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The eA'ect of nonparabolicity of the energy bands on the damping of helicons in semiconductors has
been investigated in the extreme quantum limit of the magnetic fields so that all conduction electrons
are in the ground oscillator state. Analytical expressions (corresponding to different dominant types of
scattering) for the dissipative conductivity cr„, (whose ratio to the Hall conductivity cr,, , determines
helicon damping) have been obtained for both degenerate and nondegenerate energy distributions.
Numerical results have been presented for the typical case of n-InSb and compared with the results for
the parabolic model in the form of graphs. The nonparabolicity, in general, leads to a stronger
damping of the helicons as compared to the case of parabolic bands.

I. INTRODUCTION

It is well known that low-frequency electromag-
netic waves can, under certain circumstances,
propagate in conducting solids with relatively little
attenuation in the presence of a large magnetic
field and are referred to as helicon waves. This
possibility was first reported by Aigrain and in-
dependently by Konstantinov and Parel. Since then
a great deal of work has been reported in the lit-
erature on the various aspects of helicon propaga-
tion in solids. Such studies have a double inter-
est, viz. , as a measuring tool to yield important
information about the electronic properties of sol-
ids and as a technique to study plasmas in solids.

Recently, Meilikhov has considered the effect
of a quantizing magnetic field on the damping of
helicons in a semiconductor. Quantization of the
orbital electrons was found to lead to a qualitative
change in helicon damping from that in classical
magnetic fields, owing to the corresponding change
in the dissipative conductivity o . However,
Meilikhov's analysis was based on the formulation
of the conductivity tensor by Kubo et al. , which
is valid for the parabolic energy bands and, as
such, cannot be applied to most of the III-V com-
pounds such as InSb, InAs, etc. , which are known
to have a markedly nonparabolic band structure.
The effect of nonparabolicity in the band structure
is to introduce an energy, and therefore, a mag-
netic-field-dependent effective mass for the elec-
trons in the extreme quantum limit (EQL). This
dependence of the electron effective mass on the
magnetic field is found to lead to a qualitative
change in various galvanomagnetic and magneto-
acoustic phenomena. For example, a magnetie-
field-dependent effective mass alone can lead to
a nonzero longitudinal magnetoresistance as well
as a large change in the longitudinal magnetoacous-
tic absorption in the EQL as compared to a para-

bolic -band model.
In this paper, we have studied the effect of non-

parabolicity of the energy bands on the damping of
helicons in semiconductors in the EQL, the non-
parabolicity being accounted for by Kane's model.
Analytical results have been obtained for both de-
generate and nondegenerate samples and for vari-
ous mechanisms of scattering, viz. , ionized im-
purity, acoustic or piezoelectric. Our treatment
has as its purpose to illustrate the dependence of
the helicon damping on quantum effects in nonpara-
bolic semiconductors subjected to an extremely
strong magnetic field (S&u, »koT). In general, non-
parabolicity is seen to give rise to a stronger
damping of the helicons as compared to the case of
parabolic bands.

In Sec. II the theory of the dissipative conduc-
tivity o„„for nonparabolic energy bands has been
presented in the limit when all the carriers are in
the ground oscillator state EQL. Numerical re-
sults are presented in Sec. III for the typical case
of an n-type-InSb sample and compared with the
results of the pa, rabolic model by means of graphs
along with a brief discussion.

II. THEORY

In this section the general formulation of the
conductivity tensor in the extremely strong mag-
netic field EQL as described by Kubo et al. will
be used to obtain analytical expressions for the
transverse conductivity o „for nonparabolic energy
bands.

The general expression for the conductivity o„„
is given by

xg(E -K) [U, xj/), , (I)
where K is the Hamiltonian, V is the normalization
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volume, U is the scatterer potential, x is the posi-
tion coordinate of the center of the Landau oscilla-
tor, and the other symbols have their usual mean-
ing. The two 5 functions correspond to level den-
sities at the initial and final states for transitions
by collisions, (. . . ), denoting average with re-
spect to scatterers' variables, and f(E) denotes
the Fermi function

f(E) = 1/(1+e' (2)

where f is the Fermi energy in the presence of a
magnetic field. The energy E is, in general, a
function of the electron wave vector k and is given
for an electron in a spherical nonparabolic energy
band of a sample subjected to a magnetic field
along the z direction by

Es/t= ——'E + 'E a —n+)Ik, /2m, an

where E~ is the band gap, m, and +, are, respec-
tively, the effective mass and cyclotron frequency
of the electron at the band edge, and a„ is given by

extremely strong magnetic fields EQL, only the
lowest Landau subband would be occupied by the
electrons, and transitions between different widely
separated Landau levels may be neglected so that
N=N'=0. But this makes the integral in Eq. (7)
logarithmically divergent, owing to the overlap-
ping of two level densities in elastic scattering, as
was noted by Davydov and Pomeranchuk for the
case of parabolic bands. The divergence can be
removed by incorporating the inelasticity in the
collisions (e. g. , electron-phonon interaction via
acoustic or piezoelectric scattering) or, in the
case of elastic scattering by impurities, the di-
vergence is cut off either by the collision broad-
ening of the Landau levels or by the interference
of electron waves occurring at a scattering. Thus,
following Kubo et al. and Roth and Argyres, ' we
obtain the following expressions of the dissipative
conductivity 0 corresponding to nonparabolic en-
ergy bands when different scattering mechanisms
are individually dominant.

as= [1+(4lfw, /E ) (N+-,'))' (4) A. Acoustic scattering

The quantum number N levels the Landau oscilla-
tors or the magnetic subbands. Equation (3) shows
that the effective mass of the electron depends on
the magnetic field strength through the relation

Case f: Hig/t temperatures (ko T && Svgliwhere , v, is the sound

velocity in the material

When the electrons are degenerate (h(d, » K

——,
' Esao+ 3 E» k3T),

m*=m ag (5)

Using Eqs. (3)-(5) the general expression of the
density of states of electron in a nonparabolic en-
ergy band in the presence of a magnetic field can
be shown to be given by

D 8 m ao(al kpT
8m 8'pv, ( z E~ao+z E

D e a n (k T)3/'
ttfl Pvs(2t'3)3/2 (I + t' /E )3/2

(6)

N(E)dE = (I/V) Tr 6(E —3C,)

(2,)2-~

x g [E ——,'(a„-l)E,] '/2 (6',
jttap

where I = (cff/eH) is the quantum Larmor radius.
N ~ is the maximum value of N that makes
[E —(a„—1)E /2] non-negative. It can be easily
shown that Eq. (6) reduces to the Kubo formula
of the level density in the limit ifu/, «E, (which
corresponds to the case of parabolic energy bands).

The subsequent analysis closely follows the steps
of Kubo et al. ' and therefore, we refrain from re-
producing the steps in detail and give only the rel-
evant intermediate results. Thus, using Eqs. (1)
and (6), cr„, for elastic scattering can be shown,
in general, to be of the form

G „„.(E)df/d E
xx ~ (Er 1 E )1/2(E& 1 E )1/2 y

where G». (E) is a smooth function of E and E'=E
+ —,Et The denominat. ors in Eq. (7) arise from the
density of initial and final states. However, in

3m SmX— C

8 koT ( —
2 E~ao+ ~ E (9)

4ko(1+ &3/E, )
age Q)

(12)

where D is the deformation potential constant, p
is the material density, and no is the number den-
sity of electrons in the absence of a magnetic field
and is determined from the condition

OO

(2m t )3/2 ~ 3/2
NE E dE= 'q ]+

(10)
where fp is the Fermi energy in the absence of a
magnetic field. np is related to the number density
n in the presence of a magnetic field by

3~. «o-aEao+aEWp "'
~, &o

no 2&o 0p E~

in the present approximation. However, the de-
pendence of electron concentration on the magnetic
field is, in general, very weak except for the case
of magnetic "freeze out" of impurities, ' and there-
fore n is assumed to be independent of H. There-
fore, from Eq. (11) one obtains
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When the electrons are nondegenerate (K&@,» koT» f —
o E~ao+ oE~),

D e m, a~, f ——,'E, ap+2 Ez 4 kp~
8v'I'pv' k,T (2ey)' " }fv,/l

Z)2e2+ ~ a 1/2 4 k T=...;.:(.... -,-,.i)
where p is the Euler constant, and the electron number density n in the presence of a magnetic field is
given by

(2m, ) 1 ~&o
t' —oE,ao+oE 8&@ 1 (mao) f —oE, ao+oE, —t'o

(13)

(14)

I(x) stands for the integral

I(x) = f x'~ o(1 +x/x, )'~ o(1 +2x/xo) e dx, (16)

where x=E/koT, x, =E~/koT and no is the number
(2mPoT)o~oI(x)

2rz (17)

density of electrons in the absence of a magnetic
field and is given by

Case II: Lo w temperature (k0 T &gv, /I)

For degenerate electrons ([8m v, (g —,'E, ao+-,' E~)]'I «koT «g ——,'E,ao+-,' E,),
D e ao(koT) koT 1 koT
16m I Pv, v, t —

o E~ao+ o Eo o 2 ffv, /1

D e aono(koT) koT 1 koT I~($)
16 off'pv,'&o, (2m, fo)"' (1+go/E~)"'(f —,'E ao+-,'E—~) ' 2 v,/l

where no is given by Eq. (10) and I„($) stands for the integral

/ p (ndg
(e'-1}(e~—1}

where 6 is the Debye temperature.
For nondegenerate electrons (koT» t —~oE ao + oE~},

(18)

(20)

D eoao(koT) w 1' —
o E~ao+~o E, 1 koT

16s'I ' ~ kT '~ 2 E 'l~Wc 0 Svg l
(21)

D e n(koT) aow 1 / koT &

8w' I v'(u' 2koT ' 2 i(}fv /l)

where n is given by Eq. (15) and the integral I„($)
8/ 2 ]nd(

I„(&)= (, 1)

(22)

(23)

e cacao koT
16m I pv f —2E~ao+~E~

(24)

P e maono
16 tv, (2m~go)"'

B. Piezoelectric scattering

Case I: High temperature (k0 T&Sv, /I)

For degenerate electrons (fko, » 0 —,'E, ao+-,'E~-
» k,T),

koT
(1+ f,o/E ) ~ (f —,'E~ao+ —,'E~)—

Here P is the coupling constant e P /X, where e is
the electronic charge, P is the piezoelectric modu-
lus, and y is the static dielectric constant. no is
given by Eq. (10).

For the nondegenerate case (I&o, » koT» t'—
—

2 E ao+ o E~),

P e m, ao f —
~ E,ao+ ~ E,

1628.~~~ exP
k T



E FFECT OF NONPARABOLICITY ON THE DAMPING OF. . . 2561

4 kT
y 1/2

P2e2
82" pvP(d, 2m, k()T)

(26) 4 koT
(2ey)' "Kv, /I

where n is given by Eq. (15).

(2V)

Case Il: Lo vs temperature (k0 T &&@v,/I)

For the degenerate case ((m*vg(dc)'i »k()T» [m "v,(L ——,'E~a()+ —,
' EE)])

162 I pv, (dc 1' —2EEa()+ ,'E, 2—2Ifv,/I
(28)

P e a()(k()T} n() 3 1 koT 1 koT '
vpvp(dc 16 2m, t'() (1+ f2/E2) (0 —2Eca2+ 2E2) 2 kvc/I

where the integrals I„($) are defined by Eq. (20) and no by Eq. (10).
For the nondegenerate case ((m*vti(d, )' » k()T» m~v, 'I,

P""o(koT')"" e„('-' E"o+' E I (]) '('2 I (])16s I pv, (d, ), k()T 2 (Ilv, /I

(29)

(30)

47] 82 2m~2 i ' 2 Iv /I
(31)

where the integrals I„(() are defined by Eq. (23)
and n is given by Eq. (15}.

C. Screened ionized-impurity scattering

For degenerate electrons (with q, '» l, where q, is
the Fermi- Thomas screening wave number),

Ze~ &
yg Pj'. e2a p

2 mc(4), (k2T)"'I(x) 2m,

g ——,'E, ao+ a Erx exp
0

xln(4k()T+E, )E,1 (nk T()/E) (36)

(32)

2m, [4(I, —
2 EE a()+ —,

' E ) +E,]E,a2,

ge2 2 Nc ao
1628 (dc(r. - -,' E a() EE+ E)E

(K(d, )'
[4(l' —2E2a2+ 2EE) + E,] E, ao

ge2 2 Sg ploNie ao

4)( 2m, (d, (t' —i2E a()+ —,
' Ec) (t'()+ 5()/E2)

with

Kq, 2' In()
2m, Xm,koT

I(x) and n() are given by Eqs. (16) and (1 i), re-
spectively. The factor 1 (nk T()/E) arises from the
cutoff of the logarithmic divergence with E, as the
proper physical cutoff energy and involves the as-
sumption' that E, «koT. In the case of cutoff by
collision broadening, E, is given by

(33)
where Ze is the charge on the ionized impurity, N;
is the impurity concentration, and

—,
'

Ace,
c 2 (k T)1/2

where

(38)

8 q, 22e E dn()

2m, m, x dgo
(34) se2 ' N,F(3k,T) y'

8y2 2(22m )' (39)

dn()/dt() being the density of states at the Fermi
level; n() is given by Eq. (10).

For nondegenerate electrons (with q, '» l),

is the co1lision frequency for screened ionized-im-
purity scattering with

y = E(1 +E/E, )

y'= 1+ 2E/E,

(40)

(41)

x ) (4k, E ~E)E)' ) (44),,
C F(E)= ln(1+4y/E, ) —(1+E,/4y) ' (42)
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TABLE I. Material parameters.

Effective mass m~/mo
Band gap E~ (eV)
Static dielectric constant X

Material density p (g/cm3)
Debye temperature 0 ('K)
Sound velocity v~ (km/sec)
Temperature T ('K)

0. 013
0.265

18.7

5. 82
278
3.8
4. 2

Reference 13.

On the other hand, cutoff energy due to interference
of electron waves (non-Born scattering) following
Skobov' is given by

E,-k f /2m aof (43)

where f, the scattering amplitude, can be shown
to be given by

e 2 ' ~'/2F(3koT)f
gx (k T)i/2 y3/2 (44)

III. NUMERICAL RESULTS AND DISCUSSIONS

In order to have a quantitative estimate of the
effect of nonparabolic energy bands on the helicon
damping, some numerical results have been pre-
sented in the form of graphs for the typical case
of n-InSb, assuming screened ionized-impurity
scattering to be the dominant scattering mechanism
at low temperatures. However, with a judicious
combination of the various scattering mechanisms
as warranted by the experimental conditions, the
results can be applied to any semiconductor char-
acterized by spherical nonparabolic energy bands.
An additional advantage with n-InSb is that it is
known to possess a very low electron effective
mass, which allows one to realize the EQL at
relatively low magnetic fields. Numerical param-
eters used in the calculation are listed in Table I.
The helicon damping is governed by the ratio of the
dissipative conductivity to the Hall conductivity, i

i. e. , o„/o„and is weak if (o /o„)(1. But it is
well known from dc transport theory that v,„
(=nec/H) remains independent of the quantum ef-
fects, even for the condition I(a) )) kpT as long as
the car."ier density is conserved' [i.e. , n en(H)].
Therefore, any change in helicon damping due to
the nonparabolic energy bands would be attributed
to the corresponding change in magnitude and the
magnetic field dependence of g,„as compared to its
value in the parabolic-band approximation. It can
be readily seen that all the expressions for 0 re-
duce to the corresponding expressions of Kubo et
al. if k~, «E~, which is the case for a parabolic-
band model.

Figure 1 shows the variation of o„„asa function
of H in a degenerate sample (no-10 /cm ) when

ionized-impurity scattering is the dominant scat-

lo"-
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3.0 5.0 7.0
H (.10 6)

FIG. 1. Magnetic field (H) dependence of 0~ and a»
for degenerate electrons (go- 10 ' cm ); Curve I (solid
curve), o~(H) for nonparabolic energy bands; curve II
(dashed curve), g~(H) for parabolic energy bands; curve
III, Hall conductivity g» as a function of H.

9.0 IO.O

tering mechanism. The whole curve (marked I)
corresponds to our results appropriate for non-
parabolic energy bands, while the dashed curve
(marked II) refers to the corresponding results
for parabolic bands as described by Kubo et al. '
and Roth and Argyres. ' It is apparent from the
figure that the inclusion of nonparabolicity leads
to stronger damping of the helicons due to increase
in o„„for the same value of the magnetic field.
The plot of Hall conductivity cr„„as a function of H

is also shown on the same figure (curve marked
III). The intersection of the curves o„(H) and

o„(H) determines the so-called critical field H,~
which in turn determines the boundary between
helicon transparancy and absorption regions. It
is seen from the figure that the critical field cor-
responding to nonparabolic energy bands lies at a
lower value (-360 kG) of the magnetic field as
compared to parabolic bands (-550 kG). Conse-
quently, the wave would get totally absorbed at a
lower value of the magnetic field in the nonpara-
bolic case. Figure 2 shows the corresponding
variation of o,„(curves marked I and II and o„
(curve III) both as a function of H for nondegenerate
electrons (no- 5. 0x10' cm ). The dependence of
a„„onH in this case is qualitatively different from
that in the case of degenerate electrons. cr„„de-
creases with H while it increases with H for de-
generate electrons. It is worthwhile to point out
that since the mechanism with the largest cutoff
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energy by nature cuts off the logarithmic diver-
gence first, ' we have calculated the cutoff ener-
gy E, from both collision broadening and non-Born
scattering as a function of H in order to determine
their relative importance. It is found that the
mechanism of non-Born scattering is more effec-
tive in cutting off the divergence than collision
broadening for the parameters chosen in the pres-
ent calculation. Figure 2 also shows that the crit-
ical field in this case lies at a much lower value
as compared to degenerate electrons. Moreover,

I

3.0 4.0
H C}056)

FIG. 2. Magnetic field (H) dependence of 0~ and 0~
for nondegenerate electrons (no-5. Ox10'3 cm ); Curve
I (solid curve), cr~(H) for nonparabolic energy bands;
curve II (dashed curve), cr~(H) for parabolic energy bands;
curve III, Hall conductivity cJ~ as a function of H.

the critical field corresponding to parabolic and
nonparabolic energy bands do not differ much, un-
like the previous case of degenerate electrons.
For the parabolic model it is -130 kG while the
inclusion of nonparabolicity makes it -110kG.
This is to be expected because the effect of non-
parabolicity of the energy bands would manifest
only at very strong magnetic fields. Physically,
this is evident from Eq. (5) because m~ increases
with H through the factor ao. The numerical re-
sults should find application in the interpretation
of EQL helicon-damping experiments performed
for contactless investigation of n-type-InSb sam-
ples. However, an explicit comparison of the the-
oretical results would require the experiments to
be carried out in very strong magnetic fields such
that I'co, » koT. Such strong magnetic fields are
experimentally feasible with the present technol-
ogy, e. g. , experimental magnetoresistance mea-
surements in InSb have been reported in the li-
terature in pulsed magnetic fields up to 800 kG.

In summary, we have provided a more realistic
model appropriate for the determination of helicon
damping in narrow band-gap semiconductors like
n-InSb in the EQL by including the nonparabolic
nature of the energy bands in the calculation. Our
calculations show that the effect of nonparabolicity
in the band structure on the helicon damping is
important in quantum magnetic fields. In strong
magnetic fields such that Scu, = E~, the nonpara-
bolicity of the energy bands, in general, leads to
a stronger damping of the helicons as compared to
the results of the parabolic model.
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