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The factorization scheme for treating dielectric screening in solids, introduced in a previous paper, is

here used to calculate the dynamical matrix for the phonon frequencies and eigenvectors. By
considering the limit as q 0 we derive explicit microscopic expressions for the effective-charge tensor,
the optic modes, the low-frequency dielectric constant c(co), the acoustic sum rules, and the elastic and

piezoelectric constants. The Lyddane-Sachs-Teller relation is obeyed, and the deviation of the Szigeti

charge from the ionic charge is discussed. We discuss the relationship to other models for the dynamics

of insulators and semiconductors, and finally present results of explicit calculations for the phonon

spectra of silicon and germanium.

I. INTRODUCTION

In the preceding paper' (hereafter called I) we

presented a factorization scheme for the dielectric
screening of a solid which enables one to calculate
explicitly the electron response to an external per-
turbation. In this paper we consider the self-con-
sistent response to a motion of the ions in a nor-
mal mode of the lattice. We calculate the expres-
sion for the dynamical matrix which yields the pho-
non frequencies and eigenvectors, and also obtain
explicit microscopic expressions for the effective-
charge tensor, the low-frequency dielectric con-
stant e(&v), and the acoustic sum rules. We go on
to compare our formalism with the model recently
proposed by Martin (Sec. III) and with the shell
model (Sec. IV). In Sec. V we consider the long-
wavelength limit of the dynamical matrix and its
relation to the elastic and piezoelectric properties
of an insulating crystal. Finally in Sec. VI we
present the results of calculations for the phonon-
dispersion curves of silicon and germanium.

II. LATTICE DYNAMICS AND EFFECTIVE CHARGES

The dynamical matrix of the crystal is given
by ' (~„M„)'~ D""(I(q), where

c'.l'(q) =(c:;(q) ~ S:;(q)

—s„. ((mZ[c:", (ij)+s"' (i)]), (()
q-0 ff"

where M„ is the mass of the ion at r„, C""s(q) is the
usual Coulomb coupling coefficient between ions of
charge (Z„e), (Z„e) on the sublattices x, x', and
E",(I(q) is the contribution of the valence electrons.
We now restrict ourselves, for simplicity, to the
case where these electrons may be treated in terms
of a local pseudopotential. We thus rule out here

any rigorous treatment of the noble or transition
metals and restrict ourselves in particular to the
case of semiconductors. If we ascribe to each ion
at r„a pseudopotential form factor W„((s)), the ex-
pression for E""q(q) is '

E","()(q)= 5~ (q+ G) (q+ G')() W„(q+ G)

&& W„~(q+ G')y(q+ G, q+ G')e' ' 's "s' ', (2)

where X(Q, Q') is the electron density response
function defined by Eq. (4) of I. Using Eq. (19) of
I in Eq. (2), we obtain

E""'(q) = E""s'(q) —(WSW~)",~(q), (3)

where

„.,(~ p (q+G).(q+ G), 1

v(q+ G) e,(q+ G)

&& W„(q+G) W„,(q+G)e' '"«'

and the matrix % is defined by

(4)

W,"', (q) =Z(q+G)„(q+G),' e, q+G

Xf s (q+G)e&5'rss (6)

W is a. 3r&&3r matrix (r is the number of atoms in
the cell; r is the number of chosen sites r, in the
cell) and is the coupling coefficient between the ion
cores on sublattice v with dipole distributions on
sublattice s via a screened interaction W„(Q)/eo(Q).
It is not in general a Hermitian matrix. The Her-
mitian matrix S is the inverse of the (3r &3r ) ma-
trix [V+a ~], as defined in I. It may be readily
verified that the equations of motion resulting from
Eqs. (1) and (3) are those which result from the
set of equations

M„(() e„=5~(C~s+E s" )e„.s+5~W~()'s(), .(), (6a)
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0 =+ (W )»Be»'0+5~ (V+ a ~sB B0»~B I
Bt'8 S'~

(6b)

where E "z" means we have incorporated the last
(constant) term in Eq. (1) into E"B(q).

The above equations show a distinct resemblance
to those of the dipolar models of lattice dynamics,
but are far more general in the sense that (a) a

diagonal" electronic part is incorporated explic-
itly into the ion-ion coupling coefficient, (b) the

ion-dipole" and dipole-dipole" interactions are
screened by the function c0(Q), and (c) the dipoles
are neither point dipoles nor need they be situated
on the ion sites themselves. For homopolar semi-
conductors, we may confine ourselves to two cases:
(i) situating the sites r, on the ion sites in which
case we obtain the generalized shell model (GSM),
or (ii) situating the sites r, at the centers of the
covalent bonds, in which case we obtain the bond-
charge model (BCM). If the function c0(Q) is an

isotropic function of Q (a condition well satisfied
in practice), then it may be seen that (C"0 +E "I )
contributes only axially-symmetric-type force con-
stants between the ions. The term —{WSW')B in
the dynamical matrix, however, contributes a
more complicated kind of effective force constant
which contains bond-bending forces also. This is
physically obvious if we realize that this contribu-
tion couples two ions together via the polarization
produced on a third ion (GSM} or on a bond-charge
site (BCM}. Mathematically, the result follows
from the fact that (WSW )""B contains a purely imag-
inary antisymmetric component in the coupling be-
tween ions on the same sublattice, which cannot be
obtained from a bond-stretching-type interaction
alone and therefore involves bond-bending forces
also.

Let us now examine the analytic behavior of
E""B(q) as defined in Eq. (3) in the limit as q-0.
In Appendix A it is shown that

2 2

Ijm E (q) E (0)»» (W $)S N)Wt0&t)»»'+ Iim g (Z» )
q'»qB (Z» )t Z Z quqB

Q q~Q l'6

where E'q'"" is the limit as q-0 of

~'(q+ G) (q+G)B 1

6 v(q+ G) ~0(q+ &)

x W„(q+ G) W„.(q+ G)e' '« (6)

+lim "
Z„Z„, ~ q'. (i0)

Adding Eqs. (7) and (10) we see that the only ir-
regular part of the dynamical matrix as q- 0 is
the third term on the right-hand side of Eq. (7),

and W'B'"' is the limit as q-0 of Eq. (5) with the
term G= 0 excluded, as defined in Eq. (A4) of Ap-
pendix A. Similarly S' is the limit as q-0 of the
inverse of [ V+ a ], where the term G= 0 is ex-
cluded in V, as defined in Eq. (24) of I. The ef-
fective-charge tensor for the ion ~ is defined by

Z~B-—Z„5 B+Q(W' 'S' )»»B .
8

In Sec. IV we shall show that by rewriting Eq.
(6) after explicitly separating out the macroscopic
field, and eliminating the gg, z from the resulting
equations, the tensor Z"

z emerges naturally as a
measure of the dipole moment generated per unit
displacement of the ion a, in the absence of the
macroscopic field. It is thus the Born" or trans-
verse effective-charge tensor.

For tetrahedral and cubic crystals,

4' 2

lim C"~~(q)= —
& Z„Z„.5~&

Q

I

which completes the identification of Z"
z with the

effective-charge tensor. The existence of well-
defined acoustic modes is assured if and only if
the sum of the effective charges vanishes, i.e. , if

gz".,=0 .

This is the well-known acoustic sum ale which
has been discussed previously by several au-
thors. This sum rule is usually derived from
the requirement that the macroscopic electric field
resulting from a uniform displacement of the crys-
tal must vanish. This condition may be written

IimZq (q+G)BW„(q+G)e (q, q+G)e ' "»=0 .
q-Q ft&

(i2)
In Appendix B, it is shown that this is equivalent
to condition (11).

For cubic and tetrahedral crystals, symmetry
requires that g, (W' 'S' )" 0 be a multiple of the unit
tensor in (a, P) space, and the effective charges
become scalars. Burstein has discussed in de-
tail the use of effective charges in treating the di-
electric and optical properties of insulators. A
conventional definition is

Z" = (Z„)+[-,'(~„+2)]

for ionic crystals, where (Z„)~ is the Szigeti
charge which is supposed to account for mechan-
ical-overlap distortion effects. For zinc-blende-
type covalently bonded semiconductors, it has been
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customary' to write Z" phenomenologically as the
sum of a localized and a nonlocalized effective
charge,

Z" = (Z„), + (Z„)„" . (14)

Let us go back to the case of cubic ionic crystals
where we may take the sites r, to be the ion sites
r„, choose K0(Q) =1, and assume that the form fac-
tors f"(Q) are spherically symmetric and corre-
spond to highly localized distributions on the ion
sites so that they do not overlap in real space.
This is really equivalent to the point-dipole model.
Let us further assume that we have a local pseudo-
potential W„(r) which is constant or zero near the
ion but goes as -(Z„e /r) at distances correspond-
ing to the neighboring ions.

In such a case,

W02"" ——(4&re /30)Z„5 0 for all K' (15)

and S'2'"" is given by Eq. (35) of I.
It may be verified that in this case

Z"=Z„[2(e +2)] (16)

with e given by Eqs. (39) and (40) of I. Thus we
have the apparently paradoxical result that the
Szigeti charge (Z„), which appears in Eq. (13)
comes out to be the charge ZK of the ion co~e, in-
stead of the total ionic charge ZK. This is due to
the fact that in the (tightly bound) ionic-crystal
limit a weak local pseudopotential of the assumed
form does not correctly represent the perturbation
of the valence-electron distribution due to a lattice
displacement. In Ref. 7 a reformulation of the
electron-ion interaction for this case was developed
and it was shown that the above treatment is valid
also for tightly bound electrons Provided that in
Eq. (15) we replace W'00"" by

[(4»e2/3&)Z„'+ (J a ')"'""]5 2, (17)

where Z„ is the tota/ ionic charge on the Kth ion

and J is an overlap" matrix which depends on the
overlap of the atomic wave functions on the ions.
It may then be shown that Eq. (16) is modified to

ZK= Z„+ J' ""
3 &~+2

K

(18)

gf(0)KK g Qf(0)KK
ag ag

where

(19a.)

W(0)KK Q Q2 k f()(Q)e(5 I'gg

3 6 ~0(G)

Let us define

Kii = y(0)11 + (
(0)-1)11

(19b)

Ir(0)11 + ( (0)22/g)

etc , wher.e V' '"" and 6 are defined in Eqs. (42)
and (44) of I. Then using Eq. (9) we get

Thus the overlap terms cause the Szigeti charge to
deviate from the total ionic charge. In addition, if
the dipole distributions themselves overlap, Eq.
(35) of I is no longer valid, and the 2 (e + 2) factor
in Eq. (18) will also be modified, causing a further
deviation of the Szigeti charge —expressed as
[3/(e„+ 2)]Z"—from Z'„.

For covalently bonded crystals, e0(Q) deviates
from unity, and the form factors will certainly
not be well localized on the ion sites so that Eqs.
(33) of I and (15) for Vm(&"" and W~(&'"" will no longer
be valid. On the other hand, (W' '8' )"'2 does not
split naturally into a localized and a delocalized
part as assumed in Eq. (14). Instead, the effective
charge should be calculated directly from Eq. (9).

We may derive explicit expressions for the ef-
fective charge for the case of crystals of the NaCl
or zinc-blende structure if we again situate the
sites r, at the ion sites rK. Then, in addition to
the a'q "" and V'q'"" being diagonal with respect to

- (1) W (K11 —K12) + W (K22 —K12)
(0)12 (0)11

Z —Zi + 2
K11K22 —

I K12 I

(20a)

(2& W (K22 —K12) + W (K11 —K12)
(0)21 (0)22

Z =Z2+ (20b)

and the sum rule becomes
(W(0)12+ W(0)22)( )+ (W(0)21 W(0&11)( e )Z +Z +

+ K11 K12 + + K22 = K12 01+ 2+
Kli K22 I K12 I

2 (21)

which may be regarded as imposing a restriction
on (2, a, a . For homopolar crystals (atom 1
the same as atom 2 in the unit cell), Eq. (21)
yieMs

(0&11++(0)12 [(W(0)11+W(0)12/Z+ Ir(0)11

i Ir(0)12]-1 (22)
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In the approximation where the interference" term
a» is neglected, the sum rule thus serves to de-
termine a as was done for the calculations de-
scribed in Sec. VI.

For crystals such as Si and Ge, symmetry re-
quires the effective charges on all the ions to be
equal, so that they must all vanish by the effective—
charge sum rule. Some homopolar crystals such
as Se and Te, on the other hand, do not posses the
symmetry requirement that Z"

()
= Z" ()(zs) «'), in

which case the effective charge can be nonzero and
the crystals may exhibit infrared activity.

In addition to the acoustic sum rule, there is
another set of related sum rules (first stated ex-
plicitly by Keating ) which state that in the limit
q=0, corresponding to rigid translation of the
whole crystal, the electron-density response to the
lattice perturbation for all wave vectors must cor-
respond to the rigid translation of the total valence-
electron density.

This may be written as

lim Q X(q+ G, q+ G ) (q+ G') W„(q+ G')e ' "
PW

= —Qp(q+G)Gp„(q+G)e ' 's (Gs(0)
2

where the total valence-electron density is re-
garded as made up of a superposition of densities
p„{r)centered on the sites r„. This division is
somewhat arbitrary, but the right-hand side of Eq.
(23) is unique, even if the p„(Q) are not. Using

Eq. (5) of I for &t(Q, Q'), and the results of Eqs.
(45)-(47) of I, we obtain the result that, within the
framework of our model, the left-hand side of (23)
splits into a singular part as q-0 and a regular
part.

The singular part is

Q G()f'(G)e "sS(')ss q„Z Z„5(«,Q~. eo(G) (),()
SSP

~P {S(0&W(0&t)s
Q'

where we have used the fact that

W„(q)- —(4ve /flq )Z„as q-0 .
If the acoustic sum rule [Eqs. (9) and (11)] is
satisfied, this part vanishes identically.

The regular part yields, on equating both sides
of Eq. (23),

1 — -) QW„(G)e ' '"G +
{ )ZG()(S W )(')" f'(G)e ' "=—AZp„(G)e ' '"G (Gs'-0) . (24)

o(G) Ep(G) eo(G) ..« ' ——
For the case where the r, are chosen as the ion sites r„and the matrix (S W )()" becomes diagonal with
respect to (a, 8), an allowed solution to Eq. {24) (although not necessarily the only solution) is

f"(G):(pp(G r (s w ) —Gp (G) — 1 — — W (G)
k

(25)

which would determine the form factors introduced
in the factorization ansatz [Eq. (16) of I] at the re-
ciprocal-lattice points. Note that the condition
that f„(Q)- 1 as Q-0 now fixes uniquely the frac-
tion of the true valence charge to be associated
with the ion of type «. By Eq. (25) this is given by

Gp„(0)=s. (1 ————r (s' w" 2' . (22«)
fp &p

This is consistent with the requirement of charge
neutrality and the effective-charge sum rule [Eq.
(ll)]. It is interesting to note that Phillips has
obtained an equation for the valence-charge density
in a semiconductor very similar to Eq. (25a) based
on intuitive physical arguments. The second term
on the right-hand side of Eq. (25a) is to be identi-
fied in this case with the bond charges, "which is
correct if the sites s in our model are chosen as
the bond-charge sites. They can also, however,
correspond to localized distributions on the ionic

I

sites. The first term on the right-hand side of
Eq. (25a) represents that part of the valence-
charge density associated with the 'diagonal" part
of the screening. As stated previously, there is
no analog of this in the conventional shell model,
which corresponds to the choice «0(Q) = l. In such
a case, Eq. (25a) may be taken as defining the
shell charge on the site K, which as expected turns
out to be the total valence-electron charge associ-
ated with the site a. In Sec. IV we shall show by
comparing our equations with those of the shell
model that the shell charge must be identified with
the quantity

(S (0)W (0)(')ssP

K

By Eq. (9) it follows that the effective-charge sum
rule is then identically satisfied if the sum of the
core and shell charges in a unit cell is zero. Note
also that in the case «0(Q) =1, Eq. (25) implies



MICROSCOPIC THEORY OF DIELECTRIC. . . . II. 25'7V

that the form factors f"(G) are proportional to
those of the valence-electron distribution around
each ion. This is physically obvious in the sense
that if the crystal as a whole is rigidly displaced,
the linear electron response must correspond to
dipole distributions with a form factor given by the
valence-electron-density form factor. For Q & G
there is no such restriction. It is currently not
clear how seriously to take the restriction on the
form factors provided by Eqs. (24), in the sense
that they may be inconsistent with the form factors
f"(Q) used to fit the actual dielectric function
e(Q, Q') within the framework of our factorization
scheme. We note that even if the sum rules given
by Eq. (24) are not exactly satisfied, but Eq. (11)
is satisfied, no catastrophe results in the sense
that well-defined acoustic modes still exist. On
the other hand, one may regard Eqs. (24) and (25)
as providing an important clue as to the nature of
the required form factors f"(Q). Thus calculations
of the valence-electron densities in the covalently
bonded semiconductors' show areas of piled-up

density at the "bond-charge" sites. This implies
that the sum of the real-space distributions cor-
responding to the form factors f'(Q)/eo(Q) must
simulate such piling up of density, which may be
done either by situating the distributions on the
bond-charge sites (bond-charge model) or by let-
ting the distributions on the ion sites overlap ap-
preciably. In the calculations on silicon and ger-
manium described below, the best fit to the lattice-
dynamical data did indeed correspond to such over-
lapping form factors. It should be emphasized,
ho~ever, that a superposition of spherically sym-
metric overlapping charge distributions on the ions
lacks the essential tetrahedral distortion required
to give, for instance, scattering from the "forbid-
den" (222) reflection in the diamond type struc-
tures. Thus the form factors used in the calcula-
tions described below must be regarded as an ap-
proximation.

For crystals of the NaCl or zinc-blende struc-
ture, we obtain from Eqs. (1), (V), and (10), as-
suming the acoustic sum rule Eq. (11) is satisfied,

2 2

»mD:",'=»m "' Z"Z"'~ oq'+6. , Z"&~&&'-(97&o&S&o&%&o»)""'- "ZZ. -5 ~lm y
— lm

/Ã 3Q k k KK
00

where

2XZ(X"'"" -(W"'s"'w'o&')"" " z z.
3Q K K

k

r G2""= ——Z ~ 1 — ~ W„(G)W„e(G)e& '&&'
2 6 o G} eo(C)

(26)

&d Tp ——(1/M )B

~'„= (1/M)[B+ (4«'/ae„)Z'],

(29a)

(29b)

where M is the reduced mass of the two ions in the
unit cell and Z is the magnitude of the effective
charge on each ion.

We remark here that in the case of metals in
which the contribution of the conduction electrons
to e(Q, Q') is supposed to be purely diagonal and
enters as a free-electron-like contribution to
eo(Q), as discussed in I, e becomes infinite. The
acoustic sum rule (11) is now unnecessary to en-
sure the existence of acoustic modes owing to the
presence of 1/e in the singular part of the dynam-
ical matrix. It is interesting to note, however,
that an effective ionic charge can still be defined

Let us define a constant
2

Z Z E&o&&o (W&o&S&o&W&o&t)lo (26)30

Then Eq. (26) yields for the longitudinal- and
transverse-optical frequencies at q = 0,

I

via Eq. (9) and will be different from the ion-core
charge due to the second term in Eq. (9) if appre-
ciable interband transitions not included in co(Q)
contribute to e(Q, Q'). Since e becomes infinite,
E&le, (29) show that the o&&,p and &L&Tp modes at the
zone center become degenerate —a we11-known re-
sult which is physically caused by the screening
of the macroscopic field by the conduction elec-
trons. For metals with a small number of con-
duction electrons, or semiconductors with a small
number of carriers in the conduction band, eo(
will rapidly increase to infinity only for I Ql & kr»
the Fermi-Thomas wave vector of the "free" elec-
trons. Thus the co«and ~T& modes will be forced
to be degenerate rapidly for q & kp» a, phenomenon
observed experimentally in PbTe, ' Mg2Pb and
the transition-metal carbides. This point has
also been discussed by Weber et al. '

By imagining a time-dependent applied field
D(q)e' " " acting on the system, and suitably
modifying the lattice equations of motion (6a) and
the electron-density response equation (6b), it
may be shown that in the limit of q- 0, the fre-
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quency-dependent dielectric tensor including the
lattice contribution is given for the general case by

e~s((d) = e~s(~) +
4ne

~ Z"„.s'„„(g)s. i(g)Z,"s

(o(j P —(o' (30)

where the sum over the dispersion frequencies &o( j)
includes contribution from the optic modes only.
The high-frequency limit of the dielectric tensor is

which has been given in Eq. (30a) of I. For crys-
tals of rocksalt or zinc-blende structure, Eq. (30)
simplifies to

4' Z' '='-'
oM (

~ ).
COTp —(d

(32)

From Eqs. (29) and (32), the Lyddane-Sachs-Tel-
ler relation' follows:

~Lo/psTo = e(0)
(33)

In this section we discuss the relationship of our
model to the lattice-dynamical bond-charge model
of Martin. ' As stated previously, a choice of the
sites r, in our factorization ansatz [Eq. (16) of I]
as the bond-charge sites yields a lattice-dynamical
model via Eq. (6) which is a very general bond-
charge model, in the sense that the w, /ep which
are obtained from Eq. (6) represent the dipole-
polarization vectors which may pictorially be as-
sociated with the displacement of a "bond-charge"
at site r, in the unit cell. Equation (6) then allows
a very general set of displacements for the bond
charges in each unit cell. Here we have to regard
each bond charge as being a "basis atom" in the
crystallographic unit cell so that in a lattice of the
diamond structure there are four bond charges as-
sociated with each unit cell, which we may take
as the four sites f—,'a(1, 1, 1), —,'a(1, —1, —1), —,'a(- 1,
1, —1), —,'a(- 1, —1, I )). Thus the calculation of
the bond-charge displacements in terms of the
ionic displacements from Eq. (6b) requires the in-

which can easily be generalized to more general
structures.

The formal justification of Eqs. (32) and (33)
from a quantum-mechanical theory has been given
previously by several authors. ' %e have derived
them here on the basis of our factorization ansatz
which, however, as discussed in I, can be made
as general as we wish. Furthermore, our model
yields explicit results for e, 2 (t)Tp and +Lp in
terms of microscopic quantities.

III. RELATION TO MARTIN MODEL

version of a 12&&12 matrix. Martin's model, on
the other hand, assumes that the four bond charges
in the unit cell may be regarded as carrying a
charge of magnitude —Zl el/2tp (Z is the valence
of the ion), and that each bond charge moves in
such a way that it remains at the midpoint of the
bond joining the two ions it is associated with. If
we assume for the moment that the bond charges
are really point charges, then we may take the
form factors in our ansatz, Eq. (16) of I, to be
ep(Q)/ep. Martin's constraint on the distribution
of dipoles in the unit cell due to the lattice motion
may then be written as

s«'ss = (-,'Z)-,'(eq, + es e«'r, z"') (34)

where r, z(s) is the position of the other atom of
basis type 2 associated with the bond charge at r,
and may be in another unit cell. [We have assumed
that the four bond charges are each associated with
bonds between the atom at the origin (basis type
1) and its four nearest neighbors. ]

The phase convention for the polarization vectors
e„, and w„ in Eq. (34) has been chosen to be con-
sistent with the form for the dynamical matrix
given in Eq. (2).

Since r, s(s) = 2r„Eq. (34) may be rewritten as

-$q r~ &g rsw~ = 4Zieq~e + eq~e (36)

which by Eqs. (6) is equivalent to the postulate that

[SW ] s(q) = —5 s
—'Ze ' '"", (36)

where

(WSW')".",'(q) = ,'Z5~ W(—q)—-"s (37)

Again from (36) we have

W"'s(q) = ——,'ZS e"'s"~

x [F~s"(q)+ (a '):s' (q)], (36}

which we may rewrite as

W"'s(q) =2W";s(q)+-,'ZS~e" '~""

x [V's' (q)+ (a }s' (q)] ~ (39)

Substituting in Eq. (37), we get

r,„=r, if a=1

=-r, iffy=2.
It should be noted that the assumption (36) causes
the acoustic sum rule (11)to be satisfied identical-
ly, a fact which is also intuitively obvious from the
nature of the mode1. .

From Eq. (36), we obtain
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(8@I'~)""'(q)=--Zpgl" ( ) +s'~s&'-$Z Q y's s'(q) ~s' s s zs's' —$Z Q (a )s (q)
~s' s"z s's'

S SS2«} SSt «

Hence, the dynamical matrix obtained from Eqs. (6) becomes

(40)

Dss (q) Qss (q)+Ess (q)+ ZPWss (q)e ls zs's +XZ2 Q izs s (q}ebs zs s zss ')
S

&Z2 Q ( -1)s s'( ) jS'&zs~s-z ~s~&

SS
(41)

The first term on the right-hand side represents
the ion-ion Coulomb coupling coefficient, the sec-
ond terxn the "diagonal" contribution of the va-
lence electrons [Eq. (4)], the third term is the cou-
pling coefficient between ions and bond charges,
and the fourth term is the coupling coefficient be-
tween bond charges. If in the last term we arbi-
trarily set the (a ')s 2' (g) to be diagonal in s', s"
and independent of g then these may be obtained
from q = 0 limit of the regular part of Eq. (38),
namely,

For K= K the last term of Eq. (41) then gives a
constant (q-independent) term which may be ab-
sorbed into the constant term in E~K,. whereas for
K= 1 K = 2z the last term of Eq. (41) gives

t z +z(( (Qz(((( z (II((e S ~~ +&
S S

(43)

This term may be identified with the terxn Martin
obtains from considering classically the motion of
one bond-charge against" the rest of the lattice.
Equation (41) represents a model which very close-
ly resembles Martin's model. Ho~ever, his exact
model is not obtained unless one further (a) sets
K2=e, i.e. , sets the Q=O limit of es(Q) to be
equal to e; (b) assumes that the effective electron-
electron interaction e(Q) and the electron-ion
pseudopotential W„(Q) [which enter into the ex-
pressions for V;~s(q) and W";2(q), respectively] are
pure Coulomb-like at distances equal to or greater
than that between an ion and its neighboring bond
charge, and zero or constant at distances less than
this (so that self-interaction terms are removed);
(c) assumes that e2(Q) is equal to K for all Q in the
expressions for W"ss(q) and V"z(q); and (d) assumes
that in the expression for E","2(q), es(Q) may be
taken equal to e(Q, Q), the total diagonal part of the
dielectric function. Further, in his calculation,
Martin uses Srinivasan's calculated e(Q, g) which
was constrained to be equal to e at Q=O. From
our discussion of local-field corrections [Eqs. (31)
and (32} of 1] we see that there are a number of
inconsistencies in this procedure. Approximations
(a), (c), and (d) above are strictly speaking incon-
sistent within the framework of our general factor-

In this section the equations of motion given by
Eq. (6}are related to those of the conventional
shell model. ' We situate the dipoles on gen-
eral sites r, . As q-o, the xnatrices C~ E', S
and W have the limiting form

2

Q K K (44)

4 2E' 2-E "2-lim 1 ——Z„Z„. '22, (45)

ization scheme, and further, given Eq. (42) it is
almost certainly impossible to satisfy Eq. (38) for
all q. Thus, it may be concluded that while the
microscopic formalism developed in this paper can
lead [under the further basic assumption repre-
sented by Eqs. (36) or (38)] to a model formally
very similar to Martin's model, it is not consis-
tent with the exact form of his model. It is pos-
sible of course that a different kind of factoriza-
tion scheme for &(Q, Q') could lead exactly to
Martin's model.

It should be pointed out that although the assurnp-
tion Eq. (36}does appear to be somewhat restric-
tive in forcing the bond charges to move always
with the center of mass of their two adjoining ions,
it may be a useful starting point in guessing at the
nature of the a"2(q} that appear as arbitrary func-
tions in the general factorization scheme appro-
priate to a bond-charge model. The symmetry of
the bond-charge lattice is low enough so that even
at q = 0, the a"2(0) do not have to be dia, gonal and
this in general leads to a large number of unde-
termined paraxneters which enter into the micro-
scopic theory. Martin's formalism provides, via
Eq. (42), a means of determining all these param-
eters. There is nothing in our factorization
scheme to disallow us from then choosing these as
constants independent of q since, as stated, the
acoustic sum rule is then automatically satisfied,
although strictly speaking this would not yield
Martin's assumed form of the bond-charge motion
for all q since Eq. (35) would not necessarily be
satisfied for all q. Calculations based on this kind
of model are discussed in Sec. VI.

IV. RELATION TO SHELL MODEL
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(S ')';,'= (V+ a ')k's - (S ')",'

Qzo q

2Z
W.. l. 4~~ ~ e~s

0 04& 40

(48)

(47)

The barred symbols refer to the regular parts of
their unbarred equivalents at q= 0. [S~ W and E
have already been defined in Eqs. (24) of l, (A4),
and (8), respectively]. Equation (44) is a well-
known result ' while the other three equations are
evident from the structures of Eqs. (4), (18) of I
and (5), respectively. The equations of motion,
Eq. {8), can be rewritten in terms of these regular
matrices and the macroscopic electric field 8:

M„(d e„,=Z(C""s+E,'s )e„s

+Q wk«s w, as —Z„
I
e

I
(I&k,

~s g
(48a)

0=K% )'se„»+Z(S ')«sw, »+ Ie I8 (48b)

where e is the charge on the electron and

z. =- '' E z'z(Zz. . e„., E~ ,)-. (4z.&

The macroscopic field 8 is related to the polar-
ization (p by the usual relation

S.=-4vE~ e's, ,
s 0'

(soa)

where 6 can be written as the sum of a part due to
the localized dipoles and a part due to the "diago-
nal" part of the dielectric matrix which arises
directly from the macroscopic field:

lel 5 z„. e„,s -Zw„
I

+ —(cs - i)S, .
(SOb)

Solving for the w, » from Eq. (48b) and substituting
in Eqs. (48a) and (50) leads again to the identifica-
tion of the effective-charge tensor as defined in
Eq. (8).

Since the presence of the "purely diagonal" part
es(Q) of the dielectric matrix intrinsically distin-
guishes our formalism from that of the shell mod-
el, for purposes of comparison with the shell mod-
el we take es(Q) —= 1 and place the dipoles on the ion
sites r„. We shall return to the more general case
in Sec. V. In the conventional shell model, '
the dipole —

t el ao„~ developed during the motion is
described by the motion of a "shell" of charge Y„.
with an amplitude v~. The latter is written as the
sum of the ' core" amplitude g„~ and the amplitude
p„~ of the relative shell-core motion. Thus the
shell-model equations are obtained by substituting
in Eq. (48),

—Ie Iw„»= Y„(e„»+p„»),

z„,IeI =z'„,—Y„. ,

where Z„.is the total "ionic" charge associated
with the site z'. The resulting equations are

(sl)

(s2)

k~ ek ~ { S ek'S+ SPkS) k~ (53a)

0 =Z [(B )ks e„» + Gk«s pk»] —YkSk, {53b)

where

A s=C s+E s —W s {Y'/
—(Y„/I e

I
)(W')"o"s

+ &Y./'I e I)(S-')."s

a„'s'= —W."s'(Y„,/ I
e

I
)

+ &Y./I e
I
)(S-')".",

'

G."";=&Y./I. I
C~'):",'(Y„./I. I),

and ((zk is given by Eq. (50a) with

g S„.g„.g+ 7„'sP„gE

K

(S4a)

(s4b)

(54c)

(55)

Aks(tq) =A s + je 5 Akus t qt
y

2 Y A &2)KK'+ 2~ ~~~el p'a QrCx+
7)i.

(se)

where the wave vector is now written as (cq).
They were first discussed by Born and Huang s

and subsequently by Cowley in connection with
the shell model. In this section we refer only to
the conditions on the zero-order matrices, which
specify that the equations of motion and dipole mo-
ments remain invariant under uniform translations:

P (A BG 1Bt)(0&kk' P (A BG 1Bt)(0&kk' P

(sv)

Pg(0&kk' P (se)

By substituting Eq. {54b) in (58) it can be seen
that the latter is satisfied if

p ( w's&kk' " (s- )
(&'kk'

I 0P +
l l

QB

i.e. , if

Eqs. (53) and (55) are the conventional shell-mod-
el equations of motion as given, for example, in
Eqs. (2. 3) and {2.4) of Ref. 20.

A number of invariance conditions must be satis-
fied by these matrices. These relate various
terms in the small q expansion of the matrices
which are given, e.g. , by
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y„.5., = ~,
~

g(WS)(o&-' . (59) conditions, " which must be satisfied in order for
the elastic constants to have the correct symmetry:

V. ELASTIC AND PIEZOELECTRIC PROPERTIES

It is convenient to return to the equations of mo-
tion in our original notation as given in Eq. (48),
and to define the regular part of the full dynamical
matrix

D=C+E' -WSW' . (60)

The invariance relation (5'f) can then be expressed
as

K

(61)

This is satisfied because E' was defined in Eq. (6)
to incorporate the constant term

Equation (59) defines the 'charges on the shells"
in terms of our formulation. Note that in the con-
ventional shell model, Y„ is a redundant parameter.
Further, a constant term is introduced in B so as
to automatically satisfy Eq. (58). This, together
with the total charge neutrality of the unit cell,
automatically ensures the satisfaction of the effec-
tive-charge sum rule, which states that no macro-
scopic field can arise as a result of uniform trans-
lation of the crystal. In the microscopic derivation
of the shell model as presented above, however, we

define Y'„by the microscopic expression in Eq.
(59). Equation (58) is then automatically satisfied.
The effective-charge sum rule [Eqs. (9) and (11}]
is then equivalent to the condition that the sum of
the core and shell charges in a unit cell vanish.
[The Keating sum rule, Eq. (25a), if satisfied,
automatically ensures this since the shell charge
then becomes equal to the total valence-electron
charge associated with the ion, and the Fourier
transform of the latter becomes the shell form
factor. "]

&(k) Kk &2) KK+~DaB,ra +~D-K1,K(& ~

Kk Kk

(64)

The conditions given in Eqs. (62)-(64) do not ap-
pear to be satisfied in general for this formulation.
They are, however, satisfied identically for lat-
tices of tetrahedral and cubic symmetry, as shown
below. Note that if all interactions in the formula-
tion are rotationally invariant, the end result must
of course be rotationally invariant. Thus, analo-
gous to Eq. (24) and the effective-charge sum rule,
there will presumably exist conditions which en-
sure that, for an infinitesimal rotation of the crys-
tal, the electron-density response will also cor-
respond to an infinitesimal rotation of the valence-
charge density. Such conditions will automatically
ensure that conditions such as those required by
Eq. (62) are satisfied.

We may now proceed with a perturbation expan-
sion for the acoustic modes in terms of (cq) along
the lines of Born and Huang and Cowley. ~ The
&natrices C, E~ W~ and S are e~anded according
to Eq. (56). The vectors e, w, 8, and (p are ex-
panded in a similar way. For the acoustic modes
the expansion for the frequency starts with the
first-order term

&1)
&d= C&d + ~ o ~ (65)

The zero-order equations of motion obtained from
the expansion of Eq. (48) are

(67)

(«)
k'8 B

where 2"
B is the effective-charge tensor defined in

Eq. (9). By virtue of the relation Eq. (61) and the
acoustic sum rule, Eq. (11), Eq. (66) has the solu-
tion

8=0
—5„„1imS~D",t& .

q-0

The condition represented by Eq. (58) in the shell
model is no longer required. However, there are
two conditions on the first-order dynamical ma-
trix. The first is a condition of invariance against
infinitesimal rotations:

while

=u, a constant

KB

The first-order equations of motion are

(68)

(69)

QD(1&Kk PD(1&Kk'
aB,t +w, B

K k
(62)

—
&O)kk~ &S) m —&S)kk' &O)

e„g = —m& B"„"eyeB
K 8Y

while the second is one of translational invariance
for a homogeneously deformed lattice:

+pz:, l. ~h(" . (Vo)

Kk

(63)

There are also (in general, 15) conditions involv-
ing the second-order terms, the ' Born-Huang

The solubility condition for this equation, that the
inhomogeneous part be orthogonal to the solution of
the homogeneous part, is satisfied by virtue of Eq.
(63) and the acoustic sum rule. The solution can
be written
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(71)

where, although the matrix D is singular, an effective inverse can be defined in the sense of Eq. (26. 27)
of Ref. 22 or Appendix 1 of Ref. 20. The second-order equations of motion are

(0&KK' (2) 2 ~ (1& (0&-i (1& & (2& K' (0)
s'-)D(ss ""esp —— M(e(d —i~ (D), D D~ + sD~z )sslrA exes

+~ ~(~D"'D"'-')"."„'Z"„'-5 (WS)."s'": &.Ie I
~s"'+~2'"sic

I
~s" (72)

where D~ and ~D„refer to (3r&& 3r) matrices whose (ctp, KK ) components are D,"s'"„" and D""s», respective-
ly. The solubility condition for this equation gives

ZM„' ."' 2 (D,"'D"' 'D~"'+ l~D',")";qq, „e-5' Z(DD~"'D"' ')",Se-5 t(VS)e';;)q,
)

)S,"'
K KK K k S

B7X B7'

since the term in SB drops out because of the
acoustic sum rule.

Let us define

c. ,s&=[c(P,r~]+[Pv, o&] —[@,~r]+(or, A.),
(74a)
(74b)

where the brackets are defined by the expressions

f

senting the displacement of the effective changes
with the internal strains and the second the elec-
tronic-deformation contribution through the dipole
distributions.

Equation (73) now takes the form

2 (0) Y r (0)—~~„ ek = ~ PC „B)tq&q)t~eKB
Kl'XB

[oP, r~] = Z„+D."s',",", ,
KK

(75a)
-&[es ..(f.]~su' (76)

KK

(75b)

On the other hand, the solution of the first-order
equation for the polarization is, by Eq. (50b),

[P o ]
e P (@(1)D(o)-1)ss'

KK

xZee-ZtWS)' '„') . (qqe)
KS

Note that the last two expressions represent inter-
nal-strain contributions and are absent in the case
of centrosymmetric crystals. The c „B„will
shortly be identified with the elastic constants, and
the eB „with the piezoelectric constants. The
latter are made up of two terms, the first repre-

K S

(77)

which by Eq. (71) and the corresponding first-or-
der solution for w,B may be shown to be(1&

(76)e."'= Zte. ,„q,]e.'e'+E .eql"),
KB B

where the total polarizability ct s (including a lat-
tice contribution) is given by

2

The total static dielectric tensor is given by

e s(0)= 5 s+4va s

2

SS KK
7X

(60)

(61)

which is consistent with the expression derived
earlier in Eq. (30). Equations (76) and (78) yield

equations identical to the usual macroscopic equa-
tions relating stress, strain, polarization, and
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macroscopic field in an insulator.
Ne have now completed the identification of

c „» and eB „with the elastic and piezoelectric
constant, respectively. Equations (75a) and (75b)
are of course expected results since the long-
wavelength acoustic modes must be related to the
elastic waves in this way. Equation (75c) is

more interesting because, in contrast to earlier
treatments of piezoelectricity, it relates the piezo-
electric constants to fundamental microscopic
quantities.

Specific forms can be written down for the ex-
pansion matrices. For example, the components
of E' are given by

'
(q+ G) (q+ G), l - - - -;5.;,E'"2" = -5~ - — l — - — W„(q+ G)W„,(q+ G)e' '2'~+ constant

2((q+ G) 22(q+ G)
I

=5~ (q+ G) (q+ G)3f2" (q+ G)e "~"+ constant,
5

(82)

where, as long as 2(((Q) is isotropic, fE" is a function of IQI only. The expansion matrices are given by
I

' = -E G G3f2" (G)e' '&'" + constant, (83a)

EIkk'(1)
aB,v

E kk&~)
eB,7')t

ej 'r„„

= i S~ (Ga 52„+G35a„)fE«(G)+ Ge GBG. efEK )v, .-,
5 c

G G„G,G„G,G„G G„G G, afE"
a1 Er+ 225a r)fE+

G 53r + " sar +
G

" sa2+ "
521+ 5r2G G G G G 8@ c

G GBGvGx 8'fE
G2 aq'

(83b)

(83c)

Similar expressions can be written down for the
matrices C, W, and V by defining functions fP (Q),
fg' (Q), and fv'((2() in the appropriate way; the ex-
pansion matrices for (2"3(q) must also be derived.
The expression for the expansion matrices for the
full dynamical matrix D can then be obtained by the
usual chain rules for differentiation.

Let us now specialize to lattices of tetrahedral
or cubic symmetry and take the dipole sites to be
the ion positions ~r. Similar results may be es-
tablished for the case where the dipoles are on the
bond charge sites. Then E'B'"" is proportional to
5 B and the first term on the right-hand side of
Eq. (83b) vanishes, whereas the second term is
proportional to

(((V P((y

= 0 otherwise. (84)

n.B~=& & ~=P=~=~

= 0 otherwise.

Equations (83a)-(83c) can then be written

EI ~0)kk
g EI io)KK

eB eB

EI ~i)kk I g [ EI ~i)kk
eB,7'

) eB7'(
2

Ea3, r1" = (5a),5er+63), sar' ' ""

EI&Sb)kk'+ EI &2C)kk'+ eB ))t

where

(s5)

(Ssa)

(sm )

(ssc)

Similarly the various terms Eq. (83c) are propor-
tional to terms involving either products of two 5
matrices or

II"2'« = ——P G f""(G)e( '2'~+ constant,
C

—i(1)«' .g G(G2G3 sfE" (5'r ~

(87a)

(8Vb)

I I
I +4)KK efE«G2~s ~fE t.&-rk „

I kk c32 KK
r(23)«' g i sfE G2G3 a fz 1&'ra'z

SQ c G 8Q

—.(2.1«v '
(G( —3&2G3) ~fE" «5 I„.„

c c
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Q [(D())D(0) 1 )kk Zk ((){tS}() )kk ] (90)0
where the matrices are in (a, x') space only, as in
Eq. (8V). For a system with two atoms per unit
cell,

D+»1 —D o)22 — D~0»2

D (0)21

where

B=M~~,2 (9l)

as defined in Eqs. (28) and (29a). Then Eq. (90)
becomes

— )&. I
zm» +D & ) —) (w8)»'-')~'4 To KK

(92)

Thus the piezoelectric constant is composed of two
terms, one representing the motion of the effective
charge with the internal strains and the other the

Analogous expressions can be written down for the
expansion matrices for ~C W~ ~V and a.

We may now prove that conditions (62)-(64) are
satisfied for the full dynamical matrix in the case
of this special symmetry. Since the full dynamical
matrix is

D=C+E -WSW (88)

the first order matrix Da'B'"„" is the sum of terms
of the form given either by Eq. (86b) or by the
product of one term like Eq. (86b) and two terms
like Eq. (86a). In either case they are all propor-
tional to I f B„l, so that Eq. (62) is immediately
satisfied and Eq. (63) is satisfied because

D(1)K K g)(1)KK D(1)KK' (89)aB,v = Ba,w
— aB,y ~

Similarly, D'B'"„"„ is the sum of terms of the form
given either by Eq. (86c), or by the product of one
term like Eq. (86c) and two terms like Eq. (86a),
or by the product of two terms like Eq. (86b) and
one term like Eq. (86a). In the first case, Eq.
(64) is clearly satisfied. In the second case the
product is composed of terms proportional to ei-
ther (5k))5sr+ 5s«5kr)~ or 5ks5ru or riksn) which
again must satisfy Eq. (64). In the third case the
product is proportional to

~(I ~~. l I "s« I+ I
&s.«l I

&~. I)
6

which can be shown to be equal to

2'4B~~X+ ~a)t~vB+ ~ar~B)t 4~aBy) y

which also satisfies Eq. (64). Thus all the invari-
ance relations discussed in this section are identi-
cally satisfied for crystals of tetrahedral or cubic
symmetry.

For these crystals there is a single piezoelectric
constant given by

distortion of the electronic charge distribution.
In the case of the bond-charge model, Eq. (92) can
be readily generalized by writing the last term as
a sum over e and s' and using the appropriately de-
fined matrices W and S.

VI. CALCULATIONS FOR SILICON AND GERMANIUM

(tea (q) = a(5)ks 5kk' ~ (94)

The pseudopotentials due to the ions were taken to
be —Ze /r for r «r, and constant at a value of
—Ze /r, for r & r, . Thus

W„((k)) = —(4vZe /AQ ) sin(Qr, )/Qr, . (95)

The above form of the pseudopotential form fac-
tor provides a simple and reasonably close analyt-
ic representation to the pseudopotential form fac-
tor for silicon as given by Heine and Abarankov
(HA) and modified by Shaw. ' The value of r, was
chosen to be very close to the value required to
make the first node of W„(Q) coincide exactly with
that of the HA pseudopotential. The calculated dis-
persion curves, however, did show some sensi-
tivity to the value of r, and as a result r, was very
slightly varied in order to obtain the 'best" fit.
Figures 1 and 2 illustrate the pseudopotential form
factors for silicon and germanium corresponding
to the best" values for r, used in the calculations
(see Table I). Also shown in Figs. I and 2 are the
best" values for W„((k)) at the reciprocal-lattice

points obtained from electronic band-structure
data and tabulated by Cohen and Heine. It may
be seen that the pseudopotentials used in the cal-
culations are not inconsistent with the latter, con-
sidering the wide spread in pseudopotential form
factors obtained by different methods. ' The
pseudopotential form factors in Eq. (95) were also
truncated smoothly to zero at the fifth node.

The formalism developed above has been applied
to the case of the homopolar semiconductors sili-
con, germanium, and grey tin. The equivalence
of the two types of ion in the unit cell reduces the
number of parameters involved in the factorization
ansatz. Two different models were studied, name-
ly, the generalized shell model (GSM) where the
sites r, were chosen as the ion sites rK, and the
bond-charge model (BCM) where the sites r, were
chosen at the bond charge sites.

a. GSM calculations. The functions f"((k)) were
chosen to be the Fourier transforms of a real-
space distribution which was characterized by be-
ing constant for r & a characteristic cut-off radius
r& and zero for r &r~. Thus

f"(Q) = 3(sinx -x cosx)/x', x = Qro . (93)

For simplicity, the a" s(q) were taken to be con-
stants and diagonal in both (a, t})] and (((, «'),



MICROSCOPIC THEORY OF DIELECTRIC. . . . II. 2585

TABLE I. Parameters used for the generalized-shell-
model calculations for silicon and germanium.

ii +&(q) (Ry)

0. I 0—

Lattice constant (A)

r,/a
~,/a
((4me /Q)a~](from sum rule)
6p
& „(calculated)
6„(experiment)
~(0, 0)(Ref. aS)

Si

5.417
0.209
0.26
2. 24
6.8
9.3

11.7
ll. 3

Ge

5.647
0.209
0.26
2. 19
9.6

12.0
16.0
14.0

0.05—

p I

0.2 0
-0.05—

-0.Ip—

-O. I 5—

q/2kF

-0.20—

In order to use the factorization scheme [Eq.
(16) of I] we also need to know something about
c(Q, Q'), the actual dielectric matrix for the solid.
Fortunately, the diagonal elements c(Q, Q) for Si
and Ge have been calculated recently within the
framework of the random-phase approximation
(RPA) by Walter and Cohen using actual energy
bands and wave functions. In their calculation,
Walter and Cohen neglected exchange and correla-
tion effects, i.e. , p(Q) was taken to be simply
4we /flq . In our calculation, v(Q) has been taken
to be of the form given in Eq. (2) to allow approxi-
mately for exchange and correlation effects. The
expression used for j(Q) was that given by Singwi
et al. for a free-electron gas with the same
density as the average valence-electron density
in the solid in question. Therefore, Walter and
Cohen's e(Q, Q) was first corrected for exchange
and correlation. Their calculations also showed

~i Ns(q.' (Ry)

0. IO—

0.05—

p I

0.2 0
-0.05—

q/2kF

-0 IO—

-0. I 5—

-O.P.O—

-0.25—

-0.30—

FIG. 1. Pseudopotential form factor for silicon calcu-
lated from Eq. (95) using the value of r, fitted to the pho-
non spectrum. The curve shown corresponds to the
bare-ion pseudopotential screened by a free-electron gas
of equivalent density to that of the valence electrons in
silicon. The points represent best fits to the band-struc-
ture data as given by Cohen and Heine (Ref. 24).

-0.25—

-0 30—

FIG. 2. Pseudopotential form factor for germanium
calculated from Eq. (95) using the value of r, fitted to
the phonon spectrum. The curve shown corresponds to
the bare-ion pseudopotential screened by a free-electron
gas of equivalent density to that of the valence electrons
in germanium. The points represent best fits to the
band-structure data as given by Cohen and Heine (Ref.
24).

that c(Q, Q) is quite isotropic as a function of the
direction of Q, and hence a suitably averaged iso-
tropic function was chosen to represent e(Q, Q).

From c(Q, Q) and the acoustic sum rule which
takes-the simple form Eq. (22) for the GSM applied
to homopolar semiconductions, the constant a~ and
the function to(Q) were obtained by means of the
following iterative procedure. First, a value for
aq was assumed and using Eq. (93) and Eq. (16) of
I, &0(Q) was calculated. This was then used to cal-
culate S' ' W " V ' ' and V " from Eqs.
(19) and Eq. (42) of I, and then, using the sum rule
Eq. (22), a& was recalculated. This new value of
aq was then chosen to recalculate eo(Q) and to pro-
cess repeated until it converged, thus providing a
consistent solution for a& and co(g). The calcula. -
tion was repeated for different values of r& in Eq.
(93), rG being regarded as a parameter to obtain
the best fit to the experimental dispersion curves.
The vat. ues of the parameters used are given in
Table I.

The calculated dispersion curves for silicon and
germanium are shown in Figs. 3 and 4 together
with the experimental data of Dolling ~ and Nilsson
and Nelin ' for silicon and NQsson and Nelin ' for
germanium. The results for grey tin will be pub-
lished separately. ' For silicon, it may be seen
that the agreement is quite reasonable considering
the crudeness of the assumptions (93)-(95). The
LA modes show a remarkable lack of dispersion
which is also borne out by experimental observa-
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(Ref. 28).

tions. The flatness of the TA modes from half-
way to the zone edge outwards, however, is not re-
produced and probably requires a more accurate
representation of the form factors f„(Q). For ger-
manium, the "best" values of rq and r, turned out
to be very close to those for silicon scaled by the
ratio of their lattice constants. The agreement
with experiment for germanium is, however, ap-
preciably worse. This may possibly be due to the
effect of the d bands in this material which were
not taken into account in the calculations of Walter
and Cohen.

The induced dipolar distributions in real space
are, as discussed in Sec. I, the Fourier trans-
forms of &of„(Q)/eo(Q) and turn out to be mainly
contained inside spheres of radius r& centered on
the ion sites with a discontinuity at r& and a small
oscillatory taQ outside r&. The discontinuity and
oscillations are a consequence of our simplifying
assumption for f„(G). It should be noted that the
values for r& obtained from our fit correspond to
overlapping spherical distributions which thus
would tend to approximate a build up of dipole dis-
tributions at the bond charge sites in describing
the electron response.

Also listed in Table I are the values of & cal-
culated from the parameters of the model by using
Eq. (43) of I. It may be seen that according to our
model the local-field corrections decrease E from
t(0, 0) instead of increasing them to the slightly
greater experimental values. We believe this to
be a consequence of our approximations for ex-
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FIG. 4. Phonon-dispersion curves for germanium
calculated from the generalized shell model. The exper-
imental points refer to the data of Nilsson and Nelin

Qef. 29).

change and correlation effects in u(Q) which could
rather sensitively affect the V' '"" defined in Eq.
(42) of I. The results do indicate that further re-
finements need to be made on our model before a
completely satisfactory explanation of both the
lattice-dynamical and dielectric properties of these
materials is established.
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b. BCM calculations. As discussed in Sec. II,
the symmetry of the lattice of bond charges is low-
er than that of a cubic lattice. As a result, even
if the a"~(q) in the factorization ansatz, Eq. (16)
of I, were assumed to be constants and diagonal in
(s, s'), they are still not diagonal in (a, P} and con-
sequently one needs more than a single parameter
to characterize them, unlike Eq. (94). To reduce
the number of parameters, Eq. (42) was used to
determine the a'~z and thus automatically satisfy
the acoustic sum rule. The form factors associ-
ated with the bond-charge sites were taken to be of
the form given in Eq. (93) with re again being re-
garded as a variable parameter. As in the case of
the GSM calculations, an iterative procedure mas
followed to determine the functions eo(Q) and the
a"z self -consistently. The values of r, character-
izing the pseudopotential form factors were kept
close to the values used for the GSM. Surprisingly,
no satisfactory agreement was obtained with ex-
periment using such a model for any value of r&.
This does not necessarily mean that a BCM is inval-
id for these materials, but rather that the simple
form factors [Eq. (93}]and the particular assump-
tions represented by Eq. (42) for the a"~ probably
do not well represent the dielectric matrix for
these solids.

More detailed calculations of the off-diagonal
elements of e(Q, Q') will be required before the
parameters of a BCM type of factorization scheme
may be determined and the model successfully
tested in the manner described in this paper.

VII. SUMMARY AND DISCUSSION

tion scheme imposed by the sum rules which re-
sult from the vanishing of the macroscopic field in
the limit q-0 are discussed in detail. Expressions
are derived for the longitudinal- and transverse-
optic-mode frequencies at the zone center for cu-
bic and tetrahedral crystals, and for the low-fre-
quency dielectric constant e(&u). It is shown that
the Lyddane-Sachs-Teller relation foQows.

The bond-charge model is next considered and it
is shown that Martin's original lattice-dynamical
bond-charge model follows as a special case if
certain assumptions are met. The relation to the
conventional shell model" is discussed, and an
expression is derived for the "charge on the shell"
in terms of our formulation. The elastic and di-
electric properties are derived from the long-
wavelength limit of the dynamical matrix, and an
expression for the piezoelectric constant is ob-
tained in terms of microscopically defined quanti-
ties.

Explicit calculations are made for the phonon
frequencies of silicon and germanium, using both
the generalized shell model and the bond-charge
model, with rather satisfactory results for the
former. The bond-charge model, however, con-
tains too many parameters for a reliable first-
principl. es calculation. A simple assumption for
these parameters does not yield good agreement
with experiment, and it seems clear that informa-
tion about the off-diagonal elements from band-
structure calculations is required for the input to
this particular model.
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APPENDIX A

%e note that

W„(q)- -4'„e /Aq as q-0

v(g)-4ve /Aq as q-0 .
From Eq. (2) and Eq. (5) of I, we have

E",I (q) = P —[66n. —e- (q+ G, q+ G') ](q+ G), (q+ G')~ W„(q+ G)W„(q+ 5)e'
66 v q+G)

therefore,
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I

limEmo(q) = —lim (-, [1 —e '(q, q)]q, q, W„(q)W„(q) -Q e '(q, G)q G0W„(q)W, (G)e k'

o 0 o v(q) 8 vq

(G, q)G qoW„(G)Wk(q)e' '""+Z [588 —e (&z, 6')]G~G&)W (5)W (G')
g e%) ss'v G

k K
(A2)

where the primes over the summations imply the exclusion of G, G'=0 from the sum. Using Eqs. (20) and
(45)-(47) of I and Eq. (Al), we obtain

1 4 Z I
limE 0(q)= —lim " " 1 — "Z 0" G,f"'(G)S';e' ' G,y6e a ~ 0

88

4&)e Z„~'qoqo z( g„(g.; W„(G)

88

/

+ (-z — GAS 1 — — G G()W„(G)W„.(G')e" 'k
s() v(G eo(G

4 2
+ Z " " G G'e " ' +kG f'(G) 8" —lim~ q'q" 8"Sz)'

q-O It~t'
88

If we define 5' z'"8 to be the limit as q- 0 of

xf*"(G')G' i'n z -s"'"z'& (A3)ee

then Eq. (A3) becomes

/
W„(q+ G)

Wmzo=Z (q+G)m(q+ G)0 "- — f'(q+ G)e' 'kz,
eo q+G

(A4)

1 4 Z 4 2 gq qB &)e p q q
(

(0&~(0)t), &)e ~g(~(0&S(0)).im gg' = im —
g

— 2 + g- 2 8 ye+ g ey 2j-0 0 ys ~- ys

(As)

APPENDIX B

2
+ E&o&

'
(i)() o&S 0&~&0&t), 4) e g(()() (0&S o&) (I 0&~ 0&t) ~ q&qo

8S

where E 0'"+ has been defined in the text [Eq. (8)]. Equation (A5) simplifies to the form Eq. (7) given in
the text.

The left-hand side of the acoustic sum rule as given in Eq. (12) is

X= iim Zq (q+ G)0W„(q+ G)e (q, q+ G)e &

k~

2
=ii —

(( ) z„m E'q Gzk, (0)t'((, G) -' ' )i -o k ff}' 5K

where the prime over the summation excludes 6=0 from the sum. Using Eq. (45) of I, we obtain
2

z= — " ((m): z '+ ):Z)G "'(0&s-'~k "r. ( ) -m'.
)0-0 q 0 q eo(G)

(B2)Qq„- 0 „q
using the definition of Eq. (9), since Z"

0 is a symmetric matrix. The acoustic sum rule X=O is satisfied if

PZ", =0,

as given in Eq. (11) of the text.
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