspond to the six parameters
needed to specify the lattice. For more symmetric
crystal lattices this number is reduced to corre-
spond to the number of lattice parameters. The
3n internal-strain conditions correspond to the
three components of the » basis vectors, but one
of the X(%) is arbitrary because we can put the
origin anywhere, so 3(z —1) of these are indepen-
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dent. When symmetry other than lattice transla-
tions exists many of the ions may be identical to
other ions in a single unit cell. Identical ions
occupy symmetrically equivalent positions, and
these are tabulated in the International Tables for
X-Ray Crystallography®® for all of the 230 space
groups. Each set of equivalent positions is given
a label (Wyckoff symbol) denoting its site symme-
try. The number of parameters in a set of equiva-
lent positions is the number of linearly independent
internal-strain conditions due to a set of identical
ions with that site symmetry. These symmetry
effects which are inherent in the SEC are easily
seen by inspecting the values computed for the
Coulomb coefficients. This makes it easy to select
a complete set of independent SEC from those
given by Eqs. (68) and (69).

In the rigid-ion approximation, two pairs of ions
are identical (have the same potential) if the ions
in one pair are identical to the ions in the other
and they have equal bond lengths. If the electron
clouds of the ions in a given pair are in direct con-
tact its short-range potential should be included in
the model and its first derivative is an unknown in
the SEC. It is convenient to label the short-range
potentials ¢(1), ¢(2), etc.,according to their bond
lengths x(1), x(2), etc. In rare cases, two non-
identical bonds included in the model may have the
same bond length, but, in general, for complex
crystals, the short-range interactions are uniquely
labeled by their bond lengths. This makes it easy
for the computer to recognize and identify identical
short-range forces in the computation of the coef-
ficients of the various ¢'(i) in Eqs. (68) and (69).
The summation over [ in these equations must in-
clude those terms for which |7,] <1.

These coefficients form an sXp matrix, where
s is the number of independent SEC and p is the
number of short-range potentials included in the
model. Clearly we must have p > s to completely
satisfy the SEC. For p>s, p —s of the unknowns
must be determined by other means, such as,
from lattice-dynamical data. The question of
which of these unknowns would best be determined
from the SEC may be answered by comparing the
values for the determinants of the matrices ob-
tained by eliminating p — s of the columns from
the larger s Xp matrix. The most effective use
of the structural data is obtained from the matrix
with the greatest determinant. On the other hand,
if the determinant is small, the matrix is nearly
singular and the solution may be thought of as de-
pending on the difference between two nearly equal
structure parameters. A very nearly singular
condition may result when all the ¢’ parameters
belonging to a tightly bound molecular group are
included as unknowns in the SEC. This is illus-
trated in the following paper for the PO, 3 group

in fluorapatite.

For very complex crystals the SEC may provide
information about the charge of the ions and the
second derivatives of the short-range potentials as
well as the first derivatives. Let two bonds be
designated as “similar” if the ions in one pair have
the same charge and mass as the ions in the other
pair. Similar bonds may be assumed to have the
same potential function. If a few similar bonds
have nearly the same bond length, say x, then the
¢’ values for these bonds should be approximately
the same if the charge distribution is correct.
Thus we may write ¢'(x)=¢"(xy) + ¢ " (x0)(x = xp)-
The SEC then determine ¢'(x,) and ¢”(x,), and
consequently ¢ '(x) is determined for each of these
bonds and ¢ “(x) is given approximately by ¢ “(x,).
Alternatively, a particular form for the potential
of similar bonds may be chosen with the parame-
ters of the potential determined by the SEC. How-
ever, the solution is more difficult to obtain since
the resultant SEC are no longer linear and an
iterative procedure must be used. This is illus-
trated in the following paper, where a Born-
Mayer form is chosen for the potential between
calcium and oxygen ions. Clearly, the advantage
of this approach is that it reduces the number of
unknown parameters in the model and thus, more
information is obtained from the SEC. On the
other hand, it relies on assumptions regarding the
similarity of bonds and the form of their potential.
The merit of these assumptions may ultimately be
judged by comparing computed phonon frequencies
to lattice-dynamical data.

The difficulties involved in performing lattice-
dynamical calculations for very complex crystals
primarily results from the huge size of the dy-
namical matrix. Effective use of the computer is
imperative. Our philosophy has been to program
the lattice-dynamical problem in the most general
way possible. It is a relatively simple matter to
program the general expressions in Sec. II for the
dynamical matrix. The transformation to symme-
try coordinates (Sec. III) is a little trickier. Worl-
ton and Warren'? have published a program for this
purpose, but it is rather large, consisting of ~1600
cards, and is limited to crystals with » <20. We
have written a 135-card subroutine which will com-
pute U(@) [Eq. (67)] for very complex crystal struc-
tures.”

The expressions for the dynamical matrix of a
general rigid-ion crystal are given in Sec. II. The
Coulomb part is given explicitly in terms of the
charge of the ions, the mass of the ions, the basis
vectors, the lattice vectors, and the wave vector
by the expressions in Eqs. (35), (37), (40)-(44).
The convergence parameter should be chosen such
that 1/¢ is on the order of the length of the lattice
vectors. The optimum value for € may be deter-
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mined by computing a few of the elements for
several values of €. When ¢ is carefully chosen
sufficient accuracy may be obtained by summing
over just those [ for which |/,|<2. This also
applies to the computation of the Coulomb contribu-
tions to the SEC.

The short-range part of the dynamical matrix is
given by Eqs. (4), (10), (15), (35), and (39), in
which ¢ refers to the short-range part of the po-
tentials. For simple structures the summation
over [ in Eq. (39) is usually done by hand for each
element, but for complex crystals this is a pro-
hibitive amount of human labor. The sum is easily
done by computer when the bonds are labeled ac-
cording to their lengths as discussed above in the
computation of the coefficient matrix for the SEC.
The input to the short-range part is the crystal
structure, the wave vector, the mass of the ions,
and the first and second derivatives of the short-
range potentials.

For the most part the crucial input to the dy-
namical problem, namely, the charge of the ions
and the values of ¢'(¢) and ¢ (i), is obtained from
the SEC. Most of the ¢'(;) values are given di-
rectly by the SEC while the charge distribution
and the values for ¢"(7), or rough estimates
thereof, result from assumptions regarding the
similarity of bonds. Supporting information may
be taken from the molecular dynamics of tightly
bound composite ions, as is illustrated in the
following paper, where we consider the vibration
of the free phosphate ion.

Refinements of this approximate model are made
from the lattice-dynamical data. Raman scatter-
ing measurements are especially convenient if the
crystal has inversion symmetry. In this case,
the Raman and infrared active modes are complete-
ly decoupled and thus the Raman active modes do
not depend on the direction of the wave vector.
That is, the nonregular part of C(k%’,d) as g~ 0
[see Eq. (40)] can be omitted without affecting the
Raman active vibrations. In any case, the long-
wavelength phonons are certainly the most expedi-
ent sources of information. The computations are
easier because the long-wavelength dynamical ma-
trix is real, and a vast amount of Raman and in-
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frared data already exist for complex ionic crys-
tals. Of course any completely reliable model
must be accurate for all wave vectors.

For simple structures it is often possible to
derive an analytic expression for the frequencies
of various long-wavelength modes. For complex
crystals the dependence of the frequencies on the
adjustable parameters must be determined nu-
merically. Also, the measured spectrum is a
much richer source of information, which makes
it difficult to establish a generally applicable fit-
ting procedure. As a general rule, of course,
one should try to fit those features in the spectrum
which are most sensitive to the adjustable parame-
ters (see, for example, the method used in the
following paper). In any case it is clear that the
frequencies must be computed repeatedly, each
time systematically adjusting the parameters in
order to obtain the best values.

As these computations can be quite lengthy, it
is important to take measures to make them as
efficient as possible. Obviously, the matrix U
[Eq. (67)] need only be computed once. It takes
considerably more time to compute the Coulomb
part of the dynamical matrix than the short-range
part. Thus one should determine the best short-
range parameters for a given charge distribution,
rather than vice versa, since the Coulomb part is
computed and block diagonalized just once in the

process. The short range part may be written
B=20¢"(0D,(i) + 2 ' ()Dy(3), (70)
i i

where the coefficient matrices Bl(i) and‘l_)’z(i) are
computed and block diagonalized just once. This
reduces the computations considerably since
otherwise D would have to be computed and the
matrix multiplications UDU performed for each
model refinement.
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