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A calculation of the diamagnetism of graphite including the effects of trigonal warping of the Fermi
surfaces has been performed using Fukuyama's formulation of the diamagnetism of Bloch electrons.
Inclusion of the trigonal warping increases the diamagnetism by about 13% at low temperatures and

reduces it by about 1% at high temperatures. A paramagnetic constant is used to represent all effects
not associated with the free carriers. The experimental diamagnetism can be fitted quite well using

values of the energy band parameters which give agreement with the de Haas-van Alphen effect,
optical absorption, and magnetoreflection experiments.

I. INTRODUCTION

The diamagnetism of graphite is large and aniso-
tropic. " Several years ago a calculation was pub-
lished3 which gave agreement with experiment and
which showed that the large diamagnetism has an
interband origin. However, since that time a great
deal more has been learned about the energy-band
structure of graphite. The values of the energy-
band parameters used in the previous calculation
are in disagreement with more recent experiments.
In particular, it is now known that the trigonalwarp-
ing of the Fermi surfaces, which was neglected in
the previous calculation, is very significant. In
order to resolve these discrepancies, we have
made a new calculation of the diamagnetism which
includes the trigonal warping.

Until recently, the general formulas available
for calculating the diamagnetism of band electrons
have been very complicated. In the previous cal-
culation of the diamagnetism of graphite it was
considered easier to solve for the Landau levels
directly and then evaluate the partition sum. Such
a method works well if the Fermi surface has ro-
tational symmetry about the magnetic-field direc-
tion, but would be very awkward for the case of
trigonal warping. Recently Fukuyama7 has pub-
lished a new general formula for the diamagnetism
of band electrons which is much simpler than pre-
vious formulas.

In Sec. II. we transform Fukuyama's formula in
order to simplify the subsequent calculation. In
Sec. III. we work out the diamagnetism of graphite,
and in Sec. IV we compare the results with experi-
ment and draw conclusions.

II. MODIFICATION OF FUKUYAMA'S FORMULA

Fukuyama's expression~ for the magnetic sus-
ceptibility of Bloch electrons when the magnetic
field is in the z direction is

k T+Jd kT k'kk ky ky k ' 2'1)
(e' kc)'
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n

Atomic units (energy in Ry) have been used; y"'
are components of the momentum matrix, g is the
Matsubara Green's function, '

g=(z„+ p, -X) ', (2. 2)

1 eKy" 2 ak. p~'5 k (2. 3)

The first modification we make takes advantage
of the symmetry of the model Hamiltonian for
graphite, which depends upon k„and k, only through
k, =2 '~'(k, + ik, ). We define y'=2 '~'(y" +fy') and
substitute into Eq. (2. 1), producing several terms
The cyclic invariance of the trace can be used to
eliminate terms with three y' factors and one y,
and vice versa. The fact that the susceptibility is
invariant under rotation about the magnetic-field
direction eliminates terms with four y' factors or
four y factors, so that

ke T Z d kTr[y'gy'gygyg
(e'/Kc)' 3r'

n

(2. 4)

The result can be made more compact by a se-
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where z„= (2n+ 1)iwks T, K is the Hamiltonian in the
absence of the magnetic fi.eld, and p, is the energy
of the Fermi level. The sum on ~ is from —~ to
~, the integral on k is over the Brillouin zone, and
the trace i.s taken with respect to the band indi. ces.
The susceptibility is dimensionless (emu/cm~), and
the spin degeneracy is included. Fukuyama has
shown that the formula is equivalent to the previous
more complicated formulas when the Matsubara sum
on n is performed before the matrix algebra and the
integrations are carried out. Working out the ma-
trix algebra first simplifies the calculation i.n some
cases, including the present one. The formula is
valid in any representation, but we will work in
the k. p, or Luttinger-Kohn (LK) representation, '
in which
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ries of partial integrations. From Eq. (2. 3) and
the definitions of k, and y', we have

(2. 6a)

By
Bk, Bk (2. 6b)

Bg (2. 6)

These relations allow us take derivatives and to
perform partial integrations on the expression

83
d k „2Tr(y g)=0,

+
(2 7)

which vanishes because the trace is periodic in k
space. The result is

fd kTr(y'gy'gygy g)

2 fd'k»(lg' —r'gr gr'gr g), (2. 6)

where I and 0 are the unit and null matrices, re-
spectively. Combining with Eq. (2. 2) we obtain a
result similar to Fukuyama's,

verges) and call this contribution to the suscepti-
bility y~. If the bands are far above or far below
the Fermi level everywhere outside the region in
which the k p model is valid, then the correction
to y» due to the extension of the region of inte-
gration is a constant and may be combined with the
constant contribution already mentioned. This
condition is met in graphite.

In the k ~ p approximation a subset of bands are
chosen which are close in energy to each other,
but are far from all other bands. In the "full" ver-
sion of the approximation a transformation is made
which removes to first order the interaction between
the chosen bands and all other bands, leaving a sub-
Hamiltonian quadratic in k. In the "bare" version,
such as the Slonczewski-Weiss model for graph-
ite, ' only the linear terms in k are kept. In this
section we will treat the case of the "full" approxi-
mation, though in Sec. III we specialize to the
"bare" case.

Since we now have a finite sub-Hamiltonian, the
Green's function can be obtained by simple matrix
inversion,

from which follows g= N/D, (2. 11)

kg T I Cf k

&&»(Sg' r'gr g-r'gr g). '

Use of Eq. (2. 6) then produces the form

kg 2

(2 9)

where N is the transpose of the matrix of cofac-
tors, and D is the determinant, of the matrix
z„+ p -X. It can be shown that the y's are still
given by the derivatives of the sub-Hamiltonian, but
the second half of Eq. (2. 3) is no longer true. The
y's are linear in k, so that the derivatives of the
y's are constant matrices,

8 2

x Tr —,'ga - r', g . (2. 10) By By 0, (2. 12a)

Either Eq. (2. 9) or Eq. (2. 10) is more convenient
for the case of graphite than Eq. (2. 1), but the lat-
ter form has only four matrices to be multiplied
together.

We now specialize to the k ~ p approximation,
in which a truncated sub-Hamiltonian is used in a
small region of k space. Neglecting the dependence
of the energy-band structure upon temperature and
doping, all contributions to the magnetic suscepti-
bility which depend upon the temperature or small
changes in the Fermi level come from states very
near the Fermi level for pure material. Thus we
can write the susceptibility as the contribution cal-
culated using the sub-Hamiltonian in the small re-
gion plus a term independent of temperature and
Fermi level which comes from the rest of the oc-
cupied bands and the integral over the rest of the
Brillouin zone. The region of integration for the
contribution from the k ~ p sub-Hamiltonian should
be the region in which the k ~ p approximation is
valid. However, we extend the integration to in-
finity in the k, k, plane (provided the integral con-

By By
Bk ' Bk,

(2. 12b)

Tr(y'Ny'N) = D Tr(y'gy'g)

We will now use the above results, together with
Eq. (2. 6), which is still valid when the sub-Hamil-
tonian is quadratic in k, to change Eq. (2. 10) to a
form which is easier for calculation. If we sub-
stitute (2. 11) into (2. 10), one term of the result
involves (y'BN/Bk, )' The ele.ments of the matrix
N are power series in k (for the 4&4 bare k p
matrix of graphite, N is cubic in k) and BN/Bk, is
a simpler matrix, so that this term is simpler to
evaluate than Eq. (2. 10). The other terms in the
expression for the susceptibility can be expressed
in terms of derivatives of D and traces of very
simple operators. For example, one term involves
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,' D——Tr(y'g) —Tr(cog) l, (2. 13)
8

8k

and the remaining terms can be expressed as a
derivative of the above term plus simple correc-
tions. Finally, Tr(y'g) = Tr(y'N)/D can be elimi-
nated using the theorem

(2. 14)

8D 8 8D
8k ~, 8k

(z+ i4-x)„~' s(z+ i4-x)~,
= —2 Z y~, N~ = —2 Tr(y'N).

Using the above results and the cyclic invariance
of the trace, we arrive at

s j 1 8D 1 8
ka T Z d k z Tr(g ) —— — Tr(~g)+ Tr(gg)&l4~ kc D 8k, 2 8k, 8k

As pointed out before, this form involves simpler
matrix algebra than Eq. (2. 10).

The result (2.15) still has the disadvantage that
after the Matsubara sum has been performed, the
D in the denominator will give rise to a third de-
rivative of the Fermi distribution function with re-
spect to energy, while the standard formulas for
diamagnetism involve the Fermi function and its
first derivative only. To avoid this difficulty, we

1 8D 1 8 1

D 8k, 38k, D

and similar relations. The final result is

(2.16)

2 8D 8D 82D 8D 8sD

D kk. kk kk. kk kk. Bk. kkk

I

make a series of partial integrations in the k„k,
plane. The surface terms vanish as, in the case
of graphite, the integrand falls off as k s and we
have extended the integration to infinity. The inte-
grations are made by noting that

2

kaT ~ d k —', Tr(g ) ——Tr &u ~ +0 + z Tr(QN)+g
4m' Sc

(2. 1V)

where

1 4 8'D ' 1 8'D8'D 1 8'D 1

6 P sk, sk Psk.' sk' 2D sk'sk' P ' sk,
(2. 18}

Though the result looks more complicated than Eq.
(2. 10), it is in fact easier to evaluate.

III. APPLICATION TO GRAPHITE

The Slonczewski-Weiss (SW) Hamiltonian44 de-
scribes the four electron energy bands that pro-
duce the Fermi surface near the H-Kedge of the Bril-
louin zone. The form of the Hamiltonian is given

by

l
H1s H2s

H1s —H2s

kk, k'„'}
Hz4 —H44

Zs 0ss

Hnz Ez

(3 1)

In order to write the matrix elements conveniently
in terms of k, (defined relative to the zone edge),
we make a 90 rotation in the coordinate system
from that previously used. ' Accounting for the

factor 2 ' in the definition of k„ the matrix ele-
ments can be written as

Z, =~+y,r+-, y,r,1 2

2=~ —&1~+-.rS~1

1 2zs= -, r2r,
H43 2 ~3 (- ro + r4F) a,k„
Hz, =

& ~S (yo+y4r) aok,

H43 = (—') y41'aok, ,

(3.2a)

(3.2b}

(3.2c)

(3.2d)

(3.2e)

(3. 2f)

where I' = 2 cos( —,'cok, ), co is the lattice parameter
in the z direction, perpendicular to the basal plane,

ao is the in-plane lattice parameter, and 8 andthey,
are the energy-band parameters defined previous-
ly s, 12

The 8% Hamiltonian is the "bare" k. p approxi-
mation in the k„k, plane. Therefore, in calculat-
ing the magnetic susceptibility with the magnetic
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field parallel to the z axis, we drop all terms corn-
ing from parts of the Hamiltonian quadratic in

k, k„ including the g term which came from the
k on the diagonal of the full k p Hamiltonian. Thus
the only term kept in Eq. (2. 17) is 2, for which we
need y'SN/Sk, , D, and the various derivatives of D.

The SW Hamiltonian gives the following expres-
sion for D,

e = —,
' e,(1+v)' ——,

' e, (1 —v)', (3.3c)

t', + g3= 2 "'g'cos(3e),

with e, =z„+ p —E, , and with the dimensionless
quantities v=y4I'/yo and f, =(z) ~ aok, . The trigo-
nal warping is proportional to ys and comes from
the term containing

D = eze~e2 —2ese, y ot K + r 0(1 —v')'I,'0

+ ysI'e yZO(t', + t' )+ ysI' eLe2f, r,
where

e, = —', e&(1+v) + —,'e2(1 —v),

(3.3a)

(3.3b)

where 8 is the azimuthal angle. The needed de-
rivatives of D may be easily obtained from Eqs.
(3.3). To find N, the transpose of the matrix of
cofactors of z„+ iL -K is formed using Eq. (3.1)
for K. After carrying out the indicated operations
in Eq. (2. 18), we find

(2D) ao yp(1 ese, —
~ eze, yo(1 —v ) g + zy 0(1 —v ) t —4(1 —v ) D()

+(r,I /ro)'[--', e~ezyo(1 —v ) f +(4e, —e')yof + fese, e,ez ——,'(y, i'/yo)'e&ez]+2D(1- v ) ], (3.4)

where

Do = [eye, ——,'yo(1 —v) t ] [ezes ——,'yo(1 +v) I' ]

is the determinant D with ys=0, and p =2/, p . We
have used Eq. (3.3a) so that all the dependence on
azimuthal angle is in D.

Up to this point the calculation is exact in terms
of the SW Hamiltonian. However, the angular de-
pendence of Z makes the subsequent calculation
complicated. We now assume that the effect of ys
is small, and expand in powers of ygyo. Since the
first-order contribution is zero by symmetry, we
reta, in terms through second order in y3/yo. With
these considerations, the integral on k„, k, can be
easily performed in polar coordinates, ' giving a
sum of terms that are ratios of polynomials in z„,
some of which are multiplied by ln(ez/e, ). The k,
integration must be done numerically, so we next

Xsw
= Xo+ &X~ (3.8)

where Xo is indePendent of ys and 5X is the correc-
tion to second order in ys. After carrying out the
sums and rearranging terms, we find's

proceed with the Matsubara sum on yg. The loga-
rithms can be converted to simple poles by intro-
ducing a dummy integration,

»[(z„+u -E,)/(z„+ p —E,)] = f ' dE/(z„+ p —E),
(3 ~)

which puts the result in a form that makes the sum
on n easy to carry out' by transforming to contour
integrals in the complex energy plane. '

We call the susceptibility calculated using the SW
Hamiltonian X~. The value of X~ is twice X» in
Eq. (2.17) as there are two inequivalent H Kaxes-
in the Brillouin zone. The result for X~„can be
written in two parts,

(1 — ) f(E ) f(E)(1 P ,f(Lg) f(E))--
12 E, -E, 12 E, -E,

(1 —v ) f(Ez) (1 —v) (Ez —Ez) t f(E)dE
8 Z —L (1+ ) (E —E)(L—

L, )(E —LI )
'

where
L = [E,(1+v)z —Ez(1 —v) ]/4v,

N, = (e'/kc)'(3a' /2z'c0()),

(3.7b)

(3.7c)

The normalization No contains the extra factor two
due to the two inequivalent H-K axes in the Bril-
louin zone. Also, we find's

and where $ =ppP the limits on $ are from —m

to z, and f(E) is the Fermi distribution function.

Npys d$Fz
8 s G E —G Es dE&x=—

4 8Es ~ E —Es
2
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—V
2

+ G(E,}ln + G,(E,) —+f (E,)1+v (3. Sa)
l5

where

G(E) =f (E) [(x, + x, )/(x, —x,)']

x(o&x~+24x, xo+o&xo), (3.Sb)

G, (E) =,f (E)[(x, +x,)/(x, —x,)]', (3.Sc)

and where x~ = (1+v) (E —E,) and xo = (1 —v) (E —Eo)
The expression for X, in Eq. (3.7a) is equivalent
to that previously obtained.

The high-temperature limit has been used to
estimate ' the value of the parameter yo It
should be instructive to see if the terms due to
the inclusion of trigonal warping could alter the
high-temperature limit of X~. To second order
in (y4/yo), the high-temperature limits are

Xo
= —ohio(yo o y4)/Sks T,

vX,y', [1 ~(y, —/y, )'I
X 6k~T

(3.Sa)

(3.9b)

The corrections due to y4 are small as for usual
parameters (y4/yo)o=0. 3%. Typical values of y,
and y3 indicate about a 1% correction to the high-
temperature X~ due to y3.

At low temperature, Xo is approximately pro-
portional to yo/y, and 5X is approximately propor-
tional to yo/yo. Thus the fractional correction
at low temperatures is (yo/yo)oy, yo', significantly
larger than the high-temperature correction (yo/
yo)'

To obtain X~ as a function of temperature and
Fermi level, the integrations on E and $ must be
done numerically. It is economical of computer
time to first evaluate X~ at zero temperature. In
the zero-temperature limit, the Fermi function
becomes a "step" function in Ill, —E, so that the
energy integrations and differentiations in Eqs.
(3.7a) and (3.Sa) can be done analytically. Care
must be taken in the numerical integration on $ due
to the appearance of singularities. For intrinsic
material, p, = —.024 eV, about ~ of Xo comes from
the region near p, = E3, which we take to be a slice
whose thickness is 10% of the E-to-H distance.
About 75% of 6X comes from the same region, which
is also where the Fermi-surface "legs" are lo-
cated. However, we cannot correlate this contribu-
tion with the details of the Fermi surface as we
have made a power expansion in y3.

The zero-temperature susceptibility as a func-
tion of Fermi level is shown in Fig. 1. For all
values of y3 there is a logarithmic singularity at
p =yo(&/y, )'=0 if yo and n have the same signs.
The effect of y3 is to introduce inverse-square-
root singularities on either side of p=2y2. The
susceptibility is strongly diamagnetic when the

-75 I

-,04

p, (ev)

FIG. 1. Magnetic susceptibility of graphite at O'K as
a function of Fermi level. The magnetic field is parallel
to the c axis. The calculation is for the Slonczewski-
Weiss band model with the parameter values: po = 3. 11eV,
y&

——0. 376 eV, p2= —0. 0208 eV, &4=0. 197 eV, Y5= —0. 01
eV, and Q= —0. 012 eV. The solid curve is for F3=0.29
eV and the broken curve is for p&

——0. 0. The suscepti-
bility changes sign at approximately p=+0. 4 eV, and

is zero outside the overlap region, —0. 764 eV& p
& 0. 740 eV.

Our numerical calculations show that the effect
of taking y3= 0.3 eV while the other parameters
have reasonable values is to increase the diamag-

Fermi level is near the doubly-degenerate E3band,
weakly diamagnetic or paramagnetic in most of the
rest of the overlap region, I p -4 —2y, l)12y, I, and
identically zero outside of the overlap region.

The susceptibility at finite temperature can be
calculated easily from'

X(» ~) = —J „«X(E 0) sf (E —u)/sE (3 1o)

This method is particularly suitable because of the
limited range of p, in which X~ (p, 0) is nonzero.
The infinite singularities in Xov(p, 0) are all inte-
grable, but special care must be taken in the nu-

merical method. Our calculations reproduce the
previous result when the same energy-band param-
eters are used. The use of Eq. (3.10) clearly in-
dicates that the effects of thermal variation in the
model parameters are not included. These effect
will be discussed in Sec. IV.

The variation with temperature in the Fermi
level was taken into account. The computer pro-
gram calculated the difference in hole and electron
concentrations ateachtemperatureand Fermi level
chosen. '6 It then used an interpolation scheme to
find the Fermi level for any specified excess car-
rier concentration, and the susceptibility appro-
priate to that Fermi level.

IV. DISCUSSION OF RESULTS
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netism by about 13% at low temperatures and re-
duce it by about 1/& at high temperatures. Thus the
crude estimate given earliers is valid only at high
temperatures. We will see below that the increase
in diamagnetism at low temperatures is essential
in fitting the experimental data.

The most complete data for the magnetic sus-
ceptibility of pure graphite as a function of tem-
perature was taken by the torque method, which
gives the magnetic anisotropy X3-X„where X3 is
the magnetic susceptibility along the c-axis and X,
is that perpendicular to the c axis. The most
modern data was taken by Poquet et al. ~ and is in
fair agreement with the older data of Ganguli and
Krishnan. Our calculation shows that Xs is equal
to g~ plus a constant (independent of temperature
and Fermi level). The theoretical expression for
Xg has a similar form. It has been estimated that
the temperature-dependent part of X, is only about
one-thousandthe the temperature-dependent part of

X3, so that we will adopt the expression

X3 Xi =Xsw+Xa ~

where X~ is independent of temperature and Fermi
level, and combines the previous constant with X,.
In our work X is a disposable constant which is
used to obtain a good fit to the data. It would, how-

ever, be interesting to calculate X . We have cal-
culated one of the contributions to X~, the correc-
tion coming from the extension of the region of
integration to infinity. We choose the radius of
the cylindrical region of integration to be one-
tenth the K-M distance and find a value of 2. 4
x10 6 cm'/g (we now divide the theoretical sus-
ceptibility by the density of graphite at O'K, 2. 22

g/cm), to obtain the specific susceptibility). Ef-
fects which are nearly isotropic, such as the Pauli
paramagnetism and the diamagnetism of the ls
bands, will not contribute importantly to the mag-
netic anisotropy.

Our assumption that X, is constant could be criti-
cized on the grounds that the measured X, is tem-
perature dependent, "~ varying by about + 0.4
x10 8 cm)/g. However, this quantity is difficult
to measure, and if the sample is bent the measured
value is a combination of the true X, and the tem-
perature-dependent X,. In any case, the variation
is small compared to the magnetic anisotropy,
though it is about twice the discrepancy of fit in
our best results.

In fitting the experimental results, we have as-
sumed that the samples are perfectly pure and

that the energy-band structure does not change
with temperature. Our best result is shown in

Fig. 2. It is seen that the fit is quite satisfactory,
except at 20 'K. As will be discussed below, the
band parameters used in the calculation give agree-
ment with a number of other experimental results.
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Ch

-IO
E

CO

O

x ~o

4.0

2.0

I.O

05

-30-

ICP/T (eK )

)

10

) 0.0

0
I3 50

FIG. 2. Magnetic anisotropy of graphite as a function
of inverse temperature. The circles are the experimental
data for pure graphite (Ref. 2). The numbers on the
curves represent (P —n) X10, where p and n are the
numbers of free holes and electrons per carbon atom.
The curves are calculated using the parameters listed
in the caption of Fig. 1, and with X&=2. 0&&10 cm /g.

We have calculated the magnetic susceptibility
versus temperature for a wide variety of sets of
band parameters. The procedure was to fix the
values of yo, y3, y~, and 6, and to choose values of

y&, y~, and y4 which gave agreement with the ma-
jority de Haas-van Alphen periods and effective
masses, ' and with the valence-band effective mass
at point K. Fixing both the valence- and conduc-
tion-band effective masses at point K gives agree-
ment with the magnetoref lection results from
point K. A least-squares technique was used, as
there were five experimental data and three param-
eters. The five quantities were always fit within or
almost within the experimental uncertainties. Val-
ues of these and other properties for the band
parameters used in Fig. 2 are listed in Table I.

The high-temperature susceptibility depends al-
most exclusively upon yo and X~. In the previous
work X~ was not included and yo had to be set to
2. 8 eV in order to obtain agreement with the high-
temperature results. However, the magnetore-
flection results' at the I point yield that yo=3. 11
+0.05 eV. In the previous work y, had to be chosen
as small as 0.27 eV in order to obtain a large
enough diamagnetism at low temperatures. This
conflicts with the value from the infrared absorp-
tion, y&=0. 4 eV, and the values of yo and y,
used violate the relation yJy, m25 eV, which is
obeyed by the de Haas-van Alphen effect, '~ cyclo-
tron resonance, and magnetoref lection at the K
point. In addition, the parameter set used in pre-
vious work does not agree with the other informa-
tion derived from the de Haas-van Alphen effect
and magnetoref lection. However, the increase in
the low-temperature diamagnetism due to ys allows
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TABLE I. Comparison of experimental and theoretical
properties for the energy-band parameters listed in the
caption of Fig. 1 and for a Fermi level of —0. 0246 eV.

Property Experiment Calculation

de Haas-van Alphen frequencies (in tesla)
majority electron 6. 62 + 0. 13~
majority hole 4. 83+ 0. 10
minority hole 1 0.33+0.02
minority hole 2 0. 8+0. 1

Effective masses (divided by free-electron
majority electron 0. 058+ 0. 002~

majority hole 0. 040+0, 002
minority hole 1 0. 004 + 0. 0004~
minority hole 2 0. 002'
valence band at K 0. 105+ 0. 003~

~) x10' + 0. 04/atome
~(p+g) x10 (2. 5 + 0. 3)/atom'

6. 67
4. 76
0.23

mass)
0. 058
0. 041
0. 003

0. 106
0. 02/atom
2. 2/atom

~Reference 18.
Reference 26.

'References 27 and 28.
Reference 4.
'J. W. McClure, Phys. Rev. 112, 715 (1958).

a larger y, to be chosen and the use of the constant

X~ allows yo to have other values. In fact, it is
possible to fit the susceptibility data with yo values
ranging at least from 2. 8 to 3.2 eV. In our dis-
cussion, a reasonable fit to the magnetic anisot-
ropy means that the maximum deviations after the
optimum ys is chosen are less than 0.4x10 ' cm'/g.

The parameters y~ and b have important effects
upon the magnetic anisotropy, while the effect of

y5 is minor. For fixed values of yo and y3 we can
make a reasonable fit by adjusting & and g~. Thus
for yo= 3.11 eV and y3= 0.29 eV, the values in the
range 4 = -0.01 + 0.002 eV give good fits, but if
y3=0. 21 eV, 4 must be chosen less than -0.02 eV.
The value y~ = 0.29 eV has been found by Schroeder
et a/. from the K-point magnetoref lection results,
while Ushio et al. ~ found y3=0. 21 eV from the
cyclotron-resonance results. ~5 The analysis of
the magnetoref lection'9 at the H point indicates
that l4) =0.008+0.004 eV, which favors the higher
value of y~. Negative values of b in this range are
consistent with the minority carrier de Haas-van
Alphen frequency from the 0 point ~ being the
lower of the two observed values. I To obtain
agreement with the higher minority frequency~~ (or
with the average of the two frequencies, as pro-
posed by Woollam ') requires n values of the order
of 0.004 eV or larger. To fit the susceptibility
with such b, values would require a y~ of at least
0.35 eV. Thus the parameter set used in Fig. 2

agrees with the diamagnetism, de Haas-van Alphen

effect, optical absorption, and magnetoref lection
at both the B and K points. It disagrees with the

y3 value found from the cyclotron resonance and

with the alternant interpretations of the minority-
carrier de Haas-van Alphen effect. The changes
necessary to agree with the latter two results are
incompatible.

Since we now calculate the susceptibility per unit
mass, there is no temperature dependence due to
the change in the volume of the unit cell, but the
values of the energy-band parameters do depend
upon the temperature. However, at high tempera-
ture where the band parameters have changed the
most, the susceptibility depends chiefly upon the
value of yo. The a spacing (in-plane) changes~9 30

by about 0.1% from 0 to 2000 K, which would
cause a change in yo of only about 0. 4%~, a negli-
gible effect in the present work. In contrast, the
change in the c spacing 9 30 in the same tempera-
ture range is 5.6%, though it is only 0. 5% from
0 to 300 'K. Estimates of the rate of change of
the band parameters with c spacing were taken
from the de Haas-van Alphen experiments as a
function of pressure. '~ The rate of change of
the susceptibility with each band parameter was
calculated directly. The results are that the tem-
perature dependencies of y, and 4 have the largest
effects, and the total effect could cause deviations
of + 0.4 x 10 8 cm~/g. As pointed out before, this
error is small compared to the magnetic aniso-
ropy, but is about twice the maximum deviation
in our best fit.

The most serious discrepancy is at 20 'K, where
the experiment is 2. 0x10 6 cm~/g more diamag-
netic than the theory, an error of 6.6%. This
discrepancy remains about the same for all the
parameter sets tested. One possible explanation
is that the power series in y3 is not accurate
enough. A priori, since the P~ term made a 13/p
correction, one would expect the y3 term to make
a correction of (13/q)~ =1.69/~ or 0.5x10 6 cm~/g.
However, the coefficient of the y34 term could be
four times larger than expected. Another possi-
bility is experimental error. Shoenberg's de
Haas-van Alphen data at 1.27 'K oscillate about
—30.7x10 ' cm~/g. This is in good agreement
with the data of Poquet et al. ~ at 20 'K. Our cal-
culations show that the susceptibility changes by
less than 0. 1 x10 ~ cm~/g between 0 and 20 K.
However, Shoenberg has stated3 that his mag-
netic-field calibration was probably off a few per-
cent. His de Haas-van Alphen periods are 4%(;

higher than those of Berlincourt and Steele, and

8%& higher than those of Soule et al. ,
' so that the

corrected average magnetic anisotropy is -29. 5
x10 ~ cm~/g or -26.4x10 ' cm~/g. In the data of
Berlincourt and Steele3~ the average is about —34
x10 cm~/g, but the average depends upon tem-
perature and magnetic-field strength, so the value
is unreliable. It would be useful if a new measure-
ment of the low-temperature diamagnetism could



2474 SHARMA, JOHNSON, AND McCLURE

20

l5

O
lO
E
CP

Cl

O

—lO

X
I

0 I I I

l5 lO 5
tOONORS/ATOM) x l 0+

I I I

0 5 10 l5 20
(ACCEPTORSATQH) xlO+

FIG. 3. Magnetic anisotropy of graphite as a function
of doping at 300'K. The points are the data of Soule
(Ref. 36). Both curves are calculated using the same
parameters as for Fig. 2, except with X&=1.Ox10
cm3/g. The solid curve is for complete ionization of
acceptors or donors and the broken curve is for 50%

ionization of acceptors.

be made.
We have also compared with the data on the mag-

netic susceptibility as a function of boron contents
at 300 'K. Boron is known to be an acceptor in the

graphite single crystal. 36 In Fig. 3 we plot the ex-
perimental data for the magnetic anisotropy versus
the boron content and the theoretical curve for the
magnetic anisotropy versus the excess hole density
(assuming the rigid-band model). There is a dis-
crepancy for pure material due to the discrepancy
between the data of Poquet et al. 2 (to which the
theory was fitted) and the data of Soule. ~ Soule
measured y3 and y, directly, and the anisotropy
is obtained by subtraction. We assume that the
discrepancy is due to the difficulty of measuring

and recalculate the theory with a different
chosen to agree with Soule's data. We also follow
Soule and assume that a fixed fraction of the boron
ionizes, producing the dashed curve, which is in
reasonable agreement with experiment. There is
also data on the diamagnetism of boronated poly-
crystalline graphite as a function of temperature. s~

The data qualitatively agree with the family of
curves in Fig. 2, but differs quantitatively. This
may be due to the difference between single and
polycrystalline samples.
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