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Calculation of the momentum density in ferromagnetic nickel
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Reactor Centrgm Nederland, Petten (N. H. ), Netherlands

(Received 17 October 1973)

A band-structure calculation on the basis of Hubbard's approximation scheme has been made
of the momentum-density distribution for positron annihilation and Compton scattering in fer-
romagnetic nickel. Graphs are shown of the contributions of the various bands for both spin
directions, of the total momentum density, and of the spin density observable with polarized
positrons. Owing to the symmetry of the wave functions the only pieces of Fermi surface ob-
servable with these techniques are the large sheets in the sixth majority- and minority-spin
bands, and the minority-spin hole pocket in the third band. A comparison of the predicted
angular correlation with experiment shows that the calculation somewhat overestimates the
high-momentum region.

I. INTRODUCTION

Lately the momentum density in 3d transition
metals is receiving increasingly more interest due

to the present availability of strong positron and

x-ray sources and to the use of y rays in Compton-
scattering experiments. Since in these metals the
Fermi energy lies in or close to the 3d band, the
Fermi surface often consists of a large number of

pieces, which also in the extended-zone scheme
are unconnected or multiply connected. Moreover
the momentum-density contributions from the var-
ious electron bands will be strongly wave-vector
dependent. A theoretical analysis of the momen-
tum density is therefore indispensable if it is hoped
to extract any useful information from the experi-
mentally observed positron angular correlations'
or Compton profiles.

Various attempts have been undertaken to predict
the momentum density in 3d metals, ranging from
free-atom calculations combined with free-electron
theory via computations using the renormalized-
atom model' to complete band-structure calcula-
tions. ' Only in the latter type of calculation is it
possible to take account of the Fermi-surface
structure in a natural way. In the present paper a
report is given of a band-structure calculation of
the momentum density in nickel, both for Compton
scattering and positron annihilation. Since for aprop-
er understanding of the relation between band

structure and momentum density, curves showing

the total momentum density are of little value, the
density distribution is broken down into its constit-
uent parts corresponding to the core states and

the six 3d and conduction bands for each spin
direction. This also makes it possible to predict
the spin density in momentum space which is
observable with polarized positrons.

The computational method is essentially the
same as that employed in a previous study of iron'
and is briefly described in Sec. II. In Sec. III the
results are presented in the form of momentum-

density curves for Compton scattering and positron
annihilation. In Sec. IV a comparison is made be-
tween the different band structures of nickel avail-
able in the literature.

II. CALCULATION

The momentum-density distribution of the pho-
ton pairs originating in the annihilation of ther-
malized positrons is given by

p(p(= &f(",(( f~ " t(„( )I'(&)&~ '. (()

Here p represents the momentum of the photon
pair, (1(r ~(r ) -the wave function of the annihilated
electron of-wave vector R in the jth energy band,
and (t((F) the wave function of the thermalized
positron in its ground state k, = 0, The function
f(k, j) gives the occupation of the state (k, j) and is
therefore related to the Fermi-Dirac function.
Equation (1}also represents the momentum density
derived from Compton scattering if y(r ) is re-
placed by unity. The experimentally observed pro-
files are related to Eq. (1) by integration of p(p)
with respect to one or two components of p.

To calculate p(ll) from Eq. (1) requires the com-
putation of the band structure E~(k) and the wave
functions ()((-, &(r }. This was done by means of the
approximate method developed by Hubbard, in
which a secular equation of minimal size (9x 9 for
fcc metals) is computed from a given lattice po-
tential. Solution of the resulting determinantal
equation provides the eigenvalues E&(k), while the
wave functions are obtained from the correspond-
ing eigenfunctions. For a detailed description of
this method the reader is referred to the original
publications, ' while the use of the wave functions
to solve Eq. (1) is more fully discussed in Ref. 5.

The crystal potential employed in the numerical
calculations is the self-consistent potential for
ferromagnetic nickel as given by Wakoh. ' The
following values were taken for the lattice constant
a, the radius r, of the inscribed sphere, and the
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FIG. 1. Band structure for ferromagnetic nickel; (a) majority spin, (b) minority spin.

Wigner-Seitz radius r, :
a= 6. 65 a. u. r, = 2. 3511 a. u. , r, = 2. 5985 a. u.

Our calculated band structure for the majority- (+)
and minority- (-) spin states of nickel along some
symmetry directions is shown in Figs. 1(a) and

l(b). There is good agreement between the pres-
ent results and those of Wakoh; a comparison of
70 levels for each spin gave an rms error in the
energy values of 0. 010 Ry (0.009 Ry) for the+ (-)
spin bands. The main disagreement was that in
our + spin bands the level at J.z lies deeper than

g by an amount+0. 007 Ry, whereas Wakoh finds
an energy difference of —0. 009 Ry. The width of
the d band (X, -X,) in our band structure was
0. 360 Ry (0. 385 Ry} for the + (-) spin while the
width of the overlapping s-p band (X4, —1,) was
0. 856 Ry for the + as well as the —spin.

The positron wave function g(r ) was calculated
using a plane-wave expansion,

y(r)= „,hA-„e"', (2)
K

similar to Gould eI; aE. ' The secular equation

Q[(K —E)5zz'+ VR z ]Ax=0

0.15-
[1poj

0.10-

or the Fourier coefficients AK. Following Gould
et al. , the first Fourier coefficient was adjusted
so that g(F=O) =r ' gzAz=0, subject to the nor-
malization condition ZRI Azl = l.

The entire procedure was checked by calculating
the positron wave function in aluminum employing
the crystal potential by Segall. ' The results
agreed reasonably well with those of Stroud and
Ehrenreich. Figure 2 shows the positron wave
function in nickel by the present calculation for the
three crystal directions (100), (110), and (111).
For the subsequent computations of p(p) the part
of the positron wave function inside the inscribed
sphere was spherically averaged according to

P(r) = g~[1 fOgpp(r)+ 16gitp(r )+9pui(r )] (5)

was written in a symmetrized form and solved us-
ing the Fourier coefficients

V g (1/r)f V(r)el(R-K')''dP (4)

calculated from the minority-spin potential. Par-
tial waves up to ) = 12 were used in evaluating
Vg z. by expansion of Eq. (4}. The number of
plane waves used in the expansion [Eq. (2)] was 89
(7 shells) and this calculation resulted in a, positron
energy equal to 0. 548 Ry with respect to the con-
stant potential in the interstitial region. Increas-
ing the number of plane waves from 89 to 259 did
not cause any appreciable change in the eigenvalue

+
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1.0 2.0
r (s.u.)~ 3.0

FIG. 2. Positron wave function for nickel for three
symmetry directions. The dots represent the spherically
averaged part of the positron wave function inside the in-
scribed sphere used in the calculation of p(p).
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FIG. 3. The calculated two-photon momentum density
p(p) from the 3d and conduction band for the bvo spin di-
rections of ferromagnetic nickel along the (100), (110),
and (111)directions in momentum space. The solid
lines refer to the majority spin, the dashed lines to the
minority spin. The momentum p is expressed in mrad.
The chain curve in the O11) graph shows the isotropic
contribution to p(p) by the core (ls, 2s, 2p, 3s, 3p) elec-
trons.

(6)

The two-photon momentum densities for the two
spin populations which resulted from these calcu-

The momentum density p, (p) of the core elec-
trons was assumed to be isotropic and was calcu-
lated from the equation"

p, (p) =4w Z(2l+1) j, (pr)R, (r)P„,(r)r dr

where j,(pr) is the spherical Bessel function,
R,(r)/r is the spherically averaged positron wave
function and P„,(r)/r 's are the free-atom orbital
wave functions for nickel as given by Herman and
Skillman. '8 The summation in Eq. (6) was carried
out for the 1s, 2s, 2p, 3s, and 3p orbitals. In
evaluating the integral (6) a correction for the
proper region of integration was made following
Berko and Plaskett. " All calculations were car-
ried out on a CDC-6600 computer.

III. RESULTS

lations are shown in Fig. 3. They are expressed
in arbitrary units which remain unchanged
throughout the paper. The momentum density
shows most structure along the cube axes, viz. ,
a wide gap centered on X at 6.9 mrad for both
spin populations. The curves are rather similar
to those obtained earlier for copper. ' The main
difference is found in the (110) directions where
the discontinuity at the Fermi surface in the sixth
majority-spin band is much smaller in nickel than
in copper. This is a result of the hybridization
of this band with the highest 3d band of Z& symme-
try. Since in nickel the Fermi level intersects
the hybridized band at a smaller wave number than
in copper the wave function still possesses most
of its original 3d character, which means that its
contribution to the momentum density will behave
a.s p at low wave numbers (and not as p as stated
in Ref. 6). The same holds to an even larger ex-
tent for the corresponding —spin band, where the
discontinuity at the Fermi surface has become un-
observably small.

Together with the (111)curves the isotropic core
contribution is shown, stemming from the ls, . . . ,
3p electrons. This contribution is relatively small
compared with that of the band electrons because
the Coulomb repulsion excludes the positron from
the core region. Even so, the core contribution
may appear unexpectedly low, but it should be kept
in mind that Fig. 3 shows the momentum density
p(p ), and that the double integration effected by
the commonly used long -slit angular -correlation
apparatus still has to be carried out. Since the
core contribution extends up to high values of mo-
mentum and since these are weighted by a factor
p, the relative importance of the core electrons
will be increased in going from p(P) to the angular
correlation.

The momentum densities summed over all bands
do not provide much insight in the way in which
they depend on the occupation of the individual
bands. Yet, such an insight is needed to predict
the effect of small changes in the band structure in
the vicinity of the Fermi level, or the effect of
changes in the Fermi level with respect to other-
wise rigid bands by alloying. For that purpose a
series of graphs is shown in Figs. 4 and 5 which
present the contributions of the individual bands,
both for the + and —spin direction, as contour dia-
grams in the extended zone scheme. The various
sheets of the + and —spin Fermi surfaces are
clearly visible. Also shown are the lines along
which bands of different representations touch. On
these lines a transfer of momentum density takes
place between neighboring bands since, as has been
shown elsewhere, ' only bands belonging to the to-
tally symmetric representation of the group of the
wave vector k can give a nonzero contribution to
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FIG. 4. Contribution of the majority-spin Sd and conduction bands to the photon pair momentum density in the (100)
plane (left) and (110) plane (right) in nickel. The bands are numbered from the bottom (Fig. 1). Dotted curves indicate
the lines along which bands touch while broken lines represent the Brillouin zone boundaries. The shaded areas corre-
spond to k states occupied by electrons. The plus and minus signs refer to the representation of the wave functions.

the momentum density in the first Brillouin zone.
(In the higher Brillouin zones, where p=k+K with
K a vector of the reciprocal lattice, the contributing
bands can be found with the aid of the selection ru1.e
given in Ref. 5. ) Possibly there may also be a
transfer of density between neighboring bands of
the same representation which approach each other
closely, as is the case with the lowest two Z& bands
near K. The deficiency in density in band 1 near
K is compensated by a small peak in the same re-
gion in the second band. It is uncertain, however,
whether this is a real effect or caused by an in-
complete diagonalization of the secular determi-
nant for these two nearly degenerate bands. A

close scrutiny of the graphs furthermore reveals
that the momentum densities in the various bands
are very little spin dependent, which is not sur-
prising for two sets of more or less rigid bands
split by the exchange interaction. From these
graphs it also becomes clear now that the (100)
curves in Fig. 3 are somewhat misleading.
Whereas for the + spin electrons the gap at X is
caused by the large, multiply-connected electron
sheet in the sixth band, the gap for the other spin
direction originates in the hole pockets in band 3 .
Consequently, when moving along a radius a few
degrees off the (100) direction one still crosses the
+ spin Fermi surface (although the drop in momen-
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turn density at this surface rapidly decreases as
the radius is rotated away from the (100) axis),
while the discontinuity in the —spin momentum
density disappears for angles larger than 7 . A
further discussion of these graphs will be deferred
until Sec. IV, where they will be reconsidered in
connection with a discussion of a number of band
structures published by various authors.

If a nickel single crystal is magnetically satu-
rated along the direction of an incoming beam of
polarized positrons the two-photon angular corre-
lation will depend on the direction of magnetiza-
tion. This enables one to study the momentum-
density distributions of the two spin populations
separately. In practice this is most easily done
by deriving the difference (called the spin density}

and the sum of the two distributions. Figure 6
shows the predicted spin density 4p(p} = p, (ft}
—p (1|}along the (100), (110), and (111)directions.
Its most striking feature is the negative region be-
tween 4-5 and 12-15 mrad, a result of the ex-
change polarization, i.e. , spin dependence of the
electronic wave functions. It is remarkable that,
with exception of the (110) direction, there seems
to be very little spin density in the high-momentum
region above say 14 mrad, in contrast with iron
where the umklapp processes give relatively large
contributions which also have been found experi-
mentally. The positive peak at 16 mrad in the
(110) direction is caused by the difference in the
Fermi radii kppp between the large sheets centered
on the reciprocal-lattice point (2, 2, 0}in the sixth
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FIG. 5. Same as Fig. 4 but for minority spin.
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9, has been computed in the manner described
above [Eq, (7)]. A comparison with the positron
angular correlation in the same graph (Fig. 9)
shows that not only is the Compton scattering am-
plitude higher at high momenta, but also the full
width at half-maximum (FWHM) of the curve is
appreciably larger. Also this is a result of the
large high-momentum content of the Compton mo-
rnentum-density distribution.

IV. RELATION TO BAND STRUCTURE

0.5

The band structure of ferromagnetic nickel has
been the subject of many studies. Wakoh and
Connolly made self -consistent calculations using
the Korringa-Kohn-Rostoker (KKR} and augmented-
plane-wave (APW} techniques, ' respectively.
Hodges, Ehrenreich, and Lang and Zornberg
made use of an interpolation scheme which they
fitted to the results of cb initio calculations for
paramagnetic Ni. By subsequently including spin-
orbit and exchange interactions and making small
adjustments of the constants in their model Hamil-

10

pz in rniliiradians

15 20

FIG. 9. Comparison of the band profiles for (a) Comp-
ton scattering and (b) positron annihilation. The profiles
were calculated from Eq. (7) using p(p) from Figs. 3 and
8. The curves have both been normalized at p=0.
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FIG. 8. Calculated momentum density for Compton
scattering from nickel along the (100), (110), and (111)
directions. The curves show the sum contribution of the
majority- and minority-spin electrons in the 3d and con-
duction bands.

tonian they obtained semiempirical band structures
which gave good agreement with the available ex-
perimental data. More recently, Langlinais and
Callaway~s performed a tight-binding calculation,
which was made self-consistent by Callaway and
Wang. s The ab initio calculations all give essen-
tially similar results for the band structure and the
resulting Fermi surface on those points which can
be studied by positron annihilation and Compton
scattering. The interpolation method of Hodges
et cl. places the —spin Lz level above the Fermi
level, thereby creating a hole pocket at L in addi-
tion to the —spin hole pockets at X. Moreover,
they mention the possible existence of + spin hole
pockets at X and W in view of the uncertainty in the
exact location of the Xz, X5, and W&. levels with
respect to the Fermi level. Since the L~ level is
a p-like level there is a high peak of density asso-
ciated with it as can be seen in Fig. 5. This
makes the pocket, if it exists, in principle observ-
able with positrons or Compton scattering. The
+ spin pockets cannot be observed because the
bands eventually responsible for them have the
wrong symmetry. So far none of these pockets
have been detected in de Haas-van Alphen (dHvA)
experiments except for the —spin hole pocket at
X in band 4 as, s Actually the only other piece of
Fermi surface observed through the dHvA effect
is the neck of the multiply-connected sheet in band
6'. Neither the large sheets in bands 5 and 6 nor
the hole pocket in band 3 have as yet been found.

The self-consistent calculation of Connolly has
been performed for two values of the exchange po-
tential, viz. , the full free-electron exchange and
this exchange potential reduced by a factor of —',.
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Use of the full exchange potential gave a much
smaller s-d separation than the reduced potential.
As a result the + spin Fermi surface in band 6 was
found to be closed instead of multiply connected,
in contradiction with the dHvA observations of the
neck. The band structure obtained with the re-
duced exchange potential is in general agreement
with the results of the present work and it is ex-
pected that this band structure will give rise to a
momentum-density distribution very similar to that
shown in Figs. 4-6. In other words, although there
are small differences like the relative position of
the + spin Lz and L3 levels (Connolly: Lz, —L3
-0.01 Ry, present work: Lz. —L3= -0.007 Ry)
positron annihilation and Compton scattering are
not sensitive to them.

Zornberg's band structure, obtained by fitting
the parameters in Mueller s interpolation scheme
to a number of experimental data, cannot very well
be compared with the results of the present work
because he includes the spin-orbit interaction.
However, one of his results deserves some com-
ment. In the course of dHvA studies it has been
observed that the hole pocket in band 4 changes
volume when the magnetic field is rotated with re-
spect to the crystalline axes. The reason is that
in the presence of spin-orbit coupling the magnetic
field lowers the originally cubic symmetry of the
crystal. This effect will not be observable with
positrons or Compton scattering, however, be-
cause from Fig. 5 it is seen that according to the
present calculation there is little or no momentum
density present at the surface of this pocket, partly
due to the wave-function symmetry and partly due
to the d character of the Z& band. This conclusion
does not depend on the details of the band structure
because a careful analysis of the other band struc-
tures along the same lines shows that there never
is any appreciable momentum density around X in
the fourth band.

The band structures resulting from the calcula-
tion of Langlinais and Callaway and that of Calla-
way and Wang are in good agreement with each
other, although they were obtained for different

values of n, the reduction coefficient of the ex-
change potential. They also agree closely with
Connolly's structure except for the crossing of
the —spin dz, hz, and d,, bands. As a result the
small part of the density peak at the end of the 3
band hole pocket now shifts to the 5 band, while
the rest of the peak remains in the 3 band. Thus
it depends on the band structure whether the gap at
X along the (001) directions is related to the 3 hole
pocket or the 5 sheet. Thus a measurement of the
width of this gap will not provide unique informa-
tion on this part of the Fermi surface unless the
band structure in the neighborhood of X is accurate-
ly known.

The present work has shown once more that in
metals with partly filled d bands, wave-function
symmetry plays a most important role in deter-
mining which parts of the band structure and the
Fermi surface are accessible to study by positron
annihilation or Compton scattering. An approach
in which to every sheet of the Fermi surface an
average momentum density is assigned will there-
fore be unable to reproduce the observed angular
correlations or line profiles, as demonstrated by
the work of Shiotani et al. ~~ The only sheets about
which one can expect to obtain information by these
experimental techniques are the large sheets in the
sixth minority- and majority-spin bands, and pos-
sibly a small part of the sheet in the 5 band. Since
the dimensions of these sheets are not accurately
known yet by other techniques, positron annihila-
tion and the Compton-line-profile method can make
a useful contribution. The information obtainable
about the hole pocket in band 3 probably depends
too much on small details of the band structure as
to be of much value.
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