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Transverse ~agnetoresistance of nondegenerate semiconductors in strong magnetic fields
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The transverse magnetoresistance has been calculated for a nondegenerate semiconductor throughout

the high-field region. The calculation has been performed taking into account the inelasticities in the
electron-phonon scattering due to the finite energy of the phonons involved. The results are in

agrament with previous calculations for the classical and quantum limits. However, our results are also
vahd in the intermediate region Kce, ~k T. Our results indicate that the classical limit is realized for
Keo, /k T (1/4 while the quantum limit is obtained for lao, /k T &4. We expect that these values are

also valid for other scattering mechanisms.

I. INTRODUCTION

High-field galvanomagnetic phenomena are char-
acterized by the condition that the product of the
carrier cyclotron frequency and its mean time be-
tween collisions be much greater than unity, co,~
» 1. Within this classification, two limiting cases
are of interest. In the first, the classical limit,
the magnetic field is strong enough to satisfy the
high-field criterion, but not so large as to render
the splitting of the Landau levels comparable to the
average carrier energy: u,T»1, Scu,/kT«1. In
the other case, the quantum limit, the strong-field
condition is obtained and, in addition, the splitting
of the Landau levels is much greater than the aver-
age carrier energy: i.e. , v,v» 1 and h&u, /kT» 1.

The theory of the transverse magnetoresistance
of semiconductors in both the classical and quan-
tum limits has been intensively studied in the
past. In practice, however, the conditions neces-
sary to obtain these limits are often difficult to
realize. This is particularly true of the quantum
limit, where impractically large magnetic fields
are often required. It is then desirable to obtain
expressions that apply throughout the strong-field
regime (i.e. , for all values of h&u, /kT). Such a
calculation not only depicts the behavior in the
transition region, but, more importantly, serves
to define exactly where the classical- and quantum-
limit variations are obtained.

In this paper we calculate the transverse mag-
netoresistance of a nondegenerate semiconductor
with isotropic parabolic energy bands throughout
the strong-field regime. Only the case of scatter-
ing due to acoustic phonons via the deformation-
potential mechanism is considered.

The scattering is treated in the Born approxima-
tion. Theoretical expressions for the strong-field
transverse magnetoresistance in the elastic Born
approximation diverge logarithmically. ' This

divergence is resolved by the more important of
three cutoff mechanisms: inelasticities in the elec-
tron-phonon interaction, ' collisional broadening
of the energy levels, ' and phonon drag. ' In this
study we assume that inelasticity is the dominant
mechanism in resolving the divergence.

II. HIGH-FIELD TRANSVERSE MAGNETORESISTANCE

In the absence of collisions, the application of
crossed electric and magnetic fields imparts a Hall
velocity Vs=c(E &&8)/H to each of the carriers.
This corresponds to a nondissipative current j~
=noeV„normal to the fields. Here no is the carrier
concentration. In a strong magnetic field, collisions
are generally treated as a perturbation, this per-
turbation being calculated using the Born approxi-
mation. '3 Although one of use has found reason to
question the applicability of this approximation in
strong magnetic fields, we employ it here.

In the Born approximation, the effect of collisions
is to give rise to a dissipative current lying in the
direction of the total electric field. For scattering
due to acoustic phonons, this current is given by7'

f(~ )(I-f(e )1& .
ff

(2. 1)
Here i and j represent the eigenstates of an elec-
tron in a magnetic field, L =(k/m~&u, ) ~ is the
classical radius of the lowest Landau level, k~ is
the quantum number which determines the position
along the electric field (i.e. , (i I xl i ) = —k,L ), f(&,)
is the thermal-equilibrium occupation probability
for an electron in the state i, E& is the energy of an
electron in the state i, and W;& is the thermal-
equilibrium transition rate between states i and j.
In the Born approximation this rate is given by
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+ ~M;/(-q) ~'N 5(e; —e/+S&u, }). (2. 2)

In the above, C, is the electron-phonon coupling
constant, M,/(q} = (i I

e"'l j},N, is the thermal-
equilibrium number of phonons with wave vector q,
and @e, is the phonon energy.

Equation (2. 2) is the appropriate expression to
be used when inelasticities in the electron-phonon
interaction are the dominant mechanism removing
the divergence in the transverse resistivity. This
divergence is resolved by the appearance of the
phonon energy in the energy-conserving 6 function.
If collisional broadening were to be the dominant
mechanism, a collisional-corrected expression
that recognizes that energy is only conserved with-
in the limits imposed by the uncertainty principle
would be employed, ' while if phonon drag were to
be the dominant mechanism, an additional term in
Eq. (2. 1) accounting for the current arising from
disturbances in the phonon distribution would be
required. "

The high-field magnetoresistance is generally
measured in the configuration where no current
flows normal to the applied field. In this, the so-
called Hall configuration, the resistivity is given
by pr=E j/j . Noting that in a strong magnetic
field j~»j~, this can be approximated by

pr = Ei ~/(so«H}', (2. 2)

where I- is the total electric field.
We can now proceed with the calculation of the

transverse resistivity. We confine our attention
to the case of nondegenerate statistics so that

y( )=8 "'" r.' m(l™')

1 k~, k'
xexp —n+ — ' -+ . (2. 4)

2 kT qT

acoustic -phonon scattering dominates.
The matrix element M, /(q) can be evaluated in a

straightforward manner. The result is that for
Fly —n

g ~

IMv(q) I'=
l
{n;, k,*, k.'[e"'[n,-, k„', k'. & ['

J2 2 nj n ~

= (27/)~(n;! /n/! )e ~ '~/
2

L2 2 '2

)( Ing ng qJ,
ng

x 6(k', q, k,')5(k,' q, k,'), (2. 7)

, IL",(~}]'z', (2. 8)

where I„(y) is the Bessel function of imaginary
argument, we can reduce the summations on n, and

n& to a simple summation on n=n; —n&. The result-
ing expression for the dissipative current is

OO 2neV, ~, q,
(2v)'h(o kTq v'/' Iq I

i

while for n, &n/ the relationship !M;/(q) I
'

=!M,/(-q)!' can be employed. ln the above L„(x)
is the associated Laguerre polynomial, and q,
q~ and q, are the components of the phonon wave
vector directed paraQel to the magnetic field, nor-
mal to the magnetic field, and in the H&E direc-
tion, respectively.

Substituting Eqs. (2. 2}, (2. 4), and (2. 7) into
(2. 1), and with the aid of the generating function~~

-n/2 1/2 '!!
A Z 2~g/( g g) f 2XZ

1 —z
e n 1 —z j

Here

q = (2m+kT/k2)1/2 (2. 6)

q, m~(n&u, + u&,)
4q T 2kTq

(2. O)

Ssq„«4kT, (2. 6)

where s is the velocity of sound and q„ is the maxi-
mum wave vector for those phonons that signifi-
cantly interact with the electrons. We find that for
5u&, & kT, q„qr, while for hu&, &kT, q„-1/L. An

immediate consequence of this approximation is
that N, = kT/R&o, The high-temp. erature approxi-
mation is generally satisfied at temperatures where

is the thermal de Broglie wave vector for the car-
riers, n is the quantum number indicating the Lan-
dau level (n can take on zero or any positive-integer
value), and k, is the quantum number designating
the component of electron momentum parallel to
the magnetic field (i. e. , {i!P,l i) =5k,). Further-
more, we employ the high-temperature approxima-
tion

m+ E1 3
po-ne2 p s28F1/28 q'T ~ (2. 11}

In obtaining this result, the summations over k~,

k~, jm|' and k,' were completed and the remaining
summations converted to integrations. Also, the
high-temperature approximation was not yet used
at this stage.

For acoustic-phonon scattering via the deforma-
tion-potential-coupling mechanism, the electron-
phonon coupling constant is given by12

(C. ~

=E', kq/2p. s, (2. 10)

where E, i,s the deformation potential constant and

p the mass density of the crystal. It is convenient
to introduce the expression for the resistivity in
the absence of a magnetic field due to deformation-
potential coupling, '
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Using E(ls. (2.3) and (2. 9)-(2. 11) we obtain in the
high-temperature approximation the result

p~ 1 ~ 3 q, Lq
3~dq

i

'
i
exp-2'coth2kT

valid for y «1,
ffh(l~ I) =-»(~/2) -y (2. 18)

q m*(n(t), + (d,}x exp— (2. 12)

&o(fx+y I) =ffh(lzl) —Izlfft(lz I)»l 1+y/z f,
(2. 17)

where y = 0. 577 is Euler's constant. This leads to
the result

We should point out that Gurevich and Firsov14 have
derived a similar expression using a Green's func-
tion approach. Their result, however, assumes
that co,» ~„an assumption that is not valid
throughout the strong-field regime.

The last exponential in E(l. (2. 12}provides a,

lower cutoff on q to remove the divergence arising
from the factor Iq I '. The factor (d, here arises
from inelasticities. This exponential term is only
important when its argument exceeds unity. For
n = 0, or h), » n(()„ this implies q, /q, )2kT/(m*s ),
which in the high-temperature approximation is
much greater than unity. This allows us to replace
the phonon energy Sco, appearing in this exponential
term by ksq, . This approximation is also valid
when (d, «n(d, because here the (d, term in the ex-
ponential is not important and could be ignored
altogether.

Making this substitution and letting T=q', /4qT,
x=I q, /2, and q, =q, sin(4)), E(l. (2. 12) can be
written

c Q dX Xe-x coth(h~c/22 T)p 1 +(dc

pQ 671 kT 0

xI„xcsch

n%(), + (2ff&u,m*s'x}'+ 1

—=—b — dxxe "'"' / 'fhf xcsch—
PQ 3F 0

&m+s bx&~ y+-'lnl

+2ZZh — dxxe"' ' h+ fo xscch-nb)

n1 2 j 0 2j

coth(h/2)
"nO nO)

n=1 2 2]

b 2pygs2g
& csch — ln 1—

22 6 ~(dc
(2. 18)

where P„(z) is the associated Legendre function,
and the relationship

where b = k(d, /kT.
The first integral in E(i. (2. 18) represents the

contribution due to transitions within the same
Landau level while the second represents the cor-
responding interlevel component. The last integral
gives a small correction to this interlevel compo-
nent due to inelasticities.

Let us consider the first term. Using the inte-
gral representation

I'„" coth —= 1
dt t fz&-t coth(b/2)

2 I'(p, +)/+1)

xj„ t csch-b (2. 19)

The integral on & can be identified as a modified
Bessel function of the second kind. Using the inte-
gral representation"

dt lnt =—t"
dp,

this term can be expressed as

(2. 2O)

(2. 14)
p b ms

P(2)+in b+2y P, coth—
PQ intra SkT

we obtain

1 KoP~ c Q dX Xe-o coth(hrdc /22 T)

PQ 3% kT n ~ et) Q

K, /it lie, ~ (2t', "s'x)~)

(2. 15)
Noting that the high-temperature approximation re-
(luires that g(t)cm*s xz «8(kT), where x„ is that
maximum value of x that contributes significantly
to the integration, we can use the approximations

8P „[coth(b/2)]
Sp,

(2.21)

P„(z}= — d@[z+cos((b}(z' —1)'+]",
0

it is easily shown that

(2. 22)

()P „[coth(b/2)]
8p,

b 1+coth(b/2)

where g(z) = (()/() z) lnI'(z) and I'(z) is the I' function.
Using the integral representation'
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+ coth — —1, (2. 23)

1 a+1J'I"(z) =
F( ) 1

(n+ z),

this becomes

(2. 25)

p~ 2b2 E n+coth —e ~ Ko —. (2. 28)
b ~2 nb

po intra ~ nni 2 ' 2

Finally, consider the last integral. The modified
Bessel function I„(z) can be replaced by its asymp-
totic expansion for large argument when its argu-
ment is much greater than the square of its order. '
Inspection of the rest of the integrand reveals that,
for nb~ 1, the major contribution to the integral
arises when this condition is satisfied. Thus, we
have for this correction term

pr b' cosh'(b/2) g nb nb

po „3II'~ sinh(b/2) „., 2 ' 2

«z, (2In~sz/kT)y
n b tanh(b/4)

(2. 27)
The above expressions for transverse magneto-

resistance were evaluated numerically. The com-
puted resistivity is shown in Fig. 1 as a function
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FIG. 1. The transverse magnetoresistance as a func-
tion of magnetic field for different values of the quantity
(SOT/m*s ) . The variations in the classical and quan-
tum limiting cases are depicted by the dashed curves.

and with $(2) = 1-y, we obtain the desired result

p~ b2 & b=—
I

coth — —(y+1)
po intr a

8kT 2 b})
In*a 1 th(b/2) 2) I'

(2. 24)
Now consider the second integral in Eq. (2. 18),

the one due to interlevel transitions. With the aid
of Eq (2..19) and the relationship"

of b = R&u, /kT, with the quantity [8kT/(m~s')]'+ as
a parameter. The values chosen for this param-
eter range from the largest that would normally be
encountered in practice to the smallest admitted

by the high-temperature approximation.
In the classical region, the saturation magneto-

resistance is seen to be p~,~ = 1.13po, in agree-
ment with earlier treatments. ' This value was ob-
tained for all but the most inelastic case studied.
For this exceptional case [i.e. , (QkT/m~sz)'+ = 10)]
the saturation resistance was somewhat smaller.
This difference is presumably due to the breakdown
of the high-temperature approximation. As a re-
sult, we simply shifted the computed resistance to
give p»« = 1.13po.

From our expression for resistivity, it is readily
shown that for Ku, /kT~ z the derivation from satu-
ration is given by o

Pz' P~~« ~ 1 ~Wc kT

po 3m kT m*s (2. 28)

We have calculated the transverse magnetore-
sistance for nondegenerate semit:Onduetors through-
out the high-field region. This region includes the
classical and quantum limits, and also the transi-
tion region between these limiting cases.

Our results are in Bgreement with previous cal-
culations for the classical and cyamtum limits. We
found that the classical limiting behavior is rea-
lized for fields fIIIi, /kT ~, while the quantum limit
is obtained when fits, /kT~ 4.

The calculation was performed assuming that
scattering was due to acoustic-phonon scattering
via the deformation-potential mechanism and fur-
ther, that the dominant cutoff mechanism was the
finite energy of the phonons. Although our results

This deviation is seen to be small for all cases
studied when fired, /kT~ 4.

For still stronger fields, a transition to the
quantum-limit behavior is seen, this limit being
obtained for km, /kT~ 4.

In this development, we have assumed that the
maximum values of the wave vector for phonons
that interact with the electrons are of order q~
when @III,/kT & 1, and of order 1/L when Ko,/kT & l.
To demonstrate the validity af this, it suffices to
consider only the classical and quantum limiting
cases.

In the quantum limit owly the first term of Eq.
(2. 18) contributes to the resistivity. In the limit
le, /kT-~ most of the contribution to the integral
on x arises for x~ 1. This corresponds to q~ 1/L.

In the classical limit the second term of Eq.
(2. 18) provides the main contribution. Careful in-
vestigation of this term reveals that in the limit
ffIII,/kT-0 the major contribution arises for q~ qr.

III. CONCLUSMNS
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are limited to these restrictions, it seems rea-
sonable to expect that the points at which the classi-

cal and quantum limits are realized should apply to
other scattering and cutoff mechanisms.
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