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In order to make tight-binding calculations possible for substances with f electrons, the overlap (or
energy) integrals for (s-f), (p-f), and (d-f) interactions have been calculated. Using the two-center
approximation and considering first- and second-nearest-neighbor contributions the results have been

applied to the fcc lattice.

I. INTRODUCTION II. TRANSFORMATION OF WAVE FUNCTIONS

In recent years there has been growing interest
in the investigation of rare-earth elements and
compounds. ' For the metals many band-struc-
ture calculations ' are available for comparison
with experiments related to the electronic struc-
ture. In the case of compounds, in particular of
magnetic semiconductors, the situation is less
satisfactory for several reasons. First of all,
there exist only a few calculations. Further-
more, the high-lying 4f-electron states cause se-
rious troubles, apart from general difficulties met
with in any band calculation for heavy elements.

Recent experiments on photoemission of spin-
polarized electrons from magnetic materials seem
to indicate that the usual assumptions of band theo-
ry could be in error, at least in the case of @-
electron magnetism. Since the magnetic-interac-
tion mechanism for f-electron systems is differ-
ent, ' we expect it to be particularly fruitful and
interesting to analyze the position and dispersion
of f-like and neighboring bands by means of a tight-
binding calculation, especially in view of recent
substantial improvements of this method, and in
order to see how the results compare with the
above-mentioned discrepancies.

The inconveniences of unreliable molecular in-
tegrals, due to hybridization of almost flat with
strongly dispersive bands, arising in the case of
transition metals should greatly be reduced, es-
pecially in an application to rare-earth magnetic
semiconductors where the 4f states lie in the en-
ergy gap and completely separate valence from
conduction bands. Since the 4f-electron density
is sharply localized close to the nucleus~ ' it
should be sufficient to consider only two-center
and first- or at most second-nearest-neighbor
contributions as well as (s f), (P f), and (d f-) in---
teractions; the (f f) interaction -is out of the ques-
tion because of too big lattice spacings in the ma-
terials considered.

To this extent we are going to extend the well-
known Slater-Koster tables which did not include
any results for f electrons.

Let us denote any atomic wave function of angu-
lar momentum j and z-projection k by p~&(x), not
exhibiting explicitly the main or any other quantum
numbers because they will not be important in the
present discussion. The problem consists of ex-
pressing in an appropriate way the overlap inte-
grals between such functions centered at different
lattice sites. If, for instance, an atom B is situ-
ated with respect to A as in Fig. 1, it is most con-
venient to rotate the original coordinate system
(x, y, z ) with its z axis into the line (AB) =—R,
because in this way the integrations over the azi-
muthal angle will become trivial. It would be
more elegant to analyze the transformation by
means of the irreducible representations of the
rotation group whose matrix elements in terms of
the Euler angles are known. However, in order to
keep the agreement with the original method and
notation of Slater and Koster, which has become
familiar to workers in this field, we will instead
follow their procedure.

Denoting the unitary operator corresponding to
the above-mentioned transformation by U, ~ where

13
cosX1y ~ = cosX2y and 0= cosX3, we can write

(U, „p&) (x)=5~ C&~(lmn)y&(x), j~i, k~-+j
or transforming to real functions called Sz(x),
(&= 0, 1. . . . , 2j), by taking combinations like (1/
~2(p;. '~~+/ "), we can also write

(U, P~) Px) =5~ b', „(lmn) y~(x) (2)

where the b&„(lmn)'s are appropriately symmetrized
C elements. Since the P~"s (or (R& 's) are basis
functions of irreducible representations of the ro-
tation group, only functions with the same j appear
on the right-hand side of Eq. (1).

For tight-binding calculations one needs quanti-
ties ' like
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Theorem .'

fk iky

Proof:

i, k=1, 2, 3

Let v"= (a)„az~, ao), ) and w"=(8», (to„(t3$).

It follows from A =A that (v, v") = 1(Vk).

Since det (A) = (v, w ) =+ 1,
v" = w" must hold.

X

x'

FIG. l. Original (x', y', z') and rotated (x,y, z) co-
ordinate system for two-center integrals.

We specify finally to k = 3 getting

8&e=l, C=m, and 8~3=n.

Apart from this remark we do not go into details
of the calculation.

The definitions of s, p, d, and f functions are
given in the Appendix. We actually transform to
the real functions (R&, which for clarity will be de-
noted by S, P, D, and E from now on and which,
for instance, in the case of j= 3 are obtained as
follows:

where V,~(x + F) is the contribution to the crys-
tal potential by the atoms surrounding the one at
K (The prime refers to the original coordinate
system. ) The last formula implies restriction to
the two-center approximation.

Inserting (2) we get

(8/(x'+ 5'), V„,(x'+ 5') (tl)",(x'))

= E b/(„(lmn) b„„(lmn) ((f)/(x+ 5), V,~(x+ 5)(t)o(x)).

This expression is further reduced by noting that
our special choice of coordinate system yields

((t '(x+ 5), V, (x+ %)(t,"(x))= 5,„0"„0",= 0," (4)

where 0/, denotes the well-known (o, w, 5, . . . ) two-
center integrals (see Appendix), and we are left
with the real quantities

Fo=fo

F(2XC/z)t1/2 [(-I)""/~2]

)([f ~( 1)(1& 2/)R 2f/] 1 ()((3
and similarly for P and D.

In particular we define S (=s) as

S= (4z)~/'.

For C~= (3/4z)'/o,

Pp = C~z,

P)=C~,
Pq=Cp;

for C„=(5/16m)'

D, = C,(3z' r'), -
Dj = v 12C„xz,

((R"(x'+ 0'), V„,(x'+ 0')8",(x'))

mia(J, k)
= 2 Z 0&~(Re[5~/„(lmn) b&„(lmn)] } .

(p& 0)
(5)

Dz= ~12 C~yz,

Do = )/ 3 C~ (x —y ),
D, = vie C,xy;

The final problem consists of the somewhat te-
dious calculation of the coefficients b/»(lmn) and
evaluation of the above matrix elements. For this
purpose we introduce the real three-dimensional
representation of U, „through the orthogonal ma-
trix A =(a(~}, where A =A and det A =+1. Since
A transforms @', y', x'}-{x,y, z}, we must have

a)3 l, az, = m, aoo = n The coe.fficients b))„(lmn)
are polynomials of the a,„'s, and in order to ex-
press them as far as possible in terms of the pa-
rameters l, m, and n, we use the following theo-
rem for the cofactors C„ofA.

and for C, = (V/15v))/z,

Fo = C/(5z —3r ) z,
F) = v™oC/(5z —r )x,
F,= )/ —, C/(5z r)y, -
F,= M15 C,(»'- y') z,
F4 = )t15 C/(2»yz),

F, = )t™,C/(x'- 3y')»,

F,= W C/(3»'-y')y
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The coefficients expressing the transformed real
functions in terms of spherical harmonics are
given in Table I.

III. ENERGY INTEGRALS

For convenience we change the notati. on of Slater

and Kpster' and write for instance E~,~ in place
of E &3,3~2&, for (d-f) integrals; and according
to our earlier notation, E» F =(([[2, V,~6[3). Using
the results of Table I all the expressions (5) have
been worked out and are given below.

TABLE I. The coefficients b~&&(lmn). The terms for i=3 /=3) are omitted because they
are not needed for the calculation.

j 'A i=0

0 0

i=+1 +2

2 (3n —1)

H3 ln

—(1/W2) (a3f ia32)

0-/~) (a f f ia f2)

—5/&) (a2 f
—ia22)

-~~ n( „-ia„)
—(1/v 2) [n(af f

—aaf2)+ lEp3f —~32)]

~~ (P3f - ia32)'

(1/&2)(pff 4+12)(p3f ~32)

2 2

j=3

—(l -m)vS
2

vS lm

—(1/H2) [n(psf —ia22) + m (p3f —ia32)] (1/v 2) +2f —ia22) (p3f —ia32)

—(1/v 2) [l (pff ia12) m(p2f —ia22)] (1/W8) [(pff —iaf2) —(p2i —ia22) ]

—(1/v 2)[m off —~f2) + l (p2f —~22)] (1/W2) Qff —Mf2) (a21 ~22)

0 1

3 1

&n [5n'-3]
—(1/~48) [15n —3] (p3 f ia32)

~Tn( „-~„)
~) l[5n —1]

—(1/~32) {2t211 —ia12) [5n' -3] + 5 Cn -2m) (a31 2a32))

~ {2n(a11 ia12) (a31 2a32) a31 ia32)'1)
f6

~g m [5n —1]

—(1/f32) {[10n —6] (a21 —ia22)+ 5(mn+il) (a31 —ia32))

13{2n(a21 M22) a31 3a32) +m (a31 2a32) )

~n [l'-m']

-~& {2[i —m ] (a31 —ia32) + Qn+ im) (a11 —ia12) —(mn —il) (a21 —ia22))

(1/H8) {2(a31
- ia32) [l (a11 - ia12) —m (a21

- 2a22)] + n [(a11 —(a 12) —(a 21
- la 22) ])

4 1

~15 lmn

Q l/5 {2ln1 (a31 3a32) + bnn —il) (a 11
—ia12))

(1/~2) {(a31—3a32) [m (a11 3a12) + l (a21 1a22)] n( 11 3a12» (a21 m22))

5 1

6 1

l[l 3m ]

-~&& {[l —2m + 1](a11 —ia12) —(lm + in) (a21 —ia22))

»3 {1(a11 2a22) l(a21 m22) m a11 3 12)(a21 22))

~m [3l'-
~3 {(a21-ia22)[m —2l + 1] —Qm -in) (a11 —ia12))

32

13 {m (a 11 ™a12) m (a21 2a22) l(a 11 m12)(a21 m 22))
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(s f)-integrals.

Es p =~n(5ns —3)(sfo), Es p
——M~L(Sns- 1)(sf'),

Es p = /15 ,'n—(l —m )(sfo), Es z = WS lmn(sfo),

Es p = ~ w l (l —3m ) (sfo), Es p = v —, -,' m (3l —m ) (sfo)

(p-f) integrals.

Ep p = ,'n (Sn ——3)(Pfv)- v™,(Sns-1)(n —1)(Pfw),

Ep, p =

min�

(Sns-3) (Pfo)- M ln(Sn —1)(Pfw),

Ep,p = ,' mn(5—n —3) (Pfo) —W mn (Sns-1) (Pfw);

Es p = v —,
' —,

' m (5n —1) (sfo ),

Ep p = ~8 ln(Sns —1)(Pfv) —~ln(15n —11)(Pfw),

Ep, ,p
= W l (5n —1) (Pfo) ——,

' [(Sns —l)(3l -1)+2l J(Pfw),

Ep p = V —, lm (Snw —1) (Pfo) ——,
' lm (15ns —1) (Pfw);

Ep p = Wmn(Snab —1) (Pfo) —w'mn(15n —ll)(Pfw),

Ep p = v w lm (5n —1) (Pfo) —
4 lm (15n —1) (Pfw},

Ep,p = ~8 m (Sn —1) (pfo) --,' [(Sns —1) (3mw 1) +2-ms] (pfw);

Ep p =
g Ml Sn(l m ) (Pfo) M~ (3n 1) (l m ) (Pfw}

Ep, y =
~ ~15 ln(l —ms) (pfo) —v w ln [3(Ls —m ) —2] (pfw),

Epq p3
= -,' v 15 mn(l - m ) (pfo) —gw~ mn [3(l —m ) + 2] (pfw);

Ep p = v 15 Lmna(pfo) —0 -', Lm (3ns —1) (pfw),

Ep~ p = 915 l mn (pfo) —v 2' mn (3Ls —1) (pfw),

Ep p = @15lm n(pfo) —v ~ ln(3mz-1)(pfw);

Ep p vws Ln(ls —3ms——) (Pfv) —~~ v15 Ln(ls —3m2) (Pfw),

Ep p = v —,'Ls(ls —3ms)(Pfo) ——,
' vA [Ls(L -3ms)+ma —Ls](Pfw),

Ep p = ~8 ml(l —3m') (pfo) - -,' v15 Lm(L —3m + 2) (pfw);

Ep p = M~ mn(3l -m )(Pf o)
——,

' 45mn(3l —m )(Pfw),

E&,p = M lm(3l —m ) (Pfv) —~~ 45 lm (3l —m —2) (Pfw},

ms(3Ls —m2)(pfo) —
4 v15 [m (3l —m )+m —l ](pfw) .

(d f) integrals. -

Eo,pz= 4 n(3n -1) (5n -3)(dfo)- (3/v 8)n(5n —1,) (n —1) (dfw)+ —' W45 n(n 1)2(df5)

Eo, ,po= a ~3 Ln (Sn —3) (dfo) —~w L(5n —1}(2n —1) (dfw)+-,' vA ln (ns —1) (df6),

Ez,po= —,
'

v 3 mn (5n —3}(de)—M~ m (5n -1) (2ns —1) (dfw)+w' 4p mn (n —1) (df5),

Eoz,p&,
= a ~3n (Sn —3) (L —m )(dfa) —4 8 n(Sn —1) (l —m ) (dfw) +4 ~15n(n + 1,) (Lw —m ) (df5)
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Eo z = w' W3 lmn (5n —3) (dfa) —v —', lmn(5nw —1) (dfw) + 2 W5 lmn (n + 1) (df6);

243V

Err z = +1(3n —1) (Sn —1) (dfo ) ——,
' v 3 ln (15n —11)(dfw) + +1 (n —1) (3n —1) (df6),

Eo z = (3/v 8)l n(5n —1) (de) —,'n—[1(30nw —11)—4n +m ] (dfw)+ W n(nw —1)(31 —2) (df6),

Eo z =(3/v 8)lmn(5n —1) (dfo) —2lmn(5n —2)(dfw)+ v~&w lmn(nw —1)(df6),

Eo r =(3/M32)l(Sn —1)(l —m )(dfo) —~l [15n (1 —m )+2m -4n ](dfw)

+ ~~ 1 [(1 —m ) (Snw+ 1) —4nw] {df6),

Eo z = (3/ M8) 1 m (5n —1) (de) —
~ m [(61 —1) (Snw - 1)+ 41 ] (dfw) + v —, m [1 (Snw+ 1)- Sn ] (df6);

Eo z = ~m(3n -1) (5n —1)(dfo) ——,
' MS mn (15n —11) (dfw)+ +m(n -1) (3n —1) (df6),

Eo zz = (3/ v 8 ) lmn (Sn —1) (dfo) —
w lmn (5n —2) (dfw) + + lmn (nw —1)(df6),

Eo w =(3/M8)m n(Sn -1) (dfo) ——,
' n[m (30nw —11)—4ew+1 ](dfw)+~sn(n —1)(3m -2) (df6),

3
Eo w

= ~&&m(l
—m ) (5n —1) (dfa) ——,

' m [15nw(l —mw)+4n —21 ](dfw)

+ ~m [(lw —m ) (3n + 1)+ 4n ] (df6),

Eo z =(3/V 8)lm (5n —l)(dfa) ——,
'

1 [(6m —1) (Sn -1)+4m ](dfw)+ M 1 [m (Snw+1) —2n ] (df6);

ED F
——

~ V45

ED, ,F, =
~ ~45

n (Snw —1) (lw —m ) (dfo) —+n(3n —1) (1 -m ) (dfw)+-,' MSn(3n —1) (1 —m ) (df6),

ln (1 —m ) (dfo ) —v —', 1 [(6n —1) (1
w —m w) —2n ] (dfw) + ~ 1 [3n {1 —m ) + 4m —2n ] (df6),

mn (1 -mw)(dfo) —v —,'m [(6nw —1)(lw —m2)+2n ](dfw)+ ~m [3n (lw —m ) —41 +2n ](df6),

n(l —m ) (de)- Wn[3(l —m )w+Sn —2](dfw)+ —,'n[3(l —m ) +8n —4](df6),

lmn(lw m)(dfa) ——up lmn(l —m ) (dfw)+ 2lmn(l —m ) (df6);

Eo z =
~ W15 lmn (3n —1) (dfo) - ~~ lmn (3n —1) (dfw) + 2 M3 lmn (Sn —1) (df6),

Eo ~ = &45 lwmnw{dfv) —Mm(6lwnw+m —1) (dfw)+m (31 n +2m —1)(df6),

Eo z = W451m n (de) —~51(6m n +1 —1)(dfw)+1 (3m n +21 —1)(df6),

z =2 W45 lmn{lw —m )(de) —v p lmn{l —m ) (dfw)+ w'lmn(1 —m ) (df6),

Eo z = ~45 lwm n(dfo) —v —', n(61 m +n —1)(dfw)+n (31 m +2n 1)(df6);—
DpwFg

ED, ,FS-

ED&,F~—

ED3,F5

D4, Fg

v/ 1 (3n —1) (1 —3m ) (dfa) ——,
' @45 lnw (1 —3m ) (dfw)+(3/v32) 1 (n +1) (1 —3m ) (df6),

~w 1 n (1 —3m ) (dfcr) ——,
' W15 n [21 (1 —3m ) -'1 +m ](dfw) + W n [1 (1 —Sm ) —21 + 2m ] (df6),

M~8 lmn (l~ —3m ) (der) —
~ &15 lmn (1 —3m w+ 1) (dfw) + W lmn (1 —Sm + 4) {df6),

W 1 (1 —m ) (1 —3mw) (dfo) ——,
' v15 1 [(1 —m ) (1 —Sm ) —n + 1](dfw)

+ ~l [(lw —mw) (lw —Sm ) +4n ] (df6),

v ~~ 1 m (1 —3m ) (dfcr) ——,
' 415 m [21 (1 —3m ) —n + 1](dfw) + u —, m [1 (1 —3m ) —2n ](df6);

Err w
= Q m (3n —1) (31 - m ) (dfg) —

~ &45 mn (31 —m ) {df ) w(3/+v'32)m( +n1w)(31 —m )(df6),

Eo, r = Wg lmn (31 —m ) (de) - w' v15 lmn (31 —m - 1) (dfw) + v —, lmn (31 —m - 4) (df6),

z = ~em n (31 -m ) (dfo)- ~ v15 n [2m (31 -m ) —1 +m ](dfw)+ v —', n [m (31 -m )-21 +2m ](df6),
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Ea s = v Q m (l —m ) (3l —m ) (dfa') ——,
' 45 m [(ls —ms) (3l —m2) +n —1](de)

+ v$ m [(l —m ) (3l —m )+4n ](dfb),

Eo I =

Whelm

(3l —m )(dfa) ——,
' W15 l [2m (3l —m )+n —1](dfv)+ v —,

' l [m (3l —m ) —2n ](dfb) .

IV. APPLICATION TO A FACE-CENTERED-CUBIC LATTICE

According to tight-binding theory' one has to
find superpositions of the energy (or overlap) in-
tegrals appropriate to the local coordination of
neighboring atoms, as, for instance,

(D /E ) Q Q e)(% R )b(v)
f g(v) )

where (5'"'] is the set of (v)th nearest neighbors.

For reasons mentioned in the introduction we only
consider first- and second-nearest neighbor inter-
actions in terms of two-center integrals. The
corresponding molecular integrals will be denoted
by ( ~ },and (~ ~ ~ )2, respectively, and we use
the abbreviations

(=k„a, g=k„a, f =k, a,

where k= (b b„, tt, ) and a is the lattice constant.

(s f) contri-butions.

(S/Ea) = —(i/ v 2) sin1'[cos$ + cos))] {sfa})+ 2i sinr(sfa)2,

(S/E, ) = v 3 i sin([- cos)) + ', cosf—]{sfa),—v —' i sin((sfa)2,

(S/E, ) = v~ i sinl'[cos$ —cosy](sfa)),

(S/F4) = 0,
(S/E, )= ——,

'
v 5 i sin) [2cos)}—cosL](sfa))+ v 25 i»n$ (sfa), .

(p -f) contributions.

(pg F)=--,'cos1'[cos$+cos7}](pfa))+2cosg(pfa)2+ ,' v 3, [3cos(-cosf+3cosq cosg-4costcos r1](pfv'))

—v -', [cos$+cosg](pfv)2,

(p)/Fo) = —,
' sin) sing [(pfa), + 3 v 23 (pfv))];

(P))/E, ) = ——,
' sin] sint' [3 v —,

' (pfa), + $ (pfv))],

(P /F ) =-, )/~) cos( [- 2 cos+vt3 cosg] (pfa), —v —, cos( (pfa)2 —[~ cos( cos)i+) cosg cos(; ——,cos'g cosf] (pf&})

+ [- —,
' cosy + 2 cosK] (pfv}2,

(Pp/F, ) = sing sing [v —,
' (pfa), ——,

' (pfv))];

( /Pa}E= —,
' cosg (cos$ —cosy) [W15 (pfa), —v ,'(pfs))]+ )t 25 [cosh —cosy) (pfv)z,

{P,/Fs) = ——,
' sin( sing [v15 (pfa)) + W (pf&))];

(Po/E4) = —AO sin) sing (pfv));

(Po/F~) = ——,'- sink sinl' [V 5 (Pfa), ——,
' ~15 (Pfv))],

{p,/F, ) = ——,
' cos$ (2 cosy —cost ) [M (pfa), + ~ W15 (pfv))]+ M cosh (pfa)2 ——,

' )t15 cos)) (pfs)2,

(P2/E5) = sin) sing [v 5 (pfa), ——,
' A5 (pfs))] .

(d f) contri butions-
(D,/Fo) = —,i sing (cosg+cosv}) [(1/v 2) —(dfa), 9(dfv)) -3 v -', (d-fb), ]+2i sing (dfa)z,

{D)/Eo) = —z~zi sin& cos(; [(dfa), + ~5 (dfb), ]+ v 3 i sint' cosy {df&))+ v —,i sin) (df&)2,
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(DB/Eo} = ——,
'

v 3 i sing (cos$ —cosq) [(1/ ~2) (dfo), '+ 3(dfw)4 —3 ~ (df 5)4],

(D4/Fo) =0 '

(Do/F, ) = —', v 3 i sin) (4 cosrf +3 cost) [(dfv), + v 5 (df5)4]+p v —, i sin( cosf (dfw),

+ 2 u 2 i sin) [(dfv)w + W5 (df5)2],

(D /F ) =4 icos) sing (dfv), + —, W2i cosy sint'(dfw), +2i sing (dfw)w+ —, W5i sing [cos$+4cosq](df5)4,

(D,/E, ) = 0,
( D/4E) = —,'i sint' cosf [3(dfv), —M5 (df5), ] ——,

' M2i sin) [4cos7}+7cosf](dfw),

—(i/V 8) sin) [3 (dfv)w —v 5 (df5)w],

(D4/F, ) = —,'i co—s$sing (dfg), +-,' v 2 i sing cost' (dfw), —,'isin—q(dfw) +-,' M5 i sing [cosg —2 cosf] (df5}, ;

(Do/F4) = —,
'

v 3 i sing (cos) —coerce) [W (dfg), —M5 (dfw), + (1/ v 2) (df5),],
(D,/E4) = —', v —,'i sin( cost' (dfv'), + v —, i sin) (dfw)4+ —,

'
v 2 i sin) [8 cosy —cosf] (df5), ,

(Dw/FB) = —,
' ising (eos(+cosy) [3 v —', (dfg), + v 5 (dfw), +(3/v 2) (df5), ]+2i sing(df5)2,

(D,/Fs) = 0;

(Dw/F4) = o,
(D&/F4) = ~5i sing [cosh + cosf] (dfw), + 2i sing (df5)w,

(Dw/F4) = 0;

(Do/E4) = —,
' M5 i sin( [4 cosy + cosf] (dfg), —(i/ v 8) sin) [M5 (dfg}w —3 (df5 )4]

——', v -', i si $never. (dfw), —', i sin) [4 cosy-—3 cosf] (df 5), ,

(D /F4) = —,
' ~15i cos) sing (dfg), ——,

' M i cosy sin1' (dfw), ——,
' MS i sint' [3cos( —4 cosy] (df5)4,

(Dw/F4) = 0,
(D4/F4)= —,

'
v 3 i sin) cosf [v 5 (dfg), +9(df5)4] ——,'i ~sin) [4cos7i+Scosi;](dfw)4

+ MSi sin( [~ v —', (de)w —M5 (dfw)w+ (1/v 8) (df5)w],

(D4/F4} = ——,
'

M15 i cos$ sin4i (dfv), ——,
'

Mwi sing cosf (dfw), ——,
' M15 i sin4i (dfw}w

--,' v 3i sin7i [cos$+2cost'](df5), .

All the missing quantities among the foregoing
expressions can be obtained by interchanging vari-
ables, e. g. , (Dw/Fw) from (D, /Fs) by the inter-
change $ —g and reversing the sign, etc. The
rules for this procedure are easily found from the
representation of E integrals in Sec. III.

V. CONCLUDING REMARKS

For calculations including only spin-exchange
splitting of the energy bands the generalization of
the results presented is trivial.

In principle, the two-center integrals can be
evaluated according to methods discussed, for
instance, in Refs. 15 and 16. However, experience

in applications of the tight-binding method made it
clear that these quantities should be looked at in-
stead as disposable parameters, as was suggested
already in the original paper by Slater and Kos-
ter. On the other hand, the sharp localization of
f electrons close to the nucleus provides a situation
quite different from the case of d electrons and
therefore the calculated integrals are expected to
be more reliable. This point, we hope, is going
to be clarified by future applications of our analyt-
ical results in tight-binding calculations.

Note added in manuscxiPt. All the datapresented
in this article are available upon request in form
of a FQRTRAN-Iv card deck from the author.
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APPENDIX

Using the ordinary definition of spherical har-
monics, '

2!+1 (l-m)! '"
2'l! 4z (l +m)!

~
1+m

xe' ~ (- sine)
~

(cos e —1)'
d cosa)

with the property

Vj™(t!,0) = {- 1) V
&

'
(e d')

s = (1/ v4m) (l = 0);
po —C~z

p„=v (1/W2)C~(x +iy) (l =1),

where C~= (3/4z)' ';

do= C„(3z - r ) (l =2),

we introduce after conversion to Cartesian coordi-
nates (disregarding radial factors)

d„=+Macy*~ 'y)z

I
(l=2),

d~= v —,
' C~( x+iy)

where C~={5/16m) ~;

fo = C~(5z —3r ) z 1

f„=+2 M3 Cy(5z —r ) (x +iy) (l= 3},
f~= MzC~(x+iy) z

f~=v —,
'

v 5 Cy(xaiy)

where Cz ——(7/16z) ~ .
The definition of the molecular two-center in-

tegrals in terms of these quantities is then as fol-
lows:

(s(x+R), V„,(x+R)fo(x)} = (sfo),

(pfo), k= 0
(p,(x+8), V», (x+R)flax))

-={f )

(dfo), k= 0
(d { +R), V, ( +R)f ( ))—= (df ), k=+1

(df5), k= s 2

The simple overlap integrals are defined in the
same way, but without V„,.
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