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and dielectric constants*

S. K. Sinha and R. P. Gupta
Ames Laboratory, U. S. Atomic Energy Commission and Department of Physics, Iowa State University, Ames, Iowa 50010

D. L. Price
Argonne National Laboratory, Argonne, Illinois 60439

(Received 8 January 1973)

We show how local-field corrections in solids may be treated by a very general factorization scheme

for c(Q, Q') from which practically all existing models of dielectric screening and lattice dynamics may
be derived as special cases, including the shell model, the breathing-shell model, and the bondwharge

model, as well as generalizations of these models which result from the introduction of a "screening
medium. " The latter arise naturally in our formalism from a portion of e(Q, Q') which is purely
diagonal. It is shown that the formalism also allows for charge-transfer and multipole effects. In this
first paper we derive explicit expressions for the elements of c(q+ G, q+ G') and its inverse and
show that they have the correct analytic behavior as q-0. For insulators of cubic and tetrahedral

symmetry, explicit microscopic expressions are derived for the high-frequency dielectric constant e,
thus realizing a generalization of the Lorentz-Lorenz formula, and for the local field produced by an

applied field.

I. INTRODUCTION

The formal microscopic theory of dielectric
screening in insulators has been fairly extensively
discussed in recent years. 7 For such solids as
well as for non-free-electron-like metals, it is
well known that a correct treatment of the response
of the electrons to an external potential must take
into account the so-called local-field corrections.
These will exist whenever the electrons are proper-
ly described in terms of Bloch states rather than
single plane waves. The phonon spectrum of a
crystal is intimately related to the nature of the di-
electric screening in the crystal and provides a
sensitive test of the model used to describe the
screening. A unified theoretical description of the
lattice dynamics of crystals must therefore start
with a unified description of dielectric screening
in solids.

The formal theory of dielectric screening may
be expressed in terms of the dielectric or screen-
ing matrix given by

e(Q, Q') = t;;.-v(Q)x'"(Q, Q'),

where v(Q) is the Fourier transform of the effec-
tive electron-electron interaction given by

v(Q) = „@.[l -f..(Q)], (2)

where 0 is the unit-cell volume and f„(Q) approxi-
mately allows for exchange and correlation ef-
fects. '0 [We shall assume unit volume for the
crystal and always define our Fourier transforms
to be of the form (2) with the unit-cell volume in
the denominator. ]

X'0'(Q, Q') is the so-called irreducible-polariza-
tion part of the density-response matrix and is de-
fined by

(0)(Q Q
I

) 2Q k k'

a~ E~-E»

x &4'k
I
e "'

I
+'&&4'I e"'I +k &, (3)

where k, k' label the actual Bloch states and repre-
sent both the Bloch wave vector and the band in-
dices. +, represents the wave function of the
Bloch state k, with energy E„and occupation num-
ber n, exclusive of spin. The prime over the sum-
mation in Eq. (3) implies the case k= k' is to be
excluded.

The static-electron-density-response matrix
x(Q, Q') is defined by

~p(Q) =+ x(Q, Q')l'..&(Q'), (4)
qt

where d p(Q) is the Fourier transform of the elec-
tron-density perturbation induced by an external
potential whose Fourier transform is given by
V,„,(Q'). X(Q, Q') is related to e(Q, Q') by

X(Q, Q') = -[iiv(Q)1[~-„-.-e '(Q, Q')l.

Thus we have the problem of carrying out the in-
version of the matrix e(Q, Q'), the off-diagonal
elements of which give rise to the so-called local-
field corrections. To carry out such an inversion
exactly is clearly an impossible task since, except
possibly for the free-electron metals, e(Q, Q') will
contain a large number of off-diagonal elements.
One must therefore resort to approximate methods.
On the other hand, there exist quite a number of
phenomenological models such as the shell model,
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breathing-shell model, bond-charge model, de-
formable-shell model, and so forth, " "which
have been used with some degree of success to cal-
culate the dielectric and lattice-dynamical proper-
ties of insulators. It is clear therefore that the
physical assumptions about the nature of the screen-
ing that is being put into these models must corre-
spond to an explicit evaluation of e (Q, Q') in vari-
ous approximations. In this first paper, we pre-
sent a general factorization scheme for e(Q, Q'}
which enables the inversion to be carried out ex-
plicitly and which connects the formal theory of di-
electric screening in solids to all of the various
phenomenological models referred to above. We
thus achieve a unified microscopic description of
screening in solids from which the various models
may be derived as special limiting cases. The
formalism also leads to models more general than
those used hitherto and these may be useful for
treating the lattice dynamics of a wide variety of
solids ranging from semiconductors to transition
metals. We also derive the generalization of the
Lorentz-Lorenz formula, relating the dielectric
constant to the unit-cell polarizability for cubic and
tetrahedral crystals, to the case of arbitrary local
fields.

We discuss the application to lattice dynamics in
the second paper (II) in this series and in a third
paper (III) show how it can be extended to include
intraband transitions.

Recently several authors have considered the
justification of similar factorization schemes under
quite general conditions, starting from Wannier
representations 8- 0 In practical applications of
this work an expression for e(Q, Q') is obtained
which is formally similar to that derived in the
present framework for the contribution from intra-
band transitions. For this reason it is convenient
to postpone the discussion of these theories to the
third paper in the series.

A preliminary report of this work has been pub-
lished earlier. '

II. FACTORIZATION ANSATZ

In an earlier paper by one of the authors it was
shown that for a crystal with a set of completely
full bands separated by a finite gap from a set of
completely empty bands, i.e. , an insulator or a
semiconductor, the generalized oscijlator strength
matrix element for allowed transitions could be
written as

(6)

where

f»., (Q) = (+/m) &+,
~

e *"P.
I
+, &/

[Z, —E, , + (n'/2m)q'], (~)

where P is the Cartesian component of the elec-
tron-momentum operator and m is the electron
mass. The f», (Q) tend to finite values as Q-0
so that for an insulating crystal, Eq. (6) has the
correct analytic structure as Q-O.

Substituting in Eq. (3}, we see that

X'"(Q, Q') = -~ Q. a', (Q, Q')Q,', (6)

where

)( ~-i (Q rK-Q'orK') (10)

where K, v' denote the basis atoms in the unit cell,
the functions f"(Q) are generalized form factors
associated with the sites r„(which we may normal-
ize to unity as Q = 0), and q is the vector Q or Q'

reduced to the first Brillouin zone. (It is obvious

from the Bloch symmetry of the wave functions that

Q, Q' in p' ' can differ only by a vector of the re-
ciprocal lattice. ) The a","~(q) is then a generalized
q-dependent polarizability tensor which includes
"interference" or cross-polarizabilities between
atoms K ~K' in the unit cell. The general expres-
sions for the f"(Q) and a""z(q) in terms of the tight-
binding orbitals in the valence and conduction states
were given in Eqs. (59), (AV), and (A8) of Ref. 22.
[We should point out here, however, that in order
to conform to conventional phase conventions for
Fourier transforms, the quantities in Eq. (10}are
the complex conjugates of the quantities defined in
Refs. 21 and 22. ] We may postulate the approxi-
mation in Eq. (10) to be valid in the more general
case also, and the important fact which results
from this approximation is that an explicit inver-
sion of e(Q, Q'} is then possible and we arrive at a
form for the density-response matrix Z(Q, Q')
which may be evaluated in practical cases.

First, in order to conform to the usual phase
convention for lattice-dynamical applications, let
us absorb the phase factor e " "~ '"' into a~~ (q).
Then e(Q, Q'} is given by

e(q+ G, q+ G') = 66p. +v(q + G}Z (q + G),
KK~

xf"(q+G)a""~(q) f*"(q+G')

Q, Q'} = —2~ f„, (Q)f*. ~(Q') .
kk' k

(9)
At this stage, the natu' approximation which sug-
gests itself is that a' ~(Q, Q') is of separable form.
In fact, for the extreme tight-binding limit with

only two bands of importance (this situation may,
however, violate crystal symmetry; see the dis-
cussion in III), it was shown in Ref. 22 that
a' 8(Q, Q') could be written as

a.',(Q, Q') = ~ f"(Q)a"."'(q)f*"'(Q')
Kk
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x (q G ) e-i&G 8„-&}"t"ge)
B

where the matrix V is defined by

V.""&(q)=~ (q+ G).(q+ G)& f*"(q+G)
G

xf"'(q+ G)v(q+ G)e'o'~' . (14)

(The vector r„„,is used to denote [r„—r„,].) From
Eqs. (5) and (12) we see that the electron-density-
response function is given by

y(q+G, q+G') = -Z (q+G) f"(q+G) Z S""«(q)
KO «'B

xf*"'(qiG')(q+G')«e " '"" '""'. (l5)

An examination of Eq. (1.5} shows that the electron-
density response in this approximation corresponds
to the appearance of a set of dipole distributions
centered on the sites r„and characterized by the
set of form factors f"(Q). This is reminiscent of
the dipole models of lattice dynamics such as the
shell model, deformation-dipole model, and so on.
In fact, in Ref. 22 it was shown that Eq. (15) led to
a lattice-dynamical model that was formally equiv-
alent to the dipole models referred to above. How-
ever, we note that it is already more general in
that (conceptually at least) the above models were
point-dipole models, whereas the appearance of
diPole distributions in the above equation does lead
to an approximate inclusion of higher multipole
effects (and charge-transfer effects, as we shall
see in III). An inspection of Eq. (14) reveals
that V is the coupling coefficient between dipole
distributions with form factors f"(Q), f" (Q) situ-
ated on the sublattices K, K and interacting via the
effective electron-electron interaction v(Q). Equa-
tions (13)-(15)are really equivalent to the "shell
equilibrium condition" of the shell model.

We note that the main point of the "factorization
ansafz" represented by Eq. (10) is that it reduces
the problem of formally inverting an infinite matrix
to that of inverting the (3r x 3r) matrix [ V+ a '].
We also note that the matrices V~s(q) and a""s(q)
must be periodic in q space and transform under
symmetry operations of the crystal in exactly the

from which it may be verified by direct matrix
multiplication that the inverse matrix a '(q+G,
q + G') may be written as

e (q+G, q+G') =&oo, —v(q+G)Z (q+G)
0&B
«K

xf"(q+G)S""s(q)f "'(q+G')

x(q+G&) e-i&a P„o"r„-)

where the matrix S""s(q) is the inverse of the 3rx 3r
matrix (r is the number of basis sites in the unit
cell) [V""s(q)+a 's" (q)], or in matrix form,

S = [ V+ a-']-',

same way as a general dynamical matrix between
sublattices &i, «' in order that &(Q, Q') possess the
correct symmetry. This implies that, if neces-
sary, a"„"s(q) can be parameterized in terms of con-
stants in exactly the same way that the dynamical
matrix may be parametrized in terms of force
constants.

Although the factorization ansatz represented by
Eq. (11) may be reasonable for ionic crystals, it
is unnecessarily restrictive in that it fails to de-
scribe e(Q, Q') for a material which contains a
large diagonal component of e(Q, Q') such as a
semiconductor or a material containing free elec-
trons in addition to the tightly bound electrons. In
the case of semiconductors, Phillips' proposed an
intuitively based model in which he split the elec-
tron-density response into 3. "diagonal" part and a
part associated with "bond charges" situated at the
midpoints of the covalent bonds. Martin' used this
idea to set up a lattice-dynamical bond-charge
model with which he calculated the phonon-disper-
sion relations for silicon. We shall discuss his
model in more detail in II.

In this paper we show that we may incorporate
the above models also in our scheme if we make a
suitable generalization of our factorization ansatz.
First, we note that there is no reason to restrict
the sites K, K in Eq. (11) to be atomic sites, so
long as they are chosen consistent with crystal
symmetry. ]We may just as well choose them as
the bond charge sites if this in fact provides a bet-
ter representation of the actual e(Q, Q'), or a
combination of both types of sites and possibly other
sites as well. Obviously, the more sites we choose
in the unit cell, the better becomes our approxima-
tion, but of course the matrix [V+ a '] grows larger
and so we gain less. In the limit, of course, we
simply obtain the real-space double Fourier trans-
form of a' s(Q, Q'). }

We could, in principle, represent a large purely
diagonal contribution to e(q+G, q+G'} in the form
given in Eq. (11)where the K, K are now replaced
by sites s, s' which can be anywhere in the unit
cell. Unfortunately, such a representation would
be poorly convergent, since in principle a purely
diagonal contribution can only be represented if
(a) s, s' sum over ail points in the cell and (b)
a",s(q) has the form a,8(q)5„,. In such a case there
will be only nonvanishing contributions for 6=G'.
Thus a large number of sites would be required,
whereas for the off-diagonal components, which
are small anyway, we expect on physical grounds
that dipolar distributions on only a few sites are
likely to provide a reasonable approximation for the
density response. Fortunately, the purely diagonal
part can be easily handled by separating it out ex-
plicitly from the start and writing our generalized
factorization ansatz as
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e(q+6, q+G') = ep(q+G)56o, +v(q+G)Z (q+G) f'(q+G)a"p(q) f*' (q+G')(q+G')pe "o'~~ o"~',
ntt
ss'

(16)

where the r,- denote the positions of the r chosen sites in the unit cell. It may be readily verified that, in
this approximation, the inverse matrix becomes

z '(q+G, q+G')= ~, 5op, — —Z (q+G) f'(q+G)S"z (q')f*' (q+G )(q+G')se "o'~ o '~',

where the matrix S is now the inverse of the (3r&& 3r) matrix I V+ a '], with

V"p(q) =2 (q+G), (q+G)p f*'(q+G)f' (q+G) - ~
e'

G ep(q +
(18)

The sum still runs over reciprocal-lattice vectors of the crystal, but the matrices V and a now transform
according to the symmetry rules for a dynamical matrix appropriate to a hypothetical lattice with basis
given by the set of r, . From Eqs. (5) and (17), the electron-density-response function now becomes

1 1 ~ - f'(q+G)
X(q+G, q+G')= — (- ~)

1 — (- ~) 566, -Z(q+G)

p'(q)f*"(q+ G')(q+ G')p;6 p .,-, ,
ep(q+&')

Thus, the electron-density response splits into two
parts —a purely diagonal part analogous to that in
the case of the free-electron gas except that the
free-electron dielectric function is replaced by
ep(Q), and a part which corresponds to a set of
dipole distributions centered on the sites r, and
characterized by the set of form factors f'(Q).
These dipole distributions in turn produce (via the
electron-electron interaction) a polarization from
the zp(Q) part so that the form factors of the over-
all dipolar distributions on the sites s are f'(Q)/
ep(Q) instead of simply f'(Q). V is now the coupling
coefficient between these dipolar distributions
which now, however, interact not via the "bare"
effective electron-electron interaction v(Q) but
rather via v(Q)/zp(Q). The interpretation is that
ep(Q) acts in the same way as a screening function
for the rest of the interaction. If ep(Q) arises from
the presence of additional free electrons in the sys-
tem, we see that they provide a screening medium
for the interaction between the other electrons, a
result expected on intuitive grounds. We should
emphasize for the sake of clarity that what we have
termed the purely diagonal part zp(Q) is not the
total contribution to e(Q, Q), since some contribu-
tion to these elements will obviously also come
from the second term of Eq. (16).

Our point of view here is that with the availability
of realistic e(Q, Q') from actual band-structure
calculations, it should be possible to choose a suit-
able set of sites r, and a suitable set of functions
zp(Q), f (Q), and a" (q) ptogrovide a convenient in-
terpolation formula for e(Q, Q') which enables its
inversion to be carried out explicitly. The physical

meaning of these functions, however, only becomes
clear in certain limiting cases. For instance, for
free-electron metals, we can neglect the a" (qp')

and ep(Q) becomes the free-electron dielectric
function and conventional screening theory is re-
trieved in this limit. For tightly bound solids such
as ionic crystals, we may choose the r, as the ion
sites r„, set zp(Q) to unity, and then, as discussed
above, the dipolar screening models are recovered
with the a""z playing the role of ionic polarizability
tensors. For metals such as the noble metals
which contain fully occupied atomiclike states
(e.g. , d-states) separated in energy from unoc-
cupied states, together with free-electron-like
bands, zp(Q) may be taken to be the free-electron
contribution while the interband contribution from
the d states is in the form of the second term of
Eq. (15) with the sites r, being the ion sites r„.
The physical model that results from Eq. (16) then
is one of dipolar distributions forming on the ions
and associated with the d electrons, the interaction
between these being screened by the s electrons.
The "screened-dipole" model we have termed the
generalized shell model (GSM). For semiconduc-
tors, we may use either the GSM or choose the
sites r, as the bond-charge sites at the centers of
the covalent bonds. This screened-dipole model
with dipole distributions developing on the bonds
possesses the same qualitative features as the
bond-charge model (BCM) proposed by phillipsp
and Martin. " Thus which particular way we choose
to represent z(Q, Q') within the very general frame-
work of our ansatz Eq. (16) depends on the elec-
tronic structure of the solid in question.
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1q„= lim-
0 & Lq 9)

(20)

We note that some of the components of the matrix
e(q+G, q+G') become singular in the limit of q- 0
as may be seen directly from Eq. (16) if we re-
member that v(q)-4' /Aq as q-0. This has
been discussed from more general considerations
by Pick, Cohen, and Martin. 5 We see that by
selecting the appropriate factorization scheme for
interband transitions we have obtained the correct
analytical behavior of the dielectric matrix for an
insulator in the small-q limit. In order to handle
the singular behavior of this matrix, it is conve-
to follow Pick et al. in partitioning &(q+G, q+G'} as

(21)

III. LOCAL FIELD-CORRECTIONS AND DIELECTRIC
CONSTANTS OF INSULATORS

Since we now have an approximation which yields
an explicit expression for the density-response
function, we may use it to look closely at what is
meant by the local field seen by an electron in a
crystal. Such local-field effects have been hitherto
calculated explicitly only for the point-dipole case,
or else ignored altogether. We first look at local-
field corrections to the dielectric constant E„which
is defined as the dielectric constant for frequencies
much greater than lattice frequencies but much
less than the frequencies of electronic excitations
in the solid. Under these circumstances the rigor-
ous expression for E„ is

1=lim, - =lim e(q, q)
q 0& q)q 00

q(q, G)q (G, G lq(G, q)).
GBB

(26)

Using Eqs. (16) and (17), noting that f'(q)-1 as
q-o, and defining ep to be ep(Q = 0), we get

e„=@0+2[aP-aVaP+aVSVaP] B,
eB

(26)
ss'

where the matrices a, V are all evaluated at q = 0
and

Now, since

4ne4we q qB

q
(27)

S= [ V+ a-']-',

w~ have

1 —SV) a=a(1 —VS);
@0+A [{1-aV(1—SV)}aP]"B

eBss'

ep+Z [SP]",'
ss'

(26)

(29)

where the prime over the sum indicates the exclu-
sion of G=0 from the sum. It is this which causes
S to be different from S. Note that the matrices V
and S are perfectly regular as q-0. We may now
substitute in Eqs. (23) to obtain the elements of
e '(q+G, q+G'} and proceed to the limit q-0. We
obtain

where A is the scalar e(q, q), B is the row vector
e(q, q+5), C is the column vector e(q+G, q), and
D is the matrix e(q+ G, q+ G') (G, G' & 0). Then

2

=e +lim Z S"
0 eB 2

q 0 eB q 0
ss'

(3o)

(22)
The quantity E„represents the longitudinal compo-
nent

where

W=(A -BIZ C}-'

X=-WBD
(23a}

(23b)

( ) qaqB

eB

of the full high-frequency dielectric tensor which
is given by

Y= -D 'CW,

Z=D +YW X.
(23c)

(23d)

2

eaB( } ep a 0+ aB
47t'e

ss'
(3Oa.)

We note that A, B, C, D, W, X, Y, Z are all matrices
in (G, G') space.

Now D ', which is the inverse of the matrix
e(q+G, q+G) [where e stands for the matrix
e(q+ 6, q+ G') with G, G' qqo] is readily verified to
be given by an expression similar to Eq. (17}, ex-
cept that S"B(q) in that equation is replaced by
P'B (q), where S is now the inverse of [V+ a ~] and

I' 0'(q) =~ (q+G).(q+ G)Bf*'(q+G)
G

w

xf"(q+G) " '
e "»~ (24

ep(q+ G)

ss' ss'

and is independent of n. Thus, finally,

4we=f0+ ~ See.
ss'

(31)

(Unless the argument q of matrices such as S, V, a,

For noncubic crystals, e„as defined in Eq. (20)
depends on the direction in which q-0. For crys-
tals of tetrahedral or cubic symmetry E„is defined
uniquely. In this case, lattice symmetry requires
that

Z S: = 6.B Z S .'
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etc. , appears explicitly in this paper, the matrices
will be understood to be evaluated at q= 0. )

Equation (31}constitutes a generalization of the
Lorentz-Lorentz formula, which may be obtained
in the appropriate limit as discussed below. The
expression for e(q, q) in the limit q- 0 is, on the
other hand, by Eq. (16), for cubic crystals,

4wf (0, 0) = eo+ 2 a~~ .
ss'

(32)

The difference between expressions (31}and (32)
is due to the so-called local-field corrections. In
order to see whether these enhance or decrease the
value of & „, we have to examine whether

Zs.",Za". .
ss' ss'

4m
(33}

Further, since the sites r, are now the ionic sites
r„, by crystal symmetry,

aKK Q aKK
~

Thus

(34)

S""q = 6 g[a —(4we /3A)I ]„„, (35)

where a is the (rxr) matrix a""' and I is the (rxr)
matrix, each of whose elements is unity. It may
be shown that

4 2 1
+-1

30

where

4we

q 30
1- Za ' P„„,, (36)30

P„„,= a~a (37)

It follows that

KK

P 4me-
x Z a""' I- "' 2 a '

Ks Ke 30 (38}

Consider an ionic crystal and let us suppose it is
well described by a model where eo(Q) = 1, and the
form factors f'(Q) are situated on the ionic sites
with negligible overlap in real space. Let us fur-
ther suppose that the effect of exchange and corre-
lation corrections to v(Q) is simply to remove the
interaction of a distribution on a particular ion site
with itself but to leave it as pure Coulombic between
different sites. In such a case the matrix V""~ be-
comes the q = 0 limit of the ordinary Coulomb-cou-
pling coefficient between point dipoles on sublat-
tices K, K with the self-interaction removed and
for cubic and tetrahedral crystals it is well-known
that

Now P .a"" is related to the total polarizability n
of the unit cell by

2

n ='—Z a""'.
0 (39)

Using Eqs. (38) and (39) in Eq. (31), we obtain
finally

&„=(1+f sn)/(I —$ sn), (40)

which is exactly the Lorentz-Lorenz formula, but

a little more general in the sense that 0. is here
rigorously the polarizability of the unit cell and we
have not assumed additivity of individual ionic po-
larizabilities. We note here that since v(Q} has the
interaction of the distribution on one ion with itself
removed, the a"" above are related to the many-
electron polarizabilities of the ions themselves and

should include the effects of exchange and correla-
tion between electrons on the same ion. This point
has recently also been discussed explicitly by
Onodera. ~

In the opposite limit, we may imagine a crystal
in which the dipole distributions are so delocalized
that the f'(Q} are negligible by the time Q equals a
reciprocal-lattice vector. In such a case V ~

vanishes, and e„becomes identical with a(0, 0) as
given by Eq. (32), and we retrieve the so-called
Drude limit, E„=&0+4'., where local-field cor-
rections are completely neglected.

It is worth pointing out that a true microscopic
calculation of local-field corrections in an insulator
necessarily involves knowing the exchange and

correlation corrections to the effective electron-
electron interaction v(Q} which enters into the cal-
culation of the self-consistent response. Unfortu-
nately, these are at present not known accurately
for real insulating crystals. As stated, when the
appropriate dipolar distributions are nonoverlap-
ping, a crude approximation is to assume that the
"exchange and correlation hole" around each elec-
tron simply removes the self-interaction between
electrons on the same sites when the electrons
respond to an external field. Residual effects may
be then formally included in the a""~ corresponding
to that site, so that it is the total polarizability
associated with that site. Exchange and correlation
corrections to the Coulomb interaction between
electrons on different sites may be ignored on the
basis that such effects are short-range in nature.
When the dipolar distributions are extended, how-
ever, the above procedure breaks down. Obviously
exchange and correlation corrections will still have
a general tendency to remove some of the short-
range part of the direct Coulomb interaction be-
tween electrons. A crude procedure would be to
assume that the effective electron-electron inter-
action is pure Coulomb-like for r greater than
some cut-off radius r, and zero for r& r, . For a
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semiconductor, a somewhat better prescription
would be to use v(Q} as given by Eq. (2}with f,(Q)
taken over from recent estimates for a free-elec-
tron gas of equivalent average density. ~ 0

It is to be noted that the local-field corrections
in the Lorentz-Lorenz limit [Eq. (40)] tend to en-
hance e„above c(0, 0} and hence it has been cus-
tomary to estimate local-field corrections in the
intermediate case approximately by multiplying
e(0, 0) by a number between 1 and that obtained
from Eq. (38}. However, as we shall see in the
case of our calculations on silicon described below,
it is quite possible to get models for which E„
comes out to be less than e(0, 0) as has also been
found by Van Vechten and Martin. Thus local-
field corrections to a„could go either way, deter-
mined principally by the detailed form of the ex-

Cgt3 aB

where

(41)

V
' skag G2f!Sk(G) fk'(G) ( } 1G rkkt

G e0(C)

In this case, Eq. (31) yields

(42)

change and correlation corrections to v(Q) and the
form factors f'(Q). The experimental situation is
that e„ is in general larger than the e(0, 0) calcu-
lated from electronic structure.

A more explicit expression for c„ in the case of
arbitrary local field may be derived for crystals
of the NaCl or zinc-blende structure from Eq. (31}
if the sites r, are chosen as the ionic sites r„. In
that case, crystal symmetry still requires that
Eq. (34) be true and that

4m'
!!2m '

+ ( P 1 + V 22 V 12 V s 12
)

JCIC

I+K V 'a '+Ah
KK t

(43)

where

g11e22
~

G22
~

2 (44a}

and

(44b)

For a bond-charge model, on the other hand, the

symmetry of the "bond-charge lattice" does not
require the a",2 and the V 0 to be diagonal in (a, p)
space and one must in general invert a 12x12
matrix to obtain e„using Eq. (31).

We now return to Eqs. (23) to obtain the behavior
of the remaining elements of e '(q+G, q+G') as
q-0.

From these, it may be verified that

2

1( G) Q q!k 0 fk!s (G)S ss~ 'ltf mrs
e 0 e0 ~ 0 !rB

as'

(45)

lim
q~0

e (G, q) =lim —— Z 6 q0 f'(G)Ssk'0e
1 v(G), -„, ,G„-

C„20( }
ss'

e '(q + G, q + G')(G, G' k1 0) = lim, sr„5GG. — ~, Z
ss'

4m'~x SSS
„, A~„

(46)

G.f'(G)

qr1I0 Sss Ss's' f k!s'(Gi)G& -1(G rs-G ~
rsvp) (47)

It may be verified that the expressions (45)-(47)
have the correct analytic behavior as q-0 as dis-
cussed in the formal theory of Pick et al. for the
inverse dielectric matrix of insulators. [If e0(Q}
contains a free-electron contribution, a0 becomes
infinite and hence so, by Eq. (31), does e„. It may
also be seen from Eqs. (45}-(47) that the elements
of e '(q+G, q+G') then vanish as q-0 when G or
G'=0, as expected. In the case 6, G'k10, lim;,
e '(q+G, G+G'} is given by Eq. (17}with S re-
placed by S.]

Let us consider the case of a weak externally
applied potential

V,(r) = V„,(q)e"', (48)

where we regard q as tending to zero in the limit.
The externally applied electric field corresponding
to this is given by

D(q) = —rqV..(q). (49)

Let V„r be the Fourier transform of the total (self-
consistent) change in potential seen by an electron
due to the applied field, and let us expand the total
local field seen by an electron as

E(r) =Z E(q+G)e"' (5o)
G
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Now

E(q+G) = -f(q+G)V„„(q+G)
= —f(q+6)& '(q+G, q)V,„,(q).

In the limit q-0, using Eq. (46), we get, for
G&0,

(51)

IY. SUMMARY AND DISCUSSION

We have presented in this paper a rather general
scheme for calculating the local-field corrections
to the dielectric screening in any solid for which
the screening matrix e(Q, Q'} is not diagonal, by
representing e(Q, Q') as a part eo(G) 5ee, which is
completely diagonal and a part which may be written
down in a very general separable form. The
"diagonal part" co(Q), which may include the con-
tribution of free electrons also, if they are present
in the solid, acts as a general screening function
for the interaction of the rest of the induced-charge
distribution with the lattice and with itself, and

gives rise to contributions to the induced-charge
distribution and to the dynamical matrix exactly
analogous to those valid for a free-electron gas.
For insulators, the structure of the interband
matrix elements leads naturally to a factorization

E(G)=—G lim Z G f'(G)e 'o'~S 'oDo.
&o(&};-o o

gg o (52)

For tetrahedral or cubic crystals where the sites
r, are chosen as the atomic sites r„, S"z becomes
S""o 5 o and Eq. (52} may be written

E(G)=-—G ~f"(G) e"'"S"" (G D).
eo(C} „„i (53)

For G = 0, on the other hand, from Eqs. (49) and

(51) we get

E((l) =(I/~ )D

for the macroscopic local field.
Equations (50), (53), and (54) thus provide, with-

in the framework of our model, a detailed descrip-
tion of the spatial dependence of the local field.
We note that the microscopic local field can have
components which are normal to the applied field,
although these are periodic with respect to the unit
cell and average out to zero.

scheme which yields the physical result that the
induced-charge distribution produced by an external
potential consists of distributions of dipoles cen-
tered on a particular set of sites in the unit cell.
If these sites coincide with the ionic sites, then a
kind of generalized shell model results which re-
duces to the ordinary shell model under further
restrictions, but is more general in the sense that
it allows for screening effects due to the "diagonal"
part eo(Q), and since it avoids the point-dipole
picture, it also allows for charge-transfer effects
and multipole effects. It is interesting to note in
this connection that Kuhner et al. ~9 have found
that the vibronic spectra in a number of crystals
of the fluorspar type can only be explained by giving
the "shell" of the shell model a spread-out distribu-
tion in space to decrease the effect of the local
field. The above model may, for instance, be ap-
plied to treat the screening associated with the d
electrons in the noble metals. If, on the other
hand, the sites are chosen at the centers of the
bonds in a covalently bonded crystal, a general
kind of bond-charge model similar in concept to
that introduced earlier by Phillips and Martin'
results. Obviously a combination of the two types
is also possible for ionic-covalent solids within the
framework of our model.

Explicit expressions are derived for the analytic
behavior of &(@+G, q+G') and its inverse at small
q based on the model and it is shown that this be-
havior is in accordance with that predicted by a
completely general theory. ' ' For insulators, an
explicit expression is given for E„which corre-
sponds to a generalization of the Lorentz-Lorenz
formula for arbitrary local fields, and thus corre-
sponds to the first such microscopic expression
for this quantity valid also in the limit of covalent
solids. An explicit microscopic expression is also
derived for the local field produced by an applied
macroscopic field.
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