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Quadrupolar interactions at ferro~ngnetic critical points
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The critical behavior of d-dimensional ferromagnets with qmLdrupole-quadrupole short- and long-range
interactions is discussed on the basis of renormalization-group calculations to order e, with e = 4—d.
Such interactions may lead to a first-order transition, to characteristic "cubic" critical behavior, or to
the usual isotropic critical behavior.
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For the purely electromagnetic part of the quad-
rupole-quadrupole interaction, j(R) and k(R) are
of order 1/R"2 (in d dimensions). However, this
long-range interaction is usually negligible com-
pared to the nearest-neighbor contribution to j and

Pair interactions between magnetic ions which
are of fourth order in the spin operators have been
known to exist for some time. Their origins are
rather diverse, and range from multipole expan-
sions of the Coulomb and exchange interactions to
effective spin-lattice interactions. Recent work
on rare-earth compounds has provided examples
where the fourth-order interactions are comparable
to the bilinear ones. 4 This work prompted several
studies, using mean-field theory and high-tem-
perature-series expansions, for systems which
have interactions of fourth order in the spins. 2

These reveal competition between first- and sec-
ond-order transitions and between quadrupolar and
dipolar ordering.

Renormalization-group recursion relations have
been applied recently to various bilinear Hamilto-
nians, leading to a better understanding of the
critical behavior. ' This approach has also been
used to study the fourth-order terms arising from
lattice coupling. 3 In the present note we apply re-
normalization-group methods to discuss general
fourth-order interactions.

We find that if the coefficients of the fourth-or-
der terms are negative, and large enough, the
transition is most probably of first order. In addi-
tion, we conclude that quadrupole-quadrupole in-
teractions which couple space and spin coordinates
will, on cubic lattices, usually introduce cubic
symmetric terms, which lead to characteristic
cubic critical behavior. 6

For a rotationally invariant system, the fourth-
order terms in the Hamiltonian can generally be
written as a sum of two terms, 1'7

to k arising from averaged spin-orbit interactions.
We therefore start with the short-range case. If
j(6) = yd, where 5 is a nearest-neighbor vector,
and j(R) = 0 for all R & 5, with d being the nearest-
neighbor exchange, then K, may be written as

(3)

where c is the coordination number and a; is the
Fourier transform of S;. As usual, I; means
(2(() ' times the integral over the first Brillouin
zone. Except for the terms of order q2, this
form is exactly similar to the one arising from
Wilson's' S term in the effective Hamiltonian. As
in Ref. 3, we now find that the expansion parame-
ter ((0 (the coefficient of the fourth-order term in
Wilson's effective Hamiltonian) is

uo=(2d) a k((T(cd) uks(T —T(), (4)

where u is the original coefficient of the 9 term
in the weighting factor and

k(( T( = l(ccl/(( —2pk(( T~ /((,
where we have used cJ=2k~T, .' Thus u, becomes
negative if 2yau. As discussed in Ref. 3, this
may lead to a first-order transition if y is suffi-
ciently large. Since u is of order unity at d =3,
we find a first order transition for yz —,', that is,
of the same order of magnitude as found by mean-
field theory. 2

If 2y-—u, we must allow for a sixth-order spin
term in the continuous-spin Hamiltonian. For a
particular choice of parameters, near three dimen-
sions, we find the Riedel-Wegner "classical" tri-
critical point, with Tt —T1 and with logarithmic
corrections to the classical tricritical behavior. 3

For long-range interactions one has j(R) -1/R ',
and the Fourier transform behaves as A+ Bq lnq
+Cq +O(q lnq). The q lnq and the q terms enter
into the O(q, ) terms in (3), and are irrelevant for
determining the critical behavior (at least near
d=4). The behavior therefore remains as for the
short-range case.
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We turn now to the Hamiltonian (2). For near-
est-neighbor interactions on cubic lattices Xz is
equivalent to

Xz= —2 f f„f. A„~"~(q+q)
aBye

where

a2 as -ag-ap-q3 '

A~"'(q)=Z k(R}, " e-"'.
%=6

The coefficients A~"~(q) depend on the lattice
structure. For sc lattices one finds

A "'(q) =2k'.,v.„'., + o(q'),
whereas for fcc lattices in three dimensions one
has

A "(q}=k(5~5„~+5 „5g~+5 65~„

—a.,e.„u.,)+ o(q') .
In all cases we see that, in addition to the rota-
tionally invariant term, related to P~ $$, there
appears a term of only cubic symmetry, having
the form of the Fourier transform of g~g (S~) .
Such terms were investigated in detail in Ref. 6.
For a system with spin having n=d =4 —& compo-
nents [we must take n = d, because the product S R
enters in (2)], the isotropic Heisenberg fixed point
was found to be unstable in order q2. The critical
behavior is thus determined by a new "cubic" fixed
point, which has slightly different exponents. In

addition, negative ~ 9~ terms may again lead to a
first-order transition, just as in the first case
discussed above.

For long-range quadrupole-quadrupole interac-
tions, k(R) -I/R"'', and again the deviations of
A B"' from the momentum-independent terms dis-
cussed above are of O(q2 lnq, ) and thus are irrele-
vant (at least near d=4).

In general, the quartic terms will appear in
addition to the bilinear terms. Thus, as T ap-
proaches T, one must expect a crossover from the
usual isotropic critical behavior to the various
new types of behavior presented here. As dis-
cussed in Ref. 6, the crossover to the "cubic"
behavior is expected to be very slow. The cross-
over from the isotropic behavior to the tricritical
behavior is quite complicated, since our discus-
sion is valid near d = 4, while the Riedel-Wegner
treatment of the tricritical point is valid near
d = 3. A general treatment of this crossover, '
as well as a calculation of the crossover function
(without which no numerical estimates are possi-
ble), is a subject for future investigation. In the
meanwhile, experiments and high-temperature
series may be very helpful in checking the predicted
effects.
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