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The relaxation of a two-dimensional Ising ferromagnet after a sudden reversal of the apphed magnetic
field is studied from various points of view, including nucleation theories, computer experiments, and a
scaling theory, to provide a description for the metastable states and the kinetics of the magnetization

reversal. Metastable states are characterized by a "flatness" property of the relaxation function. The
Monte Carlo method is used to simulate the relaxation process for finite L XL square lattices (L =55,
110, 220 and 440, respectively); no dependence on L is found for these systems in the range of
magnetic fields calculated. The metastable states found for s~nH enough fields terminate at a rather
well-defined "coercive field, " where no singular behavior of the susceptibility can be detected, within

the accuracy of the numerical calculation. In order to explain these results an approximate theory of
cluster dynamics is derived from the master equation, and Fishers static-cluster model, gener~»~~g the
more conventional nucleation theories. It is shown that the properties of the metastable states (including
their lifetimes) derived from this treatment are quite consistent with the numerical data, although the
details of the dynamics of cluster distributions are somewhat different. This treatment contradicts the
mean-field theory and other extrapolations, predicting the existence of a spinodal curve. In order to
elucidate the possible analytic behavior of the coercive field we discuss a generalization of the scaling

equation of state, which includes the metastable states in agreement with our data.

I. INTRODUCTION

Since the pioneering work of van der Waals on

the equation of state of a dense gas, the question
of existence and properties of metastable states
associated with first-order phase transitions re-
mains a challenge to the theoretical physicist.
Experimentally, these states have been found near
the transitions of various systems, e.g. , parts of
the hysteresis loop associated with the magnetiza-
tion reversal in a ferromagnet or with phase sepa-
ration in alloys, supercooled vapor and superheated
liquid associated with condensation or evaporation,
supercooled liquid associated with crystallization,
and many crystallographic phases associated with
structural phase transitions. Since the lifetimes
of these states are astronomically large in some
cases (e.g. , diamond}, the properties of these
states may be very well defined from the experi-
mental point of view. However, in most cases it
is an open question how far these states extend in-
to the region of the stable phase, since due to (het-
erogeneous) nucleation processes it may be ex-
perimentally impossible to reach a "spinodal
curve" even if it exists.

In contrast to this characterization of experi-
ments the progress of the theory of phase transi-
tions has made the theoretical aspects of meta-
stable states still more obscure. A rigorous re-
analysis of van der Waals's treatment exhibited
the fact that these states cannot be obtained from
the evaluation of a partition function in the thermo-
dynamic limit even in cases where the van der
Waals description is correct for the true equilib-

rium states. The metastable states are obtained
in a peculiar limit only where the volume V and
the range of interaction are taken to infinity togeth-
er; in this limit also the lifetime of these states
tends to infinity. If the dynamics of systems with
infinite long-range forces may be described by a
time-dependent Ginzburg-Landau equation, de-
tailed exact descriptions of the relaxation process-
es associated with the metastable states are avail-
able. It is not expected, however, that these re-
sults have much relevance to physical systems
with short-range forces. At least, Fisher's sug-
gestion that the Ising model exhibits an essential
singularity at the coexistence curve indicated
that any analytic continuation of the stable states
to the metastable states seemed ambiguous. Nev-
ertheless extrapolation techniques indicated the
existence of some singularities at a "pseudospino-
dal" ' also for the Ising model. As a consequence
it was suggested by various authors ' ' that a
more detailed kinetic investigation of the transition
from the metastable to the stable phase should be
made.

It is the intention of the present paper to make a
contribution to this question, investigating numeri-
cally some static and dynamic aspects of metasta-
ble states in the single-spin-flip kinetic Ising mod-
el. ' In Sec. II we briefly recall the basic ideas
about metastability. Contrary to some previous
treatments we prefer a dynamic characterization
of metastability. We define metastable states by
a suitable "flatness" property of a certain non-
equilibrium relaxation function. This point of view
has been discussed in more detail in a previous
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publication and shown to be consistent also with

the soluble case of long-range models.
In Sec. III we introduce the model considered.

Even in two dimensions, no exact treatments are
available to obtain information concerning the dy-
namics of this model. In order to provide a. firm
basis for the subsequent discussions, we use the
Monte Carlo method' to obtain numerical re-
sults concerning both the nonequilibrium relaxation
functions and the detailed time dependence of clus-
ter distributions. The Monte Carlo method pro-
vides an exact numerical solution to the basic mas-
ter equation of the model, but can be applied to
systems of finite size only. Using periodic bound-

ary conditions we detected almost no dependence
of the results on the size of the system for the

range of temperatures and fields considered, in

contrast to the preliminary results with free
boundaries where "-heterogeneous nucleation"
takes place at the surface. Our results apply to
magnetic fields that are constant in time, which
seems more realistic than the calculations with
stepwise time-dependent magnetic fields.

In Sec. IV we discuss the question to what ex-
tent these "experimental" results of the computer
simulation may be understood by suitable approxi-
mations to the exact master equation. While a
factorization approximation to the kinetic equation
for the spin yields the well-known mean-field re-
sults ' only, a factorization approximation to the
very complicated exact kinetic equation for the
cluster distribution yields a generalization of the
nucleation theory. It has been shown ' that
metastable states and their lifetimes may be dis-
cussed on a statistical basis avoiding the very phe-
nomenological nucleation picture. In our deriva-
tion we rather try to reconcile this concept with
statistical mechanics, elucidating the (admittedly
very crude) approximations involved in the deriva-
tion of conventional nucleation theory from the ex-
act master equation in this model. The static
properties of clusters as described by Fisher's
droplet model' ' are incorporated into our gen-
eralized nucleation theory in the same way as in

the more phenomenological treatments of Kiang
et al. and Eggington et a/. For the sake of
completeness we discuss the implications of this
static cluster model in the Appendix. Section V
contains some conclusions and suggestions for
further investigations along these lines. A very
brief account on some parts of the present work
was given in Ref. 30.

II. BASIC CONCEPTS ABOUT METASTABILITY

A simple scheme to characterize a state as sta-
ble, metastable, and unstable has been provided

by Gibbs ' who suggested that also metastable and

unstable "states" may be described by a thermo-

dynamic potential G. Equilibrium is characterized
by

(5G)„=0

while stability of a state against perturbations is
ensured by

(M)„&0 (2)

If for a state Eq. (2) is violated with respect to
certain finite perturbations, but still holds for in-
finitesimal ones,

(5 G)„,Ma& 0 (3)

this state is called metastable. For a more de-
tailed discussion of criteria of this kind see the
book by Glansdorff and Prigogine. Choosing as
independent variables appropriate to the Ising mod-

el, the temperature, and the magnetic field I,
Eq. (3) can be brought into a more explicit form

8 G Q 2Q

~g (5T) + p (5H) +2 (5T5H)&0

implying as a necessary condition of stability that
both specific heat and susceptibility are positive,

CH&0, Xr&0

Note that XT diverges as the spinodal curve of the
mean-field theory (see Sec. IV A), changing there
from + ~ to —~ in accordance with the above cri-
terion. The distinction between stable and meta-
stable states is more difficult. Furthermore, the
existence of a thermodynamic potential outside
equilibrium is an open question. While Eqs. (4)
and (5) are certainly necessary conditions for sta-
bility if G exists, it is not obvious if they are suf-
ficient. The system may well be stable with re-
spect to global variations 5T, 5H, but unstable
with respect to local variations, e. g. , the forma-
tion of a "critical nucleus" bringing the system
from the metastable to the stable equilibrium state.
Even if an extrapolation of G beyond the equilibrium
states exists, it may perhaps be meaningless al-
ready for values of H, T far from the spinodal
curve suggested by Eq. (5), if such an instability
against local fluctuations becomes important. '
This concept of "critical-nucleus formation'* is
essentially the basic idea of nucleation theory,
which will be reformulated for the kinetic Ising
model in Sec. IV.

Assuming that an extrapolation of the potential
G from the stable to the metastable states exists,
it is not yet clear how to construct it explicitly.
Equilibrium statistical mechanics yield informa-
tion about true equilibrium states only, if the par-
tition function is evaluated correctly, as shown

from the rigorous treatment of the van der Waals

gas. Langer' suggests the construction of G by
analytic continuation of the droplet-model equation
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of state; since the droplet model has an essential
singularity at H = 0 and this analytic continuation
is complex, its imaginary part may be taken as a
measure of the lifetime of the metastable state.
This latter conjecture is substantiated ' '~ by
more general dynamic considerations.

Another possibility of extrapolation beyond the
equilibrium state is provided by the application of
the series extrapolation techniques. ' ' These
techniques were unable to give any indication of an
essential singularity at the coexistence curve.
Pads approximants at fixed magnetization were
consistent with the existence of a spinodal curve,
where the susceptibility diverges. While the ex-
ponent of this curve was found equal to the order
parameter, the difference of its critical amplitudes
was too small to be determined accurately by this
method in two dimensions. This fact implies that
the "pseudospinodal curve" located by the tech-
nique is extremely close to the phase boundary in
two dimensions. Only rather inaccurate informa-
tion on the location of the coercive fields is avail-
able. While these authors expressed serious
doubts on the existence of an essential singularity
at the coexistence curve, the discussion of Domb'
supports the existence of such a singularity, re-
ferring to a rigorous theorem of Lanford and Ru-
elle. ' Since this singularity (if it exists t) seems
to be very weak (according to the cluster model
all derivatives of the free energy are finite in &he

limit H-0' for T & T,), it is not detected by numer-
ical work or experiments, where a similar extrap-
olation to a "pseudospinodal curve" was readily
feasible. Chu et al. stressed the fact that true
information on the metastable state itself cannot
be found by such extrapolations.

Emphasizing the point that these purely static
techniques are not sufficient to give precise infor-
mation on metastable states, considerations of the
dynamic behavior are needed. First we mention
the kinetic theory of stability; this method sepa-
rates the unstable from stable and metastable
states considering their normal modes. If modes
occur whose frequencies have a negative imaginary
part, i. e. , lead to an increase of fluctuations with
time, the state is called unstable. In this tech-
nique it is again supposed that the thermodynamic
potential is known explicitly (one expands the po-
tential by a quadratic form in the appropriate dis-
placements characterizing the fluctuations and
determines the corresponding eigenvalues). In
practice, it is restricted to mean-field approxima-
tions, e. g. , the theory of spinodal decomposi-

on 48y49

Perhaps the most interesting definition is pro-
vided by the recent important work of Penrose and
Lebowitz in their investigation of the metastable
states of the van der Waals gas. These authors

Tr e-«~3&g
(+g )r H' ~Pr, H'+g ~/her (6)

where 3C is the Hamiltonian of the system.
From Eq. (6) and the definition of a Liouvillean

p, (t)=e ' '
p, ,(0)

the Born-Bogoliubov-Green-Kirkwood- Yvon
(BBGKY) hierarchy for the correlation function is
derived:

= -i ([/P;(t)] P~(t) )r „.—i (P,(t)[S&,(t)])r „, ,
(8)

etc. This description is appropriate both for equi-
librium and nonequilibrium processes. Consider
a case where the system was in thermal equilibri-
um for times t & 0 at T and H', and at t = 0 these
external variables are changed suddenly by bT „
b,H, . To lowest order the subsequent nonequilib-

call a state metastable if (i) only one thermody-
namic phase is present; (ii) a system that starts
in this state is likely to take a long time to get out;
and (iii) once the system has got out, it is unlikely
to return. The meaning of "long time to get out"
is made precise by these authors introducing an
arbitrary subdivision of the system into cells, and
considering the density fluctuations among these
cells by means of classical mechanics (for details
see Ref. 3). Since their techniques rest heavily
on the consideration of a long-ranged potential,
extensions to other systems are far from straight-
forward.

In the following we will adopt another point of
view, which seems appropriate both with respect
to formal requirements and to heuristic arguments
originating from the evaluation of numerical data.
This approach starts from the experimental pro-
cedure, where some nonequilibrium relaxation
process is considered: If in the course of this pro-
cess a "state" occurs whose evolution in time is
negligibly small for times which are large com-
pared to the equilibrium relaxation times of the
system, this state is taken as a metastable state.

A precise description of such a nonequilibrium
relaxation process may be obtained as follows.
We describe the system considered in terms of
dynamical coordinates (p, (t)) [e.g. , in the kinetic
Ising model, p, (t) is the magnetic moment of the
particle at lattice site i] Intro. ducing the density
matrix p». characterizing thermal equilibrium
in the state T, H' the expectation value of an oper-
ator A„ is given by
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rium relaxation process may be characterized by
a "nonequilibrium relaxation function" '

e'"'"'(), )) -=T8"" ) (~ ()) ),. - (~ )"))., I/

~ H"'" [&~1(0)&T, H
"s

—&S1(")&T,H ] ' (9)

Note that the expectation values are taken in the
ensemble of the initial state, while the 2, appro-
priate to the final state T„H„

It is then appealing to define the order parameter
of the metastable state, within a given inac-

curacy 5p., as a time average over the flat part of
the relaxation curve

(13)

where "flatness'* implies that times ti «7'„and t~
canbe found, such that for all times t» t,', and tz,
the subsequent inequalities are fulfilled,

(10)T = T + O'T r y Hr = H +

has to be taken in Eq. (9). In ergodic systems
where

t,~t,» t,'&t, &t~

&&~2 &1.~2 'S'2

611I6p R«(fH —f 1)!TR

(14)

(15)

, $(ts)
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FIG. 1. Nonequilibrium relaxation function ftl (ps)

plotted vs the scaled time [Eq. (30)], as obtained from
the time™dependent Ginzburg-Landau theory. Curves for
various values of the scaled field Hz [Eq. {29}]are shown.

&u1(") )T,H
= &V1&T,,H,

equation (9) reduces to familiar time-dependent
pair correlations in the limit ddI„b, T, -0. '

While P„"' '(k, t) can be calculated by direct
integration of Eq. (8) only in exceptional cases
(e. g. , the time-dependent Ginzburg-Landau theo-
ry ), it will become apparent in later sections that
both the computer experiment technique and the
nucleation theory yield readily )f)„"' (0, t) = P(f) . —

As an example we show P(t) as obtained from
the mean-field approximation (MFA) [see Sec.
1V A] in Fig. 1. Curves for magnetic fields ex-
ceeding the coercive field H,~ are given [for nota-
tion see Sec. III B]. It is seen that for H, near
H,* a very flat portion in the relaxation curve de-
velops, announcing the occurrence of metastable
states. While in the MFA their lifetime is infinite,
finite lifetimes will be observed in models with
short-range interactions, ' in this case the relaxa-
tion curve will always look qualitatively similar to
the flat curves of Fig. 1. We define the relaxation
time v„of the process by

T, = J P(t)dt (13)

where 5pR—= min[i1. .. —&l1 &T,H. ,~H]. We may de-
note v„' as a lifetime of the metastable state

R R«P'( ))T,H &+( )&T,H )I

(P, —&P,(~) )T „.) . (16)

For a more detailed discussion of this flatness
criterion see Ref. 4. Here we only note that this
definition is sufficiently general, so that it does
not prejudice the question of the existence of ther-
modynamic potentials, etc. Lack of safe knowl-
edge about metastability leads us to use this "con-
structive definition" of metastable states Eqs.
(13)-(16)as a working hypothesis in the following
sections. In fact, it may be consistent with any
of the definitions previously mentioned. We think
Eqs. (13)-(16)to be necessary conditions for a
metastable state, but they might not be sufficient.

III. KINETIC ISING MODEL AND MONTE CARLO METHOD

A. General theory

In the single-spin-flip kinetic Ising model intro-
duced by Glauber" an assembly of Ising spins is
considered, which are in contact with a heat bath.
This bath induces random flips of the spin from
one state to another, in accordance with prescribed
transition probabilities W(p, ——p, ,). Since only
one spin is permitted to flip at once, neither the
order parameter nor the energy are conserved
quantities. Since W is assumed to depend on the
actual state of the system only, independent of
the "history" of the system, the dynamics of the
system is governed by a Markovian master equa-
tion for the probability distribution P(p.1, . . . ,

f)11,12,

d
dfP(u1& . . . , PH, t)

N

= —Z W(Py —P y) P(jl1). . . , Pg, . . . ) jlH) f)
f ~1
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W(py- —pg)PO(ps~ ~ ~ ~ ~ &)~ ~ ~ ~ ~ p~)

= W(- py pg)PO(Vga' ~ ~ ~ ~ py~ ~ ~ ~ ~ P N)

(18)
Of course this condition does not specify S' unique-
ly. Two simple choices for W satisfying Eq. (18)
are

W(py -—p~) = (I/2r, ) (1 —py tanhE)/ksT ), (19)

(I/&, )& '""&"s', I E 0
(I/v, ) otherwise,

where p.; E& is the energy of the jth magnetic mo-
ment,

Ei= )J»H + Z Ji» p», X'""=—Qp~Eq . (21)
R

The arbitrary single-spin-flip time v, fixes the
time scale. The time-dependent expectation value
(p&(t) ) is given by

(p~(t))=Z p~P(p&, . . . , p„,t), (22)
(u)

where the sum is taken over all possible configu-
rations. From Eqs. (17)-(22) one derives pre-
cisely the equation of motion [Eq. (8)]; noting that
in this case 2 =-iL is given by

L = Z Wy(pq - —p~) (1 Pq)- (23)

P& being the spin-flip operator of the jth spin,

Pf

+QW(- /l~ Jl~)P(p~t . . . s
—

i gu . . . , i lv, f)

(17)
The thermal equilibrium distribution P»(p, , , . . . ,

pN) is the stationary state of this equation because
of the detailed-balance condition for 8':

sional systems is established by the Monte Carlo
method. ' ' ' Here explicit spin configurations
{p„.. . , p„) are generated on the computer with
the help of random numbers. While this method
is exact in principle, it is restricted to systems
of rather small size (the largest N investigated so
far is provided by the data of the N = 440 X440 sys-
tem described in the present paper) and to limited
accuracy due to technical reasons.

The details of the Monte Carlo procedure are as
follows. One starts with an initial spin configura-
tion (usually the completely ordered ferromagnet),
selects a spin j at random and determines W(p&-- pz). This spin is flipped if r, W(p, , - —p&) ex-
ceeds a random number between 0 and 1. If the
spin is not flipped the old configuration is counted
as a new configuration. This process is repeated
many times. Thus a sequenceof new spinconfigura-
tions is generated, where the number of configura-
tions corresponds to the time lapse. It is conve-
nient to use as a time unit the number of Monte
Carlo steps (MCS) divided by the number of spina
(N}, i. e. , the time in which, on the average, any

spin has the possibility to flip once. This time
unit is independent of the number of spins N. The
system now relaxes to the thermal equilibrium ap-
propriate to the chosen external variables
(H & 0, T). These configurations, characteristic
for this equilibrium state, are then chosen as ini-
tial configurations for runs to simulate the non-
equilibrium relaxation process under considera-
tion,' i. e. , after some time the time scale is put
to zero, the external variables are put to (H'+ ddsc

H& 0, T) and —the Monte Carlo process is continued.
Both the full information contained in the spin con-
figurations and average quantities like P' '(f):

P& i'»= p» 6z»+ i'» (1 —5») (24)
(26)

While in the limit where the interactions J&& get
long ranged it is shown that different choices of 5'
always lead to the same type of equations of mo-
tion in the critical region, where only ~, is re-
normalized, the effect of different S"s on the de-
tailed dynamics of short-range models can be ac-
counted for in this way only (if at all) near thermal
equilibrium. To investigate the influence of the
choice for W we shall use both possibilities [Eqs.
(19) and (20}) in the numerical investigation.

Nonequilibrium relaxation processes can be
treated without approximations only in a rather
special case, namely, for the choice Eq. (19)
and one-dimensional systems. ' This case is of
no particular interest for us, since there is no

spontaneous magnetization and hence one observes
no metastable states associated with a first-order
transition from positive to negative magnetic
fields.

A possibility to solve Eq. (17) for high-dimen-

are readily available at every "instant of time"
(e. g. , at the kth configuration of the Markov
chain). ' ' In order to have better statistics a
further average over several independent runs m

was taken,

p(f) =—Z p'"'(t)~ m=i
(26)

and this average was taken as an estimate for
Q(f))r s, necessary to calculate the nonequilibrium
relaxation function.

While this Monte Carlo technique has been used
extensively for the computation of static equilibri-
um properties, ' applications to dynamic
problems did not appear until quite recently. "
More detailed descriptions of the technique and
justifications for the accuracy, are contained in
Refs. 18 and 22, where the critical slowing down
of the kinetic Ising model was investigated. The
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nonequilibrium relaxation (where the system is
heated suddenly from zero to T, or —equivalently-
an infinite field was turned off) was first consid-
ered by Qgita et al. ,

' while the nonequilibrium
relaxation after a sudden reversal of the field was
investigated in Ref. 19 in the-case of free bound-
aries. In this case a pronounced dependence on N

was detected, because of the enhanced probability
of nucleation at the surface of a small metastable
system. In Sec. III B we give an analysis of the
nonequilibrium relaxation process in the case of
periodic boundary conditions.

B. Results for periodic square lattices with nearest-neighbor
interactions

Calculations have been performed for LxL lat-
tices in the range L=55, 110, 220, and 440, at
temperatures J/keT =0.45, 0.46, and 0. 48 (the
critical temperature is J/keT, = 0.4407); although
(p, )r o ——0 for finite systems we were able to work
with p, eH /k&T = 0 as the initial state, since at the
temperatures considered the systems were per-
fectly metastable with nonzero magnetization,
which agreed with the exact solution within the
statistical error. For a discussion of these equi-
librium properties in the two-dimensional Ising
model as deduced by Monte Carlo methods, see
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FIG. 2. Spin configuration of the 55 x55 square lattice
obtained in the thermal-equilibrium state at J/k&T = 0.48.
Lattice sites with spin down are characterized by the
symbol +, while lattice sites with spin up are left white.
All numerical calculations refer to the case H' =0.

Refs. 19, 22, 60, and 61. A typical equilibrium
spin configuration, as used as initial configuration
for the magnetization reversal process, is shown
in Fig. 2 for L=55 at J/ksT=0. 48. Reversed
spins from small clusters are distributed on a
background of up spins; the mean magnetization
of this configuration is close to the theoretical
value (p)r „I——0. 8775. By "cluster" one denotes
a group of reversed spins linked together by near-
est-neighbor interactions. Denoting the average
concentration of clusters containing E spins at time
t by nI(t) the time-dependent average magnetiza-
tion is written

N

(p, (t) )r „.= l —2 5 fnI(f)
l~1

(27)

The cluster distribution in thermal equilibrium
was investigated in Refs. 60 and 61 and shown to
be consistent with Fisher's cluster model. Since
Eq. (27) and the dynamic evolution of the cluster
distribution may provide the key to understanding
the magnetization-reversal process, as pointed
out in Sec. IVB, we give a short description of the
cluster model in the Appendix, together with some
further simulation results.

Let us first study the magnetization-reversal
process at high magnetic fields (i. e. , fields con-
siderably exceeding the coercive field), see Fig.
3. A "short" time after this field has been
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k, =4 ", t, =to' o 6 (30)

Q„"(k, t)-=G(e, H, H', k, f) =Gg(Hg, Hg, kg, tq)
(28)

where we introduced the scaled variables (e = 1 —T/
T,)

0.0
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FIG. 6. Nonequilibrium relaxation functions P(g)
plotted vs time at J/k~T = 0.46 for various values of
p&H/k&T and H'=0.

By P, 5, and v we denote the standard critical ex-
ponents, and by 6,„,„ the critical exponent of the
order-parameter correlation function

(0 f) 1s,II,54

p,„,„(k,f) = Ze"' &
"~' (5g, (0) 5 p, (t) )

S

x e'~"~-'&& gp, 0 gp, 0

5P& = Pg —(I) ~ (31)

stable state, and its lifetime is so large that it is
not possible to investigate it by the computer ex-
periment. If this metastable "state" has any re-
sidual time dependence, it is by far smaller than
the statistical error of this numerical calculation.

It is interesting to associate the various stages
of the nucleation process as demonstrated from the
"raw-data" configuration pictures (Figs. 2-4) with
the various parts of the nonequilibrium relaxation
function. During the first (concave) part of P(t)
small clusters typical for thermal equilibrium are
present, and their concentration increases to val-
ues typical for the metastable state. In this state
(flat region) small clusters grow together to form
clusters of intermediate size; these intermediate
clusters are sufficiently rare so that they do not
interact, and in most cases they disintegrate again.
After long enough time, however, clusters have
originated by such fluctuations which are already
comparatively stable against dissociation. By in-
corporation of intermediate clusters these clusters
grow rather quickly and this region corresponds to
the linear decrease of P(t) with time. While the
thermal equilibrium state may be characterized
as a weakly interacting gas of clusters, we have
many cluster-to-cluster interactions in this region.
Here the large clusters form a, coherent background
of spin-down phase and the remainder of spin-up
phase has now to be considered as clusters in this
new phase. Their steady disappearance corre-
sponds to the last exponential part of Q(f).

Considering now the temperature dependence of
the P(t) function it is to be noted that Figs. 5-7
look rather similar, apart from irregularities due
to poor statistics. This qualitative statement can
be made more precise extending the dynamic scal-
ing hypothesis (DSH) ' to nonequilibrium phenom-
ena, 3' i.e. . we require

where

(32)

lim g„"(k,f) = g~„~„(k,t)
h H~O

(34)

The DSH seems well established with respect to
the two-dimensional kinetic-Ising-model equilib-
rium relaxation function P,„,„(k,f). ' As a test
of the hypothesis, Eq. {28) in our case, we plot in
Fig. 8, some functions g(t) belonging to (roughly)
the same values of the scaled field H~ versus the
scaled time. Within some small scatter of data

1.0
i

0/ksT * 0.48 p eH/keT

0.022
0.040
0.'I 00
0.'I 80

0.5

0.0
0 200 400 600 800 ')000 1200

FIG. 7. Nonequilibrium relaxation functions ft) (p)

plotted vs time at J/k&T = 0.48 for various values of
p&H/k~T, and H'=0.

'rauau = J 4o~ew (0, t) dt (33)

We note that Eq. (28) holds in special cases, e. g. ,
the mean-field theory (see Sec. IV A), and in the
limit ddt-0 it reduces to the conventional DSH
since' "



2336 K. BINDER AND H. MULLER-KRUMBHAAR

eH/keT 3/ksT

1.0 o 0005 045
a 0012 0 46

0.500

+ 0.0075 0.45
v 0.030 0.46

0.5 0.250

0.0
ts

I

5
0.0

10 20

s p, e/keT
I

25

FIG. 8. Nonequilibrium functions p(g~) plotted vs
scaled time [Eq. (30)] for two pairs of J/kBT, @BE/kBT
which lead to the same value of the scaled field Hq [Eq.
(»)l.

FIG. 10. Scaled initial slope of the nonequilibrium
relaxation function plotted vs the scaled field for various

temperatures.

points due to statistical inaccuracy scaling behav-
ior is indeed observed. It should be noted that Eq.
(28) implies also static scaling for the metastable
states, as suggested previously. ' '

Furthermore, it is important to investigate the
dependence on the size of the systems used. This
is done in Fig. 9 where P(t) is plotted versus t at
p»H/k»T=0. 015 and J/k»T=0. 46 for various N.
No dependence on N was found. %e cannot exclude
that there is a dependence on N for H near the "co-
ercive field, " however, where very longlived meta-
stable states develop. Due to the immense amount
of computing time necessary to investigate this
problem we made no systematic study of the N de-
pendence.

In Fig. 10 we plot the inverse initial slope of the
p(t) functions at t= 0 versus the scaled magnetic

Tj = (const) ~ H» (35)

as expected from a Taylor series expansion of
P„"(k,t) in powers of L [Eq. (23)],

( t ()t&.,» = (t (0)).,» —«t (0))r, » t -~,
(36)

where one uses

(37)

Expansion in powers of ~ and use of the steady-
state condition

field. The initial decay time vi is normalized with
&", as in the case of equilibrium relaxation func-
tions (see also Sec. IVA). Although these data
are not very accurate it is seen that

'1.0 i

—= 0.4603
keT

.015

(p)r». = tanh p, »H + Z J~, p» k»T (38)
T,H'

yields

0.5
(39)

which is finite at T,. Thus we immediately get the
desired result

0.0
0 200 400 600 800 1000

t

FIG. 9. Nonequilibrium relaxation function P(t) plotted
vs time at J/kBT =0.46, pBH/kBT= —0.015 for various
values of N. This calculation was performed with the
transition probability [Eq. (20) ].

1- tanh' p, + Z»p,

X( (P) » —r(P)r, ») (4o)

which has the scaling properties of Eq. (35). Then
we investigate the relaxation time v» [Eq. (12)],
plotting the scaled inverse relaxation time (v») ~

for Eq. (19),
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s
R

tion theory does not predict any sharp limit of
metastability, in contrast to series expansions or
scaling estimates (Sec. V). We include the linear
model prediction for the coercive field [Eq. (103)].
In this regime of fields well-defined metastable
states are found. The data points for the choice
Eq. (20) ' could also be fitted by Eq. (81) with a
somewhat different time-scale factor.

In Fig. 12 we compare the magnetic field-depen-
dence of the static fluctuation

(42)

0
o ) s

—H g P, II /kgT
20

FIG. 11. Scaled inverse relaxation time (~z) ' plotted
vs the scaled field for various temperatures. The curve
represents Eq. {81).

(y ) —v e 5lk6ll (41)

ksTX h

20

10

versus the scaled field 0& in Fig. 11. Again all
data points fall on a single curve, as required by
the DSH [Eq. (28)]. But while vz' Hz we o-bserve
that the (va) ' curve is extremely flat for H~ -0,
where longliving metastable states occur. The
dotted curve shown in the figure is a simple nu-
cleation prediction [Eq. (81), Sec. IVB]. Nuclea-

and the order-parameter relaxation time T6

[Eq. (33)] of the metastable states for J/keT
= 0.46. Again the position of the coercive field
predicted by Ref. 8 and by Eq. (103) are shown.
The curves do not exhibit any singular behavior at
these points; if singularities occur their effect is
numerically small, however, and might well be
overlooked in such numerical investigations. Note
that the thermodynamic relation X = S (y)/SH h, olds
for the metastable states as expected ' (at least
within the given accuracy).

In order to provide a more detailed description
of metastability and nucleation, it might seem ap-
propriate to investigate the k dependence of p„
(k, t). Due to the absence of analytical theories
we did not try this, however, and preferred to cal-
culate the time dependence of cluster distributions.
As an example the concentration n, (t) of clusters
with l reversed spins are plotted for several times
in Fig. 13. Various values of I; are shown. The
concentrations are normalized by the factor l' oc-
curring in the Fisher cluster model [see the Ap-
pendix]. It is seen that n, (t) rather quickly reaches
a very flat maximum for small l, and then de-

] I
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0
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FIG. 12. Static fluctuation of the magnetization "k~TX"

(a) and order parameter relaxation time 76„~, (b) of
metastable states plotted vs the magnetic field at J/k~T
=0.46 for two values of ¹ The values H* are also shown
where the series extrapolation (Ref. 6) and the linear
model, respectively, predict a singular. behavior.

FIG. 13. Normalized cluster distribution /'g&(g) plotted
double logarithmically vs l at various times at J/k&T
=0.46 and p~H/k~T =0.022. The relaxation time is in

this case ~&=368 MCS per spin.
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creases slowly. A more detailed discussion is
postponed to Sec. IVC, where a comparison with
nucleation theory is given.

( T 1/2
paH~= —k T (1-— +k T arctanhB c

) c
8 T ]C

(48)
IV. APPROXIMATE THEORIES

A. Mean-field approximation (MFA)

From Eqs. (17) and (23) it is easy to derive the
explicit form of Eq. (8), using the relation for the
square lattice (H' = 0),

For H'&0 the largest solution (t(), is "metastable"
and (t(,)z is stable, while the intermediate solution
(t(, )2, where the susceptibility is negative, is un-

physical. Using linear-response theory one de-
rives from Eq. (46) the wave-vector- and frequen-
cy-dependent susceptibility

tanh J p, ~ k~T

1 4J 2J=- tanh +2tanh
8 B

1 4J 2Jx ~ &a+— tanh -2tanh
are& 8 k~T k~T

t/a, &am t(a~
AgogQ& &f )

which leads to

(43)

where

I +i(dpi' ' 1 —(p)' (49)

(5o)
(1 —(»')

ksT 1 —[J(k)/ksT) (1 —(t()I)

It is seen that Xg diverges at k=0both for T-T,
and H-H~, where the magnetization (p)* is given
by

(p)+ = (I T/T )~/~ (51)
~. „—,(t,(t))

= —(t/, /(t))+ tanh -+2 tanh
k T

1 4J 2J
B 8

x Q (t(,(t))+—~tanh T
—2tanh

k T ~

4J 2J'I

tg) i B B

x Q (//; (t) p, (t) p, (t)) . (44)
Ae e(~f) 1 2 3

Note that the sums in Eqs. (43) and (44) are taken
over the nearest neighbors of j only. The equation
of motion of (p/(t)) there contains a higher-order
correlation as it always occurs when oae deals with
a BBGKY hierarchy. The MFA solves Eq. (44)
by a factorization approximation to the three-spin
corr elation

( p, , (t) g, (t) t(,
& (t))= (p, ,(t)) (t(&~(t)) (p&~(t))

(45)
Then the equation of motion is conveniently re-
written, again including a magnetic field H~ at lat-
tice site j,

~( (g, (())= —(u,, (()) ~ (anh
~ ~ (v&/

d 1

8

Thus the MFA predicts a "soft mode" associated
with the spinodal curve [Eq. (48)]. Being inter-
ested mainly in the behavior near the critical point
it is legitimate to expand the tanh in Eq. (46} ac-
cording to tanhx=s- ~x . Then Eq. (46) reduces
pr ecisely to the time-dependent Ginmburg-Landau
equation; in this limit the no@equilibrium relaxa-
tion functions and associated lifetimes may be cal-
culated in closed form. As an example we plotted
some (t)(t) functions in Fig. 1, and give the relaxa, —

tion time v„of the metastable state [Eq. (16)] in
Fig. 14, again in scaled form, since the DSH [Eq.
(28)] is exact in this case.

While the curves of Figs. 1 and 5-8 are quali-
tatively similar, a quantative comparison exhibits

)i (t'~ E)

0.8—

0.6—

+J Z (t(,,(t))
9(4')

(46) 0Q

For temperatures below the critical temperature
T, given by 0.2—

ksT =J'(0)= Z J&/, J(k)= Z J,/e'"'
j (Pg) f(Q )

(47}
0

0 0.5 'l.5 2.0

three real stationary solutions (t(), & (p)3& (t()3 of
Eq. (46) are found as long as H does not exceed the
coercive field H~,

FIG. 14. Scaled inverse relaxation time (~z) ~ plotted
vs the normalized scaled field H~ in the mean-field ap-
proximation.
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gross differences, as expected. Also the infinite
lifetimes'4'~ of the metastable states is unphysical.
While the MFA has a very-well-defined spinodal,
no such singularity was detected in the numerical
work. If a spinodal also exists in the two-dimen-
sional Ising model as supported by series extrap-
olations, it can have only a very tiny effect on
the magnetization curves (see Fig. 21).

Outside the critical region Eq. (46) may be
solved by numerical integration; the behavior is
rather similar to that in the critical region, there-
fore we do not show these results. In order to ef-
fect a treatment going beyond the MFA it is possi
ble to keep the three-spin correlation function in
Eq. (44), but introduce a factorization in a higher-
order equation of motion. ~ An approach of this
kind has been worked out numerically, but as ex-
pected the results are very similar to the ordinary
MFA. We must choose an entirely different ap-
proach if we want to be in agreement with the crit-
ical properties of the kinetic Ising model. '
Sec. IV B is devoted to such an attempt.

B. Theory of cluster dynamics and nucleation

As a first step we reformulate the master equa-
tion for the probability distribution of the spins
p& [Eq. (17)]as a master equation for the proba-
bility distribution of clusters a, , where a cluster
a, with l spins is characterized by the set of its
coordinates on the lattice (denoted symbolically by
a, in the spin configuration labelled by n):
dP

= —»(&g- —&y)P({s ), {ss],",{sl),

+ Q W(- p&
- p~) P((a i ]; {sF'4 ",{sl')" .)

(52)
where n' is the spin configuration transformed by
flip of the jth spin into n. The number of clusters
with spins at time I; having the configuration n is
denoted by n;(f), and by ( ~ ~ ~ ) we denote the aver-
age over all possible spin configurations, weighted
with the appropriate Boltzmann factor. Then sim-
ple geometric considerations lead to the following
system of equations of motion:

—{nN(f)& = Z{nf& (f) Af„, (t)& —Z{n&'(t) B. ..(t) ~&+5 {n, «(t) B. . . (t)&~ —Z {n, (t) A&, (f)&~

+ Z {n~ g g (f) A~ ~ ~ ~ ~ (f)& Z {ng(f) B~ ~ ~ (f)) + + {&~ ~ -[ (f) B~ ~ -[,[,( (&)&~

(n, (t) A. . . (f)& + Z {n„,„„(t)A„,„„.. . (t)& —Z {n,"(f) B. . . , (t)&

(53)

which is exact for the square lattice, like the
BBGKY hierarchy. The first term on the right-
hand side of Eq. (53) corresponds to a reaction,
where by a single spin flip a cluster with /+ l~

spins splits up into two clusters with / and l, —1

spins. The probability for this reaction is written
proportional to the concentration n~., (t) of such
clusters in that particular configuration and a
splitting rate A;.„,,(t) which also depends on the
particular configuration. The next term charac-
terizes the inverse reaction, where by a single
spin flip a cluster with l spins incorporates a
cluster with l& -1 spins. The corresponding grow-
ing rate is BN, (t). The third term characterizes
the growth of a cluster with size l- Ij to size l,
and the fourth term characterizes the inverse re-
action. The following reactions involve more than
two clusters. On the square lattice a single spin
flip can lead at most to a reaction between four
clusters. In Eq. (53) the convention is used that

l, l„ l~, l3 are positive integers greater than or
equal to 1 and l& —2 in the fifth to twelfth term.
Thus Eq. (53) contains all existing reactions.

Aiming at exact solutions Eq. (53) would have no
advantage at all in comparison to Eq. (8) [or Eq.
(44)]. While the factorization approximation ap-
plied to Eq. (44) yielded only the mean-field ap-
proximation, a similar factorization approxima-
tion applied to Eq. (53) is still consistent with the
correct critical behavior. Thus we ~rite

{n, (f)&. =n,'(f),
{n;„,(t) A„.. .,(t)&, =n,'.„(f){A„.. .,(t)&, , (54)

( n;(t) B;„(t)&,=n', (t) {B...(t)&
It is seen that by this approximation any influence
of the particular configuration + on the reaction
rates is lost: This approximation corresponds to
a mean-field approximation with respect to the
various clusters, while previously we had a mean-
field approximation with respect to the bulk homo-
geneous magnetization itself. For Eqs. (53) and
(54) to be tractable, a further assumption about
the reaction rates {AP,~,,(f)), B{, ,~( )f& must
be made. Here (B'. ..(f)& gives the average rate
at which a cluster with l, —1 spins is incorporated
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by a cluster with l spins. We write using the con-
vention ntg(t) -=1:

(R; „(t)&.=-R, n,', ,(t) b„, (55)

i.e. , we assume the l dependence of this reaction
is simply given by a time-independent factor
R, b, , Furthermore, we assume that (A„,
&&(t)) is independent of t,

(Al lr(,t)) =Al r

For these equations still to be consistent with
thermal equilibrium as was our original cluster
equation (17) because of Eq. (18), we must again
require a detailed-balance equation in terms of
the equilibrium cluster distributions n, [see Ap-
pendix, Eq. (Al)],

(56)

p& At+I] = ninly l R~ 5g( (57)

c, (t) = n', (t)/n,

one has

dc, (t)
n,

' =R,n, Z b, , n„,c„,l(t)
ly

—c, (t) Z b, l 1 nil-1 cl;1(t)
ly

(58)

+ ~ c -ll(t) big-1 Rl-l 1 nil-1 cl1-1(t) nl-ll

Similar relations can be written down for all the
other reactions involved in Eq. (53), but in view of
the crudeness of the approximations Eqs. (54)-
(56) it seems legitimate to neglect all reactions in
which more than two clusters are involved. Writ-
ing

= b [c„;(t)—c, (t)]+b

)( Rl 1 nl-r
[ (t) (t)]

n)
(61b)

It is hard to say if this approximation is appropri-
ate to the kinetic Ising case, however. Although
this system of equations [Eqs. (61)] is already
linear in the cluster concentrations, explicit solu-
tions are known only numerically. As a last step
of simplification we thus replace the system of
difference equations by a differential equation, in-
troducing the expansions

In order to account also for the critical behavior
a better approximation is needed. Bearing in mind
the study of the growth of a cluster to critical or
supercritical size in the metastable phase, it is
reasonable to assume that the smaller clusters
with which this cluster reacts have the concentra-
tion c, , (t) =1 corresponding to "metastable equi-
librium" [see Appendix, especially Fig. 33]. Then
Eq. (59) reduces to a system of equations first
given by Katz et al.

1 dcg(t)
dt

~
br 1-1nil-1 [cl

l
1(t) —cl (t)]

Rg dt rg

p nr lr R-r
gg ] ng~]

ns

x[c, , (t) —c,(t)], l=1, 2, 3, . . . . (61a)

If one assumes that the distribution b, n, , is ratherlg
sharply peaked at some value l = l, one may re-
place Eq. (61a) by the simpler equationae ro

—Cl(t) Brig 1 Rg l bg mr 1 p

ly

)=1, 2, 3, . . . . (59)

ac,(t), , s'c, (t)c + (gtg) r= c, (t)+ l, 'l + —,l, ala

9
n. ..R. ..=n, R, —ll —(n, R, )

(63)

+Rl lnl-1 bo [cl 1(t) —cl(t)-] (6O)

which is precisely the well-known Becker-Doring
nucleation equation of the classical nucleation the-
ory. ' From the condition n, «1 we see that it
can be correct only far from the critical point.

Thus we have derived a coupled nonlinear system
of first-order differential equations which can be
solve numerically if a guess about the coefficients
b, &

and effective reaction rates R, is made. In-
stead of trying this we rather point out the relation
to the more conventional nucleation theories.
The most simple approximation to Eq. (59) is
found if the cluster concentrations are very small:
Then the dominant term in the sums in Eq. (59) is
clearly the l, =1 contribution, since no

—=1 while
n, «1 for l 40, so that one can write

dc, (t)
d't =Rgngbo[cg, g«) - cr(t)]

so that Eq. (61) reduces to

&n, (t) s s n', (t)lb, ln, , 1 a't = —nR Si
', (63)~t Bl ~l n,

where only some effective average b l2enters

bl = ~ l&b,
&

jn,2

1
(64)

Equation (64) means essentially that on the aver-
age clusters of size l are involved in cluster-clus-
ter reactions. Equation (63) is essentially the nu-
cleation equation postulated by Katz et al. 6 and by
Kiang et al. , but in the kinetic Ising model it is
not clear how to determine the temperature depen-
dence of the scale factor 5/ . Putting bl equal to
bo reduces Eq. (63) again to a standard equation of
the classical nucleation theory. ' Thus we follow
essentially the standard arguments of this theory
to estimate the rate at which large clusters arebuilt
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up from the metastable phase.
We note that Eq. (63) is a generalized one-di-

mensional diffusion equation in the "space" of
cluster sizes (l}, which is written as continuity
equation

en', (f)
8f Bl

for a current, J, , where

2&BHsx e 3y+ 4p —ro (y + p)
kBT

(r+B) / (r+8-&)
x exp —(y+ P —1) ac

kBT
-1/ &r+B-~)

X ~B s

kBT
(73)

sn, (f)
d, =D, ' +v, nI(f) (66)

ro(r+ p) 'r+-~~p
y+ P —1 y+P-1

D, =b/ H v, =-
2& zl

It is important to note that z), changes its sign at
l*.

Using Eqs. (65)-(67) we can make the qualitative
picture about nucleation drawn in Sec. III B more
precise: cluster growth is described as a diffusion
over a potential barrier of height ff. The drift
term always goes "downhill" and thus leads to dis-
integration of subcritical (I & l*) clusters, while
supercritical clusters (l& I*) are stable against
dissociation and tend to grow.

It is seen that Eq. (65) has a steady-state solu-
tion with nonzero current J, =- J which is called the
nucleation rate. It is found integrating the cur-
rent with respect to l,

1 - " 1 "ac,—--2 J dl= ' dl= c„—c" (66)bl; R,n,

which leads to

J =bl dl

o R (69}

because of c7=1, c„=O (very large clusters form
the new phase and are thus removed from the
metastable phase per definition). Expanding

~'n, '

2R)n, —Rg n)g 1+ 2 l —P' + ~ ~ ~

2n*, el
(7o)

it is found that

2 g2n I 't 1/2
J = b l ~

Brendt*

— 2'
ni el i~] (Vl)

and assuming a power law introducing a new ex-
ponent y

(72)

one may rewrite Eq. (Vl) with the help of Fisher's
droplet model [Eqs. (Al) and (A2)] to find

where a "diffusion constant'* D, and "drift velocity"
v, are introduced,

3y+ 4P —,
' -m(y+ P))=

y+P —1 y+P-1
It is seen that the nucleation rate obeys the scaling
hypothesis

d(&, H) =e' J (H ) (74)

dX= (1 —X) V(t, f ) d dt (75)

where V(t, t ) is the volume of a domain of the new

phase at time t originating from a critical cluster
which was built up at time t . The growth of su-
percritical clusters is described by the velocity
v, (for I » I" the diffusion may be neglected), and
thus one writes for the increase in volume d V of
such a cluster

but its scaling power j can hardly be determined
from the crude arguments sketched above. While
one may argue that most of the cluster-cluster
reactions in which we are interested occur at the
cluster surfaces and thus the unknown exponent y

shouldbe close to 1, we know no simple argument to
determine the q dependence of b l '. We thus treat
j as an adjustable parameter.

Now we are dealing with the lifetime of a meta-
stable state. Common belief is that a metastable
state corresponds in a sense to the steady-state
solution of Eq. (65). The larger the nucleation
rate J the smaller will be the lifetimes of this
metastable state. In order to make this opinion
more quantitative, we recall a simple argument of
phase separation kinetics. ' o ~ One considers
the system as being composed of two phases, the
metastable phase (with positive magnetization) and
the stable phase (with negative magnetization), the
latter consisting of all the supercritical clusters,
in which the local equilibrium corresponding to
the stable phase is established at an early stage of
the process already. The magnetization of the
total system is decreased by the growth of these
supercritical clusters, whose number also in-
creases due to critical clusters originating from
the metastable fraction of the system at a rate, J.
For the fraction X(t) of the stable phase it is writ-
ten

(i)
bl Hqo(o —1)

B B
(76)
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Considering the regime where I*» $" (d being the
dimensionality of the system) one assumes

(7'l)

and finds from Eqs. (76) and (VV)

V(t, t) = (gb)' e""'" (l )'" (-2H, /k, T)'(t t')'-
(78)

Now Eq. (75) is readily integrated to yield

H '-
X(t) = 1 —exp [gb 1

' e"~]' — s * J t"'

(g d+1

=1-exp -~—
- &Tz

(79)

and one finds for the inverse relaxation time T~
(- 2 t/sH, /k//T & 1):

// (y)/2g / // 2~// (yP / g)l //(
-1

b )2 (A) O 00 exp — ao

-1/ (y+ g-1)x-&BS
kBT J

(80)

where

&
2y+3P ~(y+P)

k =y+P+

l—2//. sH, /ksT & 1,

d/(d+1)
(g 8) 1 (const) PB s (P t e8)/(t2//-1 d/-T) /(d/1&

kBT

m(y+ P) 5y/2+ 7P/2
y+P —I y+P —1

2(1 —o)l* g~H
(d+ I)sk, T (81b)

(y+P)
~I+I d+1 y+P-I y+P —I&

It is seen that b l should diverge with an exponent
close to (y+ P)/d, in order that the DSH assump-
tion [Eq. (28)] be fulfilled. If one works with non-
geometric clusters [Eqs. (A16), (A18), and (A20)
instead of Eq. (V7)] one obtains slightly different
exponents for the time dependence and magnetic
field dependence in Eqs. (79) and (80). If we were
able to calculate the correct dependence of 0/ we
could attempt to estimate the exponent of the "ki-
netic slowing down"22; in view of the numerous ap-
proximations involved in the whole treatment this
task seems premature, however, and we just pos-
tulate the appropriate & dependence for b l2 to write

/-2 P,Bas '"'
(vs~) '=(const)

i

B

y+ p y g, (y+8) / &y+8-1)

d+1 kB T
-1/(y~ -1)

x WB S
kBT

[(-2 t/s H~/ks T) & 1],
(81a)

where

(n)= +
2y+3P r+(y+P)!d-

d+1 d+1 y+ P —1

The restriction —2 gsHz/ks T& 1 in Eqs. (73), (80),
and (81) is due to the approximate calculation of
l~ [Eq. (A21)]. Since our data belong to the re-
gion —//sH~/ks T& 1, however, we calculate the
correct P' numerically from (sn, /sl) l, ~

—= 0 using
Eq. (Al) and take this l~ in Eq. (V1) to derive a re-
sult analogous to Eq. (81a) which is also valid for

which reduces to Eq. (8la) using the approximation
[Eq. (A21)]. Equation (81b) is plotted in Fig. 11.
Since very crude approximations were necessary
to derive this formula, the excellent agreement
with the data might be somewhat fortuitous. But
note that the treatment of this section is still con-
sistent with nonclassical critical exponents, in
contrast to the mean-field approximations.

Equations (81) predicts a completely smooth be-
havior of the lifetime, as the same as Eq. (A22)
predicts a smooth behavior of the magnetization.
An unambiguous definition of a coercive field Hs
(or limit of metastability) is impossible in the
framework of this theory. The possibility that a
coercive field EP~ exists where 8 (//. )/SH and v~
have singularities (e.g. , a divergent slope) cannot
be ruled out by the present treatment, since these
singularities might well have been lost in the long
succession of approximations leading from Eq. (53)
to Eqs. (81). It is certainly very hard to justify
properly the various assumptions made, and it was
not the purpose to present a correct quantitative
theory of nonequilibrium dynamics of the kinetic
Ising model in this section, but rather elucidate
the extremely crude approximations inherent in
the various phenomenological formulations of nu-
cleation theory

C. Comparison of theory of cluster dynamics with computer
experiment

By the treatment leading from Eqs. (61) to Eqs.
(81) we have been able to estimate the relaxation
time of the system. It is also interesting to inves-
tigate the dynamics of the cluster distribution n, (t)
=n, c,(t) in more detail. Here Eqs. (61) have to be
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0.75

ii c~(t) of safe knowledge about the coefficients b, . In
fact, even the simple Eq. (60) has been studied in
extremely simple cases only ' 3; using the Frenkel
droplet model and requiring the boundary condi-
tions'~

0.50 ci (t)=1 (s4)

0.25

0 I

0 20
~, &p(t)»

I

40
I,

60
I

80

dc, (t)
n&

azmax gf

x [c, i(t) —c, (t)], (85)

with one choice of I „and l only (l „=10, l
= 110). The purpose of this treatment was to study
in which way J and n, (t) reach their saturation val-
ue in an open system where nucleation processes

0.5
i, c&(t)

0.75

0.50

—0.5

FIG. 15. (a) Normalized cluster concentrations e&(t)
according to linearized nucleation theory [Eq. (60)] plotted
vs time (in arbitrary units), for & = 0.026 and pBH/A~T=- 0.10. Parameter of the curves is $. Curves for l~
=100, 200, and 400 agree with each other. (b) Magnetiza-
tion (p(g)) plotted vs time, as calculated from the c&(t)
shown in Fig. 15(a). Curves for various values of l~
are shown.

0.25

o~' I 1

0 500 200 300 400

i, &pa(t)»

solved numerically, but note that its solution pro-
vides only the concentration of clusters inside the
fraction of the system, which is still in the meta-
stable phase. The concentration of clusters re-
lated to the total system is then

0.5

n', -'(t) = n,'(t) [1 —X(t)] (88)

which is a crude way [like Eq. (75)] of taking the
nonlinearity of the problem into account, and
avoided replacing Eq. (59) by Eq. (61). In order
to have consistency we should not use Eq. ('19) in
the present context but require that X(t) be deter-
mined self-consistently by

X(t) = Z I [n,
""(t) —n, (H )]

l=1

( 00 00 1

xI I g In (If') p;n, (&)
~=1

(s3)

No attempt has been made to solve Eqs. (61), (82),
and (83) numerically, however, because of the lack

—0.5

—5.0 I

500
I

'l000

FIG. 16. (a) Normalized cluster concentrations cg(g)
according to linearized nucleation theory [Eq. (60),
broken curves] and according to the nonlinear theory [Eq.
(82), full curves]. All parameters have the same value
as in Fig. 15(a). (b) Magnetization (p(t) plotted vs time,
as calculated from the nonlinear approximation [Eqs. (82)
and (83)] for l~ =100 and & = 0.026. Parameter of the
curves is —p&H/@AT.
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than predicted. The steep increase of the n, (t)
for small t does not occur in the computer experi-
ment very near T,. This discrepancy is due to the
neglect of all higher-order reactions between clus-
ters in Eq. (60); here clusters can grow and shrink
in steps of one spin only and already the direct ob-
servation of the development of the spin configura-
tions demonstrates that this assumption of the con-
ventional nucleation theories does not hold for the
kinetic Ising model. '

D. Scaling proposal for analytic continuation
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I f l

800 t 1200

I

800

170

100 (c)
20

lrR

1600~t 2400

FIG. 19. Simulated cluster concentrations l n'&(t)

plotted vs time for J/k~T=0. 46 and the fields p&H/k&T
= —0. 015(a), —0.012(b), and —0.008(c). Parameter of
the curves is 5. The arrow indicates the magnitude of
the correspondin. relaxation time ~~.

Having established the existence of well-defined
metastable states in the kinetic Ising model which
are independent of the size of the model system
and having established that the nonequilibrium re-
laxation functions satisfy the dynamic scaling hy-
pothesis, it is natural to attempt a construction of,
at least, some properties of the metastable states
by an extrapolation of the scaling equation of
state. ' Note that the two approximate approaches,
sketched so far, yielded results quite inconsistent
with each other; the mean-field approximation
yielded a spinodal curve with divergent suscepti-
bility separating metastable from instable states,
while the nucleation treatment predicted a com-
pletely smooth "disappearance" of metastability

In Fig. 16 we plot several of the nonequilibrium
relaxation functions P(t) = X(f) from this treatment.
Although the qualitative behavior of these functions
is similar to the results of the computer simulation
for larger values of —p H/ks T, quantitative com-
parison is premature, since (t)(f) derived from Eqs.
(60), (82), (83), (85), and (86) still distinctly de-
pends on the values of / used. There is clearly
a need for better boundary conditions than Eqs.
(84)-(86). We do not follow this question here
further, however, but rather discuss now the re-
sults of the computer simulation for the time-de-
pendent cluster distribution n, (t). One example
has already been given in Fig. 13, and further re-
sults are displayed in Figs. 17-20. Here loggo
[l'nI(f)] is plotted versus time for various l,
))sH/ks T, and J/ks T. Deriving these results,
averages are taken over finite intervals Al(l) and
&t in order to have reasonable statistics. Never-
theless some scatter in the data points is still
present (mainly at J/ksT=0. 45, the temperature
closest to T, . The position of g„(where also
(p(t)) =0) is marked by an arrow. It is seen that
the smallest clusters decrease steadily, while
clusters with intermediate size exhibit a flat maxi-
mum and then decrease again. Comparing these
curves to the results of the simplest nucleation
theory [Pigs. (15 and 16)]we note that the maxima
in the actual n, (t) curves are considerably flatter
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FIG. 20. Simulated cluster concentrations E n&(t) plotted
vs time for J/k~T =0.48 and the fields p&H/k~T=-0. 100
(a), —0. 040 (5), and —0. 022 (c). Parameter of the
curves is l. The arrow indicates the magnitude of the
corresponding relaxation time v~.
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with increasing values of —gsH/bsT. The latter
theory did not give any indication of a well-defined
coercive field. But series extrapolations are
consistent with the existence of a spinodal also in
the Ising model, and experimental data can also
be extrapolated to yield "pseudospinodal" curves. ~

Thus it is worthwhile studying these possibilities
of extrapolation from the equilibrium properties
in greater generality~ this may be achieved most
conveniently using the Schofield representation
of variables':

H= a r~68(I —8 ), —c = r (1 —b 8 ) (89)

where b is an arbitrary constant and a is related
to the critical amplitudes of magnetization (B) and
susceptibility above T, (Co) by

a = B(b —1) /Co (90)

—H, /&' = 8(8' —1)/(b'8' —1)" (92)

The metastable states we are seeking are states
with a positive magnetization in a negative field
and thus correspond to values of 8) 1. If at 8=1,
f(82) has an essential singularity as conjectured
from the droplet model, the analytic continuation
of f(8 ) for 8) 1 should be complex. Such a complex
continuation was indeed possible in a special case
where the imaginary part could be related to the
lifetime. Since the droplet model also predicts
that all derivatives of (g) with respect to H at
H- 0+ exist, it is fair to expect that the imaginary
part is extremely small for small negative H, and
becomes appreciable only at the coercive field H*
where states start to be unstable. What we try is
thus a real extrapolation of f(8') with a value 8~

corresponding to H ~~. This implies that the coer-
cive field H* varies as &~', and the order param-
eter (p)" at H* varies as &8, with the same ex-
ponent as the order parameter at the coexistence
curve; only the critical amplitude should be dif-
ferent. Now we note that for fixed b there exists
a maximum value of —H~ which can be reached by
the transformation Eq. (92) with real 8. It is con-

In this parametric transformation the singularities
for T- T, , H- 0 are replaced by the singular be-
havior as r-0 (which is something like a radius
measuring the distance from the singular point),
while the "angular" dependence on 8 has no singu-
lar behavior (except perhaps at the coexistence
curve, 8=1~ this occurs, for example, in the
spherical and Heisenberg model where the zero-
field susceptibility below T, diverges). The homo-
geneity requirement for the equation of state is now

given by~ '~6

(q)/r' = 8f(8')

where f(8) is essentially the scaling function. Note
that 8 transforms into the scaled field H~ by

venient if this maximum value coincides with -H*,
which is achieved choosing

1 38*' -1
8* (2P5 —1) + 8* (3 —2P8)

(93)

Note that the mean-field case (p=-,', 5 = 3), where
the equation of state is known explicitly,

C OH=(- e)(P)+B (0) (94)

= Pr 8f(8 ) 8+

+ r~ [f(8 ) + 28'f (8')] (95)

which is found to be

r" (1 —b~8 )28f (8 )+ [1 —b 8 (1 —2P)]f(8 }
g 1+8 (2b Pb —b —3) + b 8 (3 —2P5)

(96)
Using Eq. (94) this is further rewritten

r" (1 —b'8~) 28'f '(8~) + [1 —(1 —2P)b~82]f(8')
(1 —8 /8* ) [1+8 8* b (2Pb —3)]

(97)
In this form the behavior at the coercive field H*
is conveniently discussed, a.ssuming that

f(8 ) =f0(1 —8 /8~')"' '+ const, 8- 8~, (99)

where 4' ) ——,
' since the magnetization must be fi-

nite. If (1 —2p) b28*' c I it is found that X diverges
from ——(C (—1 1

2 2j

X~(H —H )
'i ', H-H*'

while X has a cusp for —,
' 4'& -,',

(99)

~ —(H - H') ""H- H*'a

eH, (100)

A cusp is also found in the regular case 4= ——,
' if

(1 —2P)b 8* =1; this is precisely the situation of
the linear model equation of state, where it is
assumed (for nonclassical exponents)

so that

(b —3) 2

(8 —1) (I —2p) ' f ' (101)

1
X=4 1+8 (2P& 3)/(1 2P

(102)

is exceptional since here we may take b~ =-,' to have
8~ =~. In this case f(8') =const, i.e. , the scaling
function 8f(8 ) is precisely linear. In order to
discuss the singularity at 8* in the general case
we study the susceptibility

s(p)
X=



INVESTIGATION OF METASTABLE STATES. . . 2347

From Eqs. (93) and (101) we get

1///! 1 2P 86

x, (103)
2

and

(104)

and

2 " 6+6P-2@-3
—2P P6' - 2P6+ 3P - 6

(105)

X (s&y) /2 (H Hg}-1/2 0
BPi ' (2n&)1/2

For d=2, (l/, )*=—1.18 e '~'. Equation (102) leads
to

The spinodal curve estimated by Gaunt and Baker~
is also shown in the figure and is less consistent
with our data. If their spinodal singularity exists
it can have only an extremely tiny effect on the
magnetization curve, since the amplitude of ( p)*
and 8 differs only by about I/o, so that it is hardly
detected by any experimental procedure. Perhaps
the smallness of the effect and the large error es-
timate given are an indication that the singularity
is weaker than spinodal; additional series analysis
would be useful to clarify that point.

The slight discrepancies between the absolute
values of the magnetization and the theoretical
prediction are due to correction terms to scaling,
as can be seen in the case H = 0 where the exact
solution is available. ' These correction terms
are important since our data do not strictly belong
to the "critical region" if it is defined by the si-
multaneous conditions

2P ~31 /n/2 /5 3 ~/~ (y 1)
2P I(5 I Pi/~ I

e I((I, " «I, I(//, ) I«1
B

(109)

p62 —4186+ 3p 6 —2p&+ 6p —3
(P5i —2P5+ 3P —5)i/~ 2P53 —4P5 —25+ 6P

(&063
The claim ' that X* = 0 in the linear model is clear-
ly seen to be incorrect. For classical exponents
(the mean-field case) one has instead of Eq. (102)
simply

X =Cor" (107)

For e-e*, i.e. , 8--, Eq. (89) requires r-0 and

thus Eq. (107) yields a divergent susceptibility for
H-H~, as found explicitly in Eq. (50}.

From Eqs. (99) and (100) it is seen that various
types of singular behavior at H* are consistent with
static scaling, of course. The question has to be
raised if the linear model description in Eqs.
(101)-(106) has a significance for real systems.
In favor of the linear model we mention: (i) It holds
in the limiting mean-field case, and to leading or-
der in the &~=4-d expansion for the Ising model7;
(ii) it is consistent with existing series-expansion
analysis for the three-dimensional Ising model
(iii) it is consistent with the experimental data on

CrBr~ and He. v In contrast we mention (i) small
but significant deviations have been found in series
analysis of the two-dimensional Ising modelso; (ii}
small but significant deviations have been found in
experiments on several other substances. 7' Nev-
ertheless we evaluated it numerically to compare
it to the two-dimensional Ising simulation results
in Fig. 21(a), and note striking agreement. The
theoretical coercive fields are very close to the
experimental values found from the dynamic con-
dition of sufficient "flatness" of the P(f) curve,
l.e. ,

s I~ v6 s5o ~ (108)

since the last of these conditions is violated. Nev-
ertheless it is to be expected that the qualitative
features found so far are also valid outside of the
critical region.

In the other part of the figure we compare the
data to Eq. (A22). Again excellent agreement is
found; the main disadvantage of this description
is, however, that it extends to unreasonably high
values of —)/, sH//ks T.

Being interested in the behavior of the three-
dimensional world we give also the three-dimen-
sional counterpart of Fig. 21 for the bcc lattice in

0.9—
0.48 '

p 0.46

(o)
05—

p 0.48

0.7—

I

—0.020 —0.04 5
t

—0.040
t

—0.005

(bj

0 p. ,H/ V

FIG. 21. Magnetization of metastable states (p) plotted
vs the field for d =2. (a) Full curves are the linear model
prediction and (b) cluster model prediction fzq. (A22)].
The dash-dot curve is the linear model prediction of the
magnetization Q) at the coercive field fEq. (104)], the
dashed curve shows (Q at the "pseudospinodal" pre-
dicted in Ref. 6. Parameter of the curves is J/k&T.
The symbols (x) denote the simulation results for N =110.
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Fig. 22. Here no numerical Monte Carlo work
was performed, but both Eqs. (A22) and (89), (93),
and (101) have been evaluated. Note that there is
nearly a coincidence of the position of the coercive
fields predicted by the linear model equation of
state and the series extrapolation, and only the
nature of the singularity there is uncertain. We
conclude suggesting that the linear model predic-
tion of H* [Eq. (103)] should be quite reliable for
all those experimental cases where it is found to
describe the equilibrium properties satisfactorily. '
In any case the possibility must be considered that
H* cannot be reached experimentally because of
heterogeneous nucleation processes at defects,
surfaces, etc. ,

' thus probably the question of the
singularity at H* is a purely academic one.

Finally, we mention what happens if we extend
the extrapolation to fields -H exceeding -II~.
Here both 8 and (p. ) are complex, and it is found
for the imaginary part of ( p, ) in the linear model:

Im(p, ) ~(H* -H)'~' (classical case),

Im (p, ) ~(H* -H) ~ (nonclassical case) .

is based on the characteristics of a dynamic pro-
cess, namely, the property of "sufficient flatness"
[Eq. (108)] of a nonequilibrium relaxation function
[Eqs. (9) and (13)-(16)]. While the criterion cer-
tainly meets "first-principle" requirements, it is
only a necessary criterion and perhaps not a suf-
ficient one: it might well lead to the inclusion of
states which are very slowly varying in time but
not "really metastable. " However, to our mind

the meaning of "really metastable" is by no means
clear. Thus we disregard any possible restriction
of our criterion —which could readily be added if
and only if some knowledge about the nature of
metastable states were available —and include all
the states found by our flatness procedure. In
practice we consider all states as being metastable
if their relaxation time r„[Eq. (16)] considerably
exceeds the relaxation time of the corresponding
equilibrium state r, „a„[Eq. (33)], i.e. , r„-~1 0
x r6„,„Ifwe .took 10s instead of 10, this would

change the location of the "limit of metastability"

Sometimes the imaginary part is associated with
the inverse lifetime of the metastable state. ' In
any case we may take Eqs. (110) as an indication
that states with -H exceeding -H* are unstable.

V. CONCLUSIONS

(a)

GAUNT & 8

0.8

Considering the question of the nature and prop-
erties of metastable states we adopted a heuristic
point of view. First, we considered a very simple
model, the two-dimensional kinetic Ising model, "
with a single -spin-flip transition probability. The
advantages of this model are that (i) several static
equilibrium properties are known exactly"; (ii)
most equilibrium properties can be understood by
means of an intuitively appealing cluster descrip-
tion'; (iii) the dynamics of the fluctuations around
the equilibrium state can be investigated by high-
temperature' and Wilson ' expansion techniques,
and, most important in our context, (iv) it is very
suitable for a treatment by the Monte Carlo com-
puter-simulation technique. In fact, the relia-
bility of this method was crucially tested recalcu-
lating several properties numerically in cases
where the exact answer was available, ~ ' ~ and
subsequently it was used to provide rather direct
numerical evidence for the cluster description,
and to calculate the time-displaced correlation
functions~ and thejr crjtjcal slowjng down jn the
equilibrium states. Thus it was a natural general-
ization of techniques developed systematically in
previous investigations, to treat the nonequilibrium
relaxation phenomena associated with a sudden re-
versal of the magnetic field. Second, we used a
criterion to construct the metastable states, which
is both simple and adequate to numerical work. It

(4.25 +

pgH (4.57 +

0.2
8H

I

—0.3
I

—0.2 —0.1 + 0.1 + 0.2

—0.8

—0.3 "0.2 —0.0
I

+ 0.1 + 0.2

FIG. 22. Magnetization of metastable states (p) plotted
vs the field for the d=3 bcc lattice. (a) Full curves are
the linear model prediction and (b) cluster model predic-
tion [Eq. (A22)]. The dash-dot curve is the linear model
prediction of the magnetization (p) at the coercive field
[Eq. (103).] The dashed curve shows Q) at the
"pseudospinodal" predicted in Ref. 6. Parameter of the
curves is ~.
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(is equal to ' coercive field" ) by probably only sev-
eral percent.

The heuristic procedures outlined so far lead to
the following results:

(i} The kinetic Ising model exhibits well-defined
(i.e. , reproducible) metastable states smoothly
joining the stable states at 0= 0. In the numerical
work no singular behavior at 0 =0 could be detect-
ed, as expected. Neither does the order param-
eter of these states depend on the size of the sys-
tern N if periodic boundary conditions are used,
nor does the position of the coercive field H* (which
is not precisely sharply defined, however, as in-
dicated above). We do not find the least indication
of any singular behavior in the ( p) vs Hc-urv-es as
necessary for the existence of a spinodal; however,
numerical series extrapolations predicting the
existence of a spinodal also predict an extremely
tiny effect of this singularity, since the range of
H values where )( is large is extremely small; thus
it must be overlooked in any kind of experimental
work, and consequently our results cannot rule out
the existence of a spinodal. On the contrary, our
results confirm the prediction that a broad mean-
field-like "spinodal region" (i.e. , values of H
where y. is large) does not exist in the Ising model.

(ii) It is shown that the metastable states satis-
fy the static scaling hypothesis, as do the (stable}
equilibrium states. Moreover, also the nonequi-
librium relaxation function satisfies the dynamic
scaling hypothesis, as do the equilibrium relaxa-
tion functions. While these hypotheses rest on
numerical evidence in our case only, they are ex-
act in the exactly soluble mean-field case. In
order to exploit the scaling behavior of the meta-
stable state, we discussed the scaling equation of
state in terms of the Schofield parametric repre-
sentation in some detail. It is shown that this
theory suggests the existence of some coercive
field H*, but is consistent with singularities which
may be spinodal as well as weaker than spinodal.
The latter possibility applies if one takes the "lin-
ear model equation of state", which is shown to
be a surprisingly good representation of our data.
The coercive fields predicted nearly coincide with
the ones found from our dynamic requirement. On
the other hand, the coercive fields predicted by the
series extrapolation are considerably smaller. 6

Since the error limits given are very large, 6 how-
ever, further series work would be very useful to
eliminate this discrepancy. In three dimensions
the more accurate series extrapolation results for
8'* nearly coincide with the linear model prediction
(although the predicted singularities, there, are

different)�

).
(iii) The complete simulation technique was

feasible to yield a detailed description of the nu-
cleation process. Apart from the "raw-data" con-

figurations where the growth of critical clusters,
etc. , could be observed, ' the time-dependent clus-
ter distribution n~(t) was obtained with reasonable
accuracy. In order to elucidate the consequences
of these numerical results we gave a new deriva-
tion of the nucleation theory ~ appropriate to the
kinetic Ising model. The various nucleation equa-
tions ' ' previously conjectured appeared to be
very crude approximations to an exact reformula-
tion of the master equation. The nucleation theory
was constructed in consistency with static scaling
by use of Fisher's cluster model' which was dis-
cussed in the Appendix; consistency with dynamic
scaling was introduced in a more ad hoc fashion,
since too little knowledge about cluster-cluster in-
teractions is available. Variation of the relaxation
time with the magnetic field is consistent with the
computer experiment. More detailed information
about the cluster distribution n„'(t) has been ob-
tained by numerical integration in the simplest
case only, namely, the linearized conventional
nucleation theory" (where clusters grow and shrink
in steps of single spins only}. It is seen that this
theory cannot account for the actual behavior, as
expected. Since too many unknown parameters are
involved, no numerical solution of the more com-
plicated nucleation equations has been attempted.
Rather it was the aim of the present approach, to
elucidate the various crude approximations involved
in such a theory. It is suggested that the detailed
properties of cluster-cluster reactions be inves-
tigated in future work along these lines.

(iv) It was shown that a simple continuation of
the cluster model to negative fields [Eq. (A22)]
can account for the numerical data very closely,
apart from the fact that it does not yield the loca-
tion of the coercive field. This formula is numer-
ically very close to the linear model prediction
both in two and in three dimensions. This good
agreement leads to the conjecture that both ap-
proaches could be used to predict the order pa-
rameter of the metastable states of physical sys-
tems with reasonable confidence. Note that both
the linear model ' and the cluster model have
been used successfully for the representation of
experimental data of equilibrium states. Thus ac-
curate experimental information about the meta-
stable states in the critical region would be very
useful to perform a crucial test of the hypotheses
proposed in our treatment which goes beyond the
kinetic Ising model. One experiment of the type
suggested is available for He'; while the general
trends agreed with the linear model description
quite well, xn one case a larger value for the limit
of metastability was found. Further research
along similar lines seems highly desirable, since
on the macroscopic scale the lifetime of the meta-
stable phase is perhaps also determined by the ve-
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locity of interface motion; the macroscopic separa-
tion of stable and metastable phases and the com-
pletion of an interface in gas-liquid systems are
due to gravitational effects, not considered in our
lattice gas investigation. %'ith respect to the the-
oretical approach, further numerical research
seems possible concerning the details of cluster-
cluster interactions. Unfortunately, the most in-
teresting questions of the analytic behavior at the
coexistence curve and at the limit of metastability
are inaccessible by the present techniques.

for the magnetic isotherm [» —= 0]
T-35( I ) = I Dlf1/ 1 4qOPB 2HPB

AT kBT

which implies

5 = I/(r —2) (A7)

On the other hand, Eq. (A5) yields for the suscep-
tibility (H=O, »& 0)

s( ) 4 ( J -(8 &/

kBT i(kBT
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APPENDIX: FISHER CLUSTER MODEL

which implies

r =(3 —~)/o

and the scaling law

r =P(5 -1)

xl", A8

(A9)

(A10)

By a cluster one denotes a group of reversed
spins linked together by nearest-neighbor bonds.
The thermal equilibrium concentration n, of clus-
ters with l spins is approximated by~'~s 27

f» =1 —T/T, ]

~-fg/ABT

fv oc(

=qol ' exp —a T»l —
& T l . (Al)

J 2IIP B
B B

Here the free energy f, of the cluster is approxi-
mated by a "bulk term (~ l) and a ' surface" term
(~ l'), as discussed in Sec. III 8, and a logarithmic
correction term 7'lnl is also added. The constants
qp, a, v, and 0' are related to critical exponents
and amplitudes. ' ~ 7' ' For the sake of clarity
we recall these relations. The magnetization is
given by

(i1) =1 —2 Z ln( (A2)
lag

Differentiating Eq. (A2) with respect to» yields
for a- 0,

All critical exponents e, P, y, ~, . . . are deter-
mined by two basic exponents o and 7,

v=2+I/5, a=1/(P5) =1/(r+P) (A11)

qo' = 2I' (r —1) (A12)

where f is the f function. " For d =2 Eq. (A12)
implies q0=0. 032 and Eq. (A3) implies a=7. 45.
Further properties of the clusters may be derived
from the requirement, that the typical size V of
clusters leading to the divergence of the suscepti-
bility in Eq. (AB) is the correlation volume $,
where 4 is the correlation length and d is the di-
mensionality of the system

and all critical amplitudes A, B, C, D, . . . are
determined by theo basic constants a and Q'p in
agreement with the universality hypothesis of Betts
et al. W'hile the exponent relations are exact in
the two-dimensional Ising model, the amplitude
relations hold only approximately. Kiang ~ sug-
gested that the cluster model might be used for all
l down to L =1, implying a further relation for the
qo, from the condition that (p,) =0 at T„

8( p, ) ~ B.1 2qo
(r kBT

+ ~ ~ ~-(2~)/ty&2+a -V
v

which yields

P = (r —2)/o

(A3)

(A4)

5=-hp &" (A13)

V=)"E ~

From the ansatz for the volume of a cluster with E

reversed spins

(A14)

one derivese

Similarly, one finds differentiating Eq. (A2) with
respect to the field,

0J f2'-(' -a (Z/ ABr ) ~(

f ~ I&'r a(z/0 ri& ~ (&
0

B

= I/»- /. J'
ii I'((3+ - &)/o)

14(3 —'r)/o)
(A15)
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TABLE I. Exponents of clusters in the Ising model.

Bulk
energy

~l"
Volume

16
15

6
5

4
3

Surface

3

5

2i
25

Geometrical
limit for
surface

fx $
{& 1/4){i+1/6 )

(1 —1/d) (1+1/e)

4

1

Surface
free

energy

8
j, 5

16
25

Bulk
critical

exponents Dimensionality

7
8, 15, —
5 5

128311

i. e. , using dv=P(5+1),

V. = Vls+»o (A16)
y Z ~»{~~)

f*= ao
k~7 —2H p, g)

or for the density difference p, =l/V, between the
clusters and the surrounding bulk

P)= (A17)

which may be interpreted in terms of the fact that
for large clusters the probability that they contain
"bubbles" is enhanced. For the mean surface of
clusters with l spins it is required that

S, = Sl', o' ~ (1 —1/d) (1+1/6) (A18)

Now the l dependence of the surface free energy is
found from

fSlllf~ $ 'o- f 1/ 5P P (A19)

which implies

o' =a+1/6 (A20)

We summarize these various predictions about
static cluster properties in Table I. ' It is seen
that the inequality [Eq. (A16)] is indeed fulfilled
(it would be violated for d = 3, 4 if one had required
o'=o). These relations should hold for l»1, but
l should not be too large: If P exceeds the corre-
lation volume considerably, the geometrical limit
18 valid.

The cluster model has the deficiencies that it is
difficult to use above T„and that it is not sym-
metric with respect to a reversal of the magnetic
field. e ' ~ ' Since its validity seemed rather ques-
tionable, computer experiments were undertaken
to check it by direct investigation of cluster. 60'6~

The values for o' of Table I have been confirmed
both for d=2 and 3, o while Eq. (Al) was con-
firmed for d = 2. The latter investigation re-
vealed that Eq. (A12) is not quite correct, since
deviations from Eq. (41) occur for l» 7.

The aspect of the cluster model which is most
important in the context of metastability is the es-
sential singularity at H = 0. For H& 0, f, has a
maximum at l~, and n, has a minimum at l*, where

„ne

1

Io
Fisher s

&0-'

I I I

5 10 20

e
I I I I

50 400 200 500

FIG. 23. Cluster distribution n& in an equilibrium
state tDt and in a metastable state [&] for J/k&T =0.46
and N =110. The curves are the prediction of the cluster
model [Eq. (A1)] where the constants a, qo are taken
from Eqs. (A3) [where 8 =1.22 (Ref. 59)] and (A12). In
the metastable state shown the critical cluster size is
l* =—2452.

and for l &l*, n, increases exponentially. This
means that Eq. (Al) cannot be correct for large f
in a metastable state. By computer simulation we
investigated the question whether Eq. (Al) is a
realistic description for intermediate l. This is
shown in Fig. 23, where the cluster distribution
is plotted both for psH/ksT = 0.000 and paH/ks T
= —0.003 at J/ksT=0. 46. Since for calculation of
the theoretical distributions the amplitude relations
Eqs. (A3) and (A12) have been used, no adjustable
parameters occur. The scatter of data points for
l ~ 100 is fully attributable to poor statistics (note
the small absolute values of n~ I), so we find that
Eq. (Al) holds also for metastable states for l «7,
l «l*. This observation supports the suggestion
that supercritical clusters (l «l*) are characteris-
tic for the new phase with reversed magnetization,
and should be removed from the sum Eq. (A2) cal-
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culating the magnetization, "
gg

(p}~=1 —2 Zing
l =j.

(A22)

The existence of an analytic continuation of this
type is also supported by the fact that all deriva-
tives of ( p, }with respect to H exist for H = 0+ in
the cluster model. Equation (A22) leads to a com-
pletely smooth behavior of the magnetization as a
function of the magnetic field (apart from small
unphysical jumps at all integer values of l~). This
approach does not yield any definition for a coercive

field, II*, except one takes the extreme possible
value I*=1 as a definition for H . Figure 21(b)
shows that this suggestion is incorrect, it leads
to values of IP which are orders of magnitude too
large. Taking (f*)"~'=$ as a definition of H* is
more reasonable, but the values of H* are still
one order of magnitude too large. Apart from this
difficulty the numerical agreement between Eq.
(A22) and the data is surprisingly good. One is led
to the conclusion that II* should be associated with
the position of maximum slope in the (p}-vs-H
curve.
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