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A periodic loop is considered with two magnetic electrons per atom occupying two degenerate bands

with negligible bandwidth. The Hamiltonian considered contains terms representing the intra-atomic
Hund's-rule coupling and the assumed ferromagnetic nearest-neighbor Heisenberg exchange interaction
between electrons of the same and of different bands. The competing effects of these terms are studied

in the exact solution of the spin-1 ferromagnon problem using a method due to Bethe. Both the energy
spectra and the associated wave functions are obtained. It is found that the lowest-lying spin-wave

excitations are characterized by a side-by-side spin-1 triplet pair configuration dominating over the
on-site triplet configuration (rigid z-spin 1 on the atom), no matter how large the Hund's rule

coupling.

I. INTRODUCTION

It is well known that the intra-atomic Hund's-
rule coupling plays a dominant role in the formation
of atomic magnetic moments for isolated atoms.
It was suggested years ago by Slater that the
Hund's-rule coupling may also be the decisive fac-
tor that is responsible for the magnetic ordering
in narrow-band transition metals. ' This point of
view has been adopted by a number of authors. 2

The question is how a magnetic effect on the atom
can be transferred from atom to atom so as to pro-
duce long-range correlations. There is first of all
direct Coulomb interaction between electrons on
different sites, producing the ferromagnetic spin-
spin interaction, for example. There are also in-
direct effects, the main one of which comes from
a band-hopping term used as a perturbation. The
second-order virtual hopping between say nearest
neighbors coupled with a Coulomb repulsion be-
tween electrons on an atom is enough to give an ef-
fective spin-spin interaction between neighbors.

Unfortunately, there are very few exactly solv-
able problems in this area. One can solve the hy-
drogen molecule, and similar small systems, and
also certain one-dimensional systems. Another
exactly solvable problem is the half-filled one-band
situation with nearest-neighbor interactions. We
investigated this problem' by a method due to
Bethe, in the saturated-ferromagnetic limit, F,~,
and found the electron-hole excitations without ap-
proximation. The effective spin interaction be-
tween sites arising from virtual hopping appears in
the solution [see Eq. (5. 10) of Ref. 3] for the low-
est-energy branch, but the E,~ state is nondegen-
erate. The excitation itself was found to be a
bound electron hole, with electron-hole distance
falling off exponentially in the wave function. The
hopping, etc. , had therefore the twofold effect of
(i) altering the effective spin-spin interaction con-
stant J, and (ii) replacing the rigid atomic spin

(electron over" hole) by a bound state in which
the electron strays from the hole, but only exponen-
tially with distance. It was also found that by a
proper choice of constants, the F,~ state was
stable relative to these excitations (i.e. , the ex-
citation energies were non-negative). However,
if the spin-spin interaction between sites was
turned off, the E,~ state was not stable relative to
these excitations. Thus in the half-filled one-band
problem, the intra-atomic interactions do not pro-
mote ferromagnetism, even though the effective
exchange between sites through hopping did occur.
The reason for this is that the indirect effect is
antiferromagnetic. It is possible that this special
exact result is a symptom of a more general re-
sult, namely, that for ferromagnetism (as opposed
to antiferromagnetism) the direct interatomic ex-
change is essential, even when the band is only
partially filled, and even with band degeneracy.

In a subsequent paper, ' we investigated the prob-
lem of two degenerate bands, each band half filled.
This is another exactly solvable problem, the E„,
state being nondegenerate. The results were simi-
lar to those in Ref. 3: When the spin-spin interac-
tion between sites was turned off, the F,~ state is
not stable relative to spin-flip excitations.

In the present paper, 6 we consider two spin flips
(two electrons, two holes) in the two-band case.
The interest in this problem is to determine the
structure of the ferromagnon excitation when there
are the two competing possibilities of a wave in
which the z components of each atom's two elec-
trons flip as a unit (an "on-site z-spin-1 state "),
and of a wave in which z components of neighboring
electrons flip as a unit (a "side-by-side z-spin-1
state"). The analogous rigid-spin problem was
studied by Wortis. 7 In general the lowest-lying
levels will be combinations of all configurations.
We find that the on-site z-spin-1 configuration does
not ever dominate, even in the limit of large
Hund's-rule coupling. The side-by-side configura-
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tion always dominates. The lowest-lying excita-
tions relative to the F,~ state will in fact be the
single spin flips (discussed in Ref. 5} no matter
how large the Hund's-rule coupling.

II. HAMILTONIAN AND WAVE FUNCTION

H =Ho+H),

where
N

Ho= Ju ~S» ~ Si(lj, (P)

(2. 1}

(2. 2)

N

Jg ($(1),$(1) $(2), $(2))
»=1

In order to simplify the problem somewhat, we
shall eliminate the band terms, and assume that
their effect is, as stated above in Refs. 4 and 5,
mainly to change the effective exchange constants,
and to make each "spin-~" a bound electron-hole
pair with electron-hole distance probability varying
exponentially with distance. What is left is a spin
Hamiltonian as follows:

(:), —.~2[(.).(, )1, ( ), -'~2[(')-(, )].
(2. 7)

Here the upper and lower components of the column
matrix indicate the spin configurations of the elec-
tron in band 1 and band 2, respectively. The first
three configurations listed above are triplet states,
and the last one is a singlet state. When we rein-
troduce the lattice indices, we can then talk about
triplet or singlet states associated with a lattice
site in terms of the corresponding Wannier func-
tions.

Let us now look at the spin-flip states relative
to the saturated ferromagnetic state, IF,«), which
is the state with all lattice sites in the ( ) configu-
ration. The other spin configurations can be gen-
erated from the E„,state by applying a proper
combinations of the spin-raising operators. The
eigenvalue of H associated with I'„, is called Eo.

The one-spin-flip states are generated by apply-
ing the spin-raising operator on lE „)once. From
the complete set in E(I. (2. 7}, there are two one-
spin-flip states: one triplet (t) and the singlet (s),

N
gl Q ($(1) .$ (2) $(2) .$(1&)

i=i
(2 2)

'" -=[($'")'+($"')']~F.«}=[(')+( ))

(2 . $)
Here S',"' is the spin operator characterized by
band index X (&=1, 2) and Wannier index i. These
spin operators are in turn defined in terms of sec-
ond-quantized Fermion operators

($(2))+ (C(X) )t(C(2))

($(x&)- (C(x))t(c(x) )

($(2) )e ~ (n(x) n(1) )

(2 4)

(2. 5)

where

S -=S'" S"' (2.6)

The Hamiltonian in E(I. (2. 5) is of the form of a
standard Heisenberg Hamiltonian. Here S, is the
total-spin operator associated with the ith lattice
site; it is a spin-1 operator if it operates only on
the triplet states.

Here we must explain what we mean by triplet
or singlet states. Let us for the moment ignore
the lattice index and concentrate on a particular
lattice site. There are altogether four spin con-
figurations:

The Ho term represents the intra-atomic Hund's-
rule coupling, and the H, term is the nearest-neigh-
bor-exchange term. The J term in H, represents
the exchange interaction between electrons of the
same band, and the J' term represents the exchange
between electrons of different bands.

When J=J', the nearest-neighbor-exchange
Hamiltonian H& can be written as E2" —&(& = (&+& ' )[1—cosk], (2. 9)

E2" —&() = &&2+ 2J'+ (J —J')[1 —cosk] . (2. 10)

It is clear from the above expression that both the
Hund's-rule coupling and the interband nearest-
neighbor exchange interaction contribute to the en-
ergy difference between the triplet-spin-wave and
the singlet-spin-wave spectra.

We next look at the two-spin-flip states. The
simplest way to analyze them is in the following
terms: (i) states with two flips at f and g in the 1
band, (')t(')2, of which there are 2N(N —1}because
of symmetry between f and g and because the g=f
case is not a state of the system; (ii) states with
two spin flips at f and g in the 2 band, (,)t(, ), of
which again there are ,N(N —1); and (iii—}states
with a spin flip at f in band 1 and g in band 2,

@(s)—[($(l))+ ($(2))+]
~

F ) —
[( +

) (
-

)]
where f= 1, 2, ... , N. Here the notation used in
the right-hand side means that only the f site has
a spin flip, and that the other sites are all in the
( ) configuration. It can be easily shown that the
set of all singlets spans an invariant subspace
under the operation of the Hamiltonian in E(I. (2. 1);
the same is also true for the triplets. So we can
solve the energy eigenvalue problems of the triplets
and singlets separately. The lowest-energy solu-
tions are the spin waves. There are two types of
them: one corresponding to the propagation of a
flipped triplet and the other to that of a flipped
singlet. The dispersion relations of spin waves of
wave vector k= t(n/N, n = 1, 2, .. . , N, are
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singlet-triplet mixtures (f&g)
(2. 11b)

$(st) [($(1))+ ($(2))+][($(1))+ ($(2))+]
~

F
(2. 1lc)

The f= g state of a triplet pair is the state where
two spin flips occur at the same site (;). There
would be an identical configuration arising from
the f=g state of the singlet pairs, so it is removed
from the latter category to avoid duplication and
because it has the significance of a triplet, not a
singlet. Notice that there are then 2N(N+ 1) triplet
pairs (because of symmetry and inclusion of f=g
states), 2N(N-1) singlet pairs, and N' -N singlet-
triplet mixtures. The latter number comes about
because there is no symmetry in f and g, but the

g =f states must not be counted because they are
not states of the system. The total number of
states is then 2N -N, just the same number that
was counted in the previous paragraph.

The advantage of the singlet-triplet description
is threefold. First, under the operation of H, the
singlet-triplet mixtures are closed whereas the
singlet pairs and triplet pairs although coupled are
separated from the singlet-triplet mixtures. Thus
we get a preliminary separation into two branches
of states. Second, the triplet pairs (and singlet
pairs) refer to sites only, and have no band index.
They represent two spin excitations at two sites,
and therefore are closely related to the usual con-
cept of a spin deviation in the ordinary treatment

(,)f(')s, of which there are N' .The total number
of independent states is therefore 2N -N.

It is then possible to reformulate the basic states
in terms of singlets and triplets as follows:

triplet pairs

4'""=[($") ($'") ][($") ($" )']~F

(2. 11a)
singlet pairs (fttg)

~'-'=[($'") -($"') ][$'") -($"') ]lF..&,

In this section we shall solve the energy eigen-
value problem in the subspace of the singlet pairs
and triplet pairs. Consider

H4 =E4,

where
N

f2 g=1

(3. 1)

(3.2)

and where H is the Hamiltonian defined in Eq. (2. 1).
Here X& g and F& g are coefficients to be determined.
These coefficients must satisfy the periodic bound-

ary conditions

f g Xf,g+N Xf+N g 2

(3.3)

f g f g+N ~f+N g

They also have to satisfy the symmetry require-
ments

X~,g=Xg
(3.4)

since the functions @'&,
" and 4&" are, by defini-

tion, symmetric with respect to the interchange of
indices f and g. For the convenience of later
treatments, we shall assume N to be odd.

Substituting Eq. (3.2) into Eq. (3.1) and taking
matrix elements with respect to various ~'& g' and
4'f'g", we obtain the following sets of equations:

of a Heisenberg Hamiltonian. Thus the two-magnon
problem solved by Wortisv should be related to our
triplet-pair states. Note that for f= g we get an
"on-site z-spin-1 state" on the atom. We wish
ultimatel. y to determine to what extent the lowest-
lying excitations are composed of these on-site
configurations as opposed to the "nearest-neighbor "
ones. And third, when J=4', the triplet pairs and

singlet pairs themselves separate and form two

simple closed systems under the action of H.

III. SINGLET PAIRS AND TRIPLET PAIRS

f s+1+ f s 1+ f+1s+ f 1,s}-
+ (5f~ss(+ f s )}(JXfs+J"Yf s) —2Z(5f ss(Xf~ss(+ 5f~((Xf s 1)+5f 1 serfs( s+ 5f 1 sXf 1 s) = 0,

(E —EP —4eT —2cl)2)Yf &+J (Yf ss(+ Yf 2 1+ Yfs( r+ Yf 1 s)

f,ss)+ f.s-1)( f s+ f s) 2 ff, s-1 f s 1+ f, -s-1 f.-s-1+ fs).s f+1 s+ f-4s f-(Is] 0 ~

(3.5}

(3.6)

where
Z =is(J+ J'),
J"=—2 (J —J'),

and where f, g=1, 2, ~ ~ ~, ¹

(3.7)

(3.8)

To solve the set of coupled equations in Eq. (3.5)
and Eq. (3.6), we first separate out the exponential
factor associated with the motion of the center of
positions of the two flipped spins at f and g, i. e. ,
consider solutions of the form
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eiE(f4@)x
far

y e &fw&yf,r
(3.9)

where

K=nw/N, n= 1, 2, . .. , N

+x=0, 1, ~ ~ ~, N —l.
(3.10)

The symmetry conditions of Eqs. (3.3} and (3.4)
are maintained by stipulating

(3.11)

Notice that there are N K's, N assumed odd for con-
venience. Further, the number of independent
X„'s is g(N+1) and the number of independent Y,'s
is ~(N —1). The total number of states is again N
in the singlet-pair triplet-pair branch.

Substituting Eq. (3.10) into (3.5) and (3.6), we
obtain a pair of coupled equations,

(E —E -04')X„+2J cosK(X„,)+X i)

+(&„,0+ &„ i 0)[&X +8"Y„-J cosKXO)] =0,
(3.12a}

(E Eo —4Z —2-Z,z)Y + 2J"cosK(Y„,+ Y,)

+ (~„40+~„, 0)[&"X„+& Y, -8"cosKXO] = 0 .
(3.12b)

Equations (3.12a) are a(N+ 1}independent equations
in the 2(N+ 1}independent X„, and Eqs. (3. 12b) are
2(N —1}independent equations in the ~(N —1) un-
knowns 1'„, with coupling between them.

The most significant thing about these equations
is that the Hund's-rule coupling coefficient J» en-
ters the singlet equation (3.12b), but not the triplet
one. Thus in the lowest-lying states dominated by
triplet configurations, J» will not enter the energy
directly. In fact when J=J', the combination
J"=0:Triplet states are completely separated
from the singlets, and there will be no ap-
pearance by J» in the lowest-lying excitations.
This is therefore a special case of considerable in-
terest; it is simple to handle, and contains the
qualitative features of the general solution. It is
treated in Sec. IV.

The fact that J»'s direct appearance in the ener-
gy spectrum for the triplet-pair states is minimal
does not mean that J» has had no effect. The H&

term in the Hamiltonian promotes triplets as op-
posed to singlets, and the fact that the triplets have
lower energy is the effect of Ho. But Ho does not
distinguish between the three members of the triplet
family. Thus 4'&&" is an eigenstate of Ho with the
same energy, E«, say, that E„thas. But @'f~" is
also an eigenstate of Ho with this same energy. The
first function 4'z&" has spin 1 and z component 1;

(E —Eo —4~„+2JcosK(X„,i +X„&)

+(6~+&,0+6m-s, o)~(X -Xo) cosK) =0,

(E Eo —2Jiq —-4j)Y +(5,i 05+i 0)JF„=O.

(4. la)

(4. lb)
The two sets of equations are independent.

To solve Eq. (4. lb) first, we note that there are
solutions of the type

E = ED+ 2J»+4J,
Yq- Y„(=0, X( -—0 ~ ~ ~ (all i),

and bound state solutions of the type

E =Eo+2J»+3J,

(4. 2)

Y, = 0(i = 2, 3, ... , N —2), X( --0(i = 0, ... , N —1).
(4. 3)

In Eq. (4. 2} the Y2 Y, .. .Y„2 may be nonzero.
Since there are ~(N -3) independent such Y's, there
are k(N —3) independent orthogonalizable states in
this subbranch. In Eq. (4.3), only Y, and Y„,are
nonzero. Only one of these is independent. There
is one state of this type therefore. The result is
that the singlet states number k(N -1) as expected,
and have energies as in Eqs. (4. 2) and (4. 3).

To solve Eq. (4. la) we try, following Bethe, 8 the
form

X„=e'~+ Pe '~, r = 1, 2, .. . , N —1

Xo = unspecified .
(4.4)

Substitution into the x=2, 3, ... , N —2 equations of
(4. la) we get the dispersion relation

the second function @'fg" also has spin 1 but z com-
ponent ~ relative to E,~. Ho does not make a dis-
tinction between these states energywise.

This may seem strange, but it stems from the
fact that Ho is isotropic. If Ho were replaced by
the Ising interaction Ho, z= —J,z/S, P„, which
does distinguish the z components, then indeed the
on-site z-spin-1 state would be preferred. Both
off'" and @fr'" are eigenstates of this operator, but
the eigenvalue of the fg state is J,a higher than that
of the other. So long as the Hund's-rule term is
in isotropic Heisenberg form, as opposed to Ising
form, it can make no distinction between a side-
by-side triplet pair 4'&~t '(f Og) and an on-site triplet
@ff This is the reason that the triplet -pair spin
waves are not much influenced by the Hund's-rule
coupling.

IV. SPECIAL CASE J=J

The case J=J' is especially simple to handle,
since Ho commutes with H„and since the singlet-
pair branch separates from the triple-pair branch.
This is immediately visible from Eq. (3.12) in
which we now must set J"= 0:
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E —Eo E —Eo

ss - Continuum

st - Continuum

Jlgt4J

/
//

I I

4J

~ tt — Continuum

/

//
/

//

I

FIG. 1. This figure
shows the structure of vari-
ous continua and the asso-
ciated bound states of all the
two spin states. The tt
continuum stands for the
triplet-pair continuum,
gg for singlet pairs, and
gt for singlet-triplet mix-
tures.

-vr/2 + 7r!2 7r!2

E, = Eo+ 4J(1 —cosKcosk) . (4. 5)

There are three unknowns, Xo, P, and k, left to
determine from the three remaining equations at
r=1, 0, N —1. These equations are the boundary
conditions. Using the symmetry conditions X&
= e'r"X„, and Eqs. (4.4} and (4. 5), these three
equations become two,

X, -Xo cosk = 0, (4 6)

i(k+E)N (4. 8)

Substitution of this into Eqs. (4. 6) and (4. 7), and
eliminating Xo, gives an equation for k that can be
written

Xi+Xo cosK —2(1+P) cosK = 0. (4. V)

Further, in order for X„„=e'"X„, Eq. (3. 11), P
is completely determined from (4.4} as

sents the unbound continuum states. Examination
of Eq. (4. 9) shows 2(N+1) real roots, one of which
is at k= m. However the value k= m is not a state
of the system, as can be seen from the fact that
all the X„'s in Eq. (4. 4) are zero (remember we
have always been assuming N is odd), and X, is
also zero from Eq. (4. 6}. Thus the real-k states
available number ~(N —1). To complete the spec-
trum, there is the case of k pure imaginary, Eq.
(4. 12a). The total number is then 2,(N+ 1).

To find this last state, we first of all notice that
for it, tcoskl &1, and the energy of this state lies
outside the continuum of wave states with real k as
seen from (4. 5). The energy lies, in fact, below
the continuum of triplet states, and below the states
in Eq. (4. 2). For J» &J'(reasonable physically),
the energy lies below the one in (4. 3} for all K.

The wave coefficients are

cosk+ cosK
cot[ ~(k + K)N] = —tank

cosk —cosK

To proceed we allow k to be complex,

k= kq+ik2.

where k, and k2 are real. Then

(4. 9)

(4. 10)

X = e-k2r e-k2(Nm) iENr— (4. 13)

1+e 2 —2e acosKe' e 1+e+~~ —2e"k~ cosK ' (4. 14)

Substitution of (4. 3) into (4. 9) gives after adjust-
ment

cosk = cosk, coshk2 —i sink, sinhk2 . (4. 11)

sink, = 0,
i.e. , k~ = 0 and k is pure imaginary or

sinhk, = 0,

(4. 12a)

(4. 12b)

i.e. , kz-—0 and k is pure real. [The possibility
k, = v in (4. 12a} can be shown not to be a solution. ]
Consider the latter case. This obviously repre-

From (4. 5) we see that cosk must be real. There-
fore either

There is no solution for negative k2, since the
right-hand side can never catch up to the left-hand
side as k2 increases. There is one solution for
positve kz. It can be determined in the limit as N
goes to infinity, and the left-hand side vanishes.
The equation is then related to the equation for two-
magnon bound states using the Heisenberg Hamil-
tonian with spin 1.

We recall from Eq. (3.2) that Xo is the amplitude
associated with the (;) configuration, whereas X~
is the largest amplitude associated with the side-
by-side triplet. Thus
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RD=
I
x, /xi I' (4. 15) RI

gives the relative probability of these two configura-
tions in the state found above. We notice immedi-
ately that it is independent of Jz Isee below Eq.
(3.12) for a discussion of this], and it is less than
$ 0

1.0 .o
o Jg = O.OOI

O. l

o 0.5
~ 2.5

RQ ——1/cosh kB( 1 . (4. 16)

Now let us consider the general solution of Eqs.
(3. 12a) and (3. 12b). We try solutions of the form~a

eiI4r + b e-tkr
r x r (5. la)

RI ~J,q= O.ool

10ooo 0 o o o o o

This means that the side-by-side configuration al-
ways dominates the wave function and the more
firmly bound. This is a rather surprising result.
We anticipate that it will be approximately the case
even when J&J, since the insignificance of J» re-
sulted from the fact that C'&~" and @'z&"' are both
eigenstates of HD with the same eigenvalue, a result
still valid when J4J'.

It should be noted that the energy of the lowest
triplet-pair branch given by EI, =E0+4J(1
—cosKcoshk, } is higher at each K than the single
triplet branch in Eq. (2. 9). One might have ex-
pected that strong Hund's-rule coupling in the atom
would make a flipped z-spin 1 on the atom cheaper
energy wise than a flipped z-spin-z. But this is
not the case. All H0 does is promote triplets, but
it does not distinguish z components.

V. GENERAL SOLUTION OF THE TRIPLET PAIRS AND
SINGLET PAIRS

0.5-
44

o

oo o R
~ ~ ~ R a I I a a ~ Ia ~,

0.5 1.0
Cos K

J = I.O

J =0.5

FIG. 3. This figure is similar to Fig. 2, except
that the value of J' has increased.

P„=a eia" +b e "" (5. 1b)

where r= 1, 2, ... , (N —1). The corresponding dis-
persion relations are obtained from Eqs. (5. 1)
and (3. 12), r=2, 3, ... , N —2, as

E -ED+4J+4J cosKcosk=0, (5.2a)

Z —ED —4J —2J2+4J" cosKcosq = 0. (5.2b)

It should be noticed that the wave numbers k and

q are not independent. They are related through
the dispersion relations in Eqs. (5.2a) and (5. 2b),

cosq = (cosk+ X)/p. , (5. 3)

where

X=J,z/2J cosK, W
= J /J ~ 1 (5.4)

There are seven unknowns to be determined.
They are k, q, a, a„b„b„and XD. From Eq.
(3. 11}, we get

and

eiAE i' (5. 5a)

J)p= 0.5
ooo 0

0
~J„= 2.5

0 0 0 0 0
0 0 4
a a Q a ok'

J = I.O
J'= 00

0.5 1.0
Cos K

FIG. 2. This figure shows the dependence of the
R~ vs cos E curve on the value of J~2, with J and J'
fixed.

a eiaN eiK& (5. 5b)

X& —Xo cosk . (5.6)

These are the analogs of Eq. (4. 8). They eliminate
two of the unknowns. There are five left, one of
which is determined from the normalization of the
wave function. A second condition is the relation
(5. 3) between k and q.

Thus we need three independent equations. One
of these is the r=0 equation of (3.12a). Using
(5. 3)-(5.5), we find
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10.
R,

0.5 - ,

Jlg = O.OOI

0 Jg= 0 I

In this case the singlet-pair part of the wave
function, the F 's, forms a simple wave with wave
vector q, and the triplet part, the X„'s, decreases
exponentially as r increases (r/K«1). Such states
obviously have some continuum character. We
shall give them the name "singlet-pair continuum
states. " They are the generalization of Eq. (4. 2).

(ii) The wave number k is real, and hence q must
be complex. This energy of such a state lies with-
in the envelope

IE Eo —4-Z
I
—4Z cosK. (5. 10)

0008e O d d d d dddd
0.5 1.0

J s 1.0
J * 0.95

Cos K

FIG. 4. This is a set of R~ vs cos K curves, whereJ-J' is very small; i.e. , the nearest-neighbor part
of the HamQtonian is close to a standard Heisenberg
Hamiltonian. Here we see that R~ is almost negligible
for all K even when J~2 is very small.

The other two are the r = 1 equations of Eqs. (3.12a)
and (3.12b). They become

a/2 cosk cosK(1+ e' "e@")—(cosk+ cosK)

x(eQ l»» lit(N 1))]

In this case the triplet-pair part of the wave func-
tion is a simple wave, and the singlet-pair part of
the wave function decreases exponentially as r in-
creases. These are the generalization of the real-
k solutions of Eq. (4. 9).

(iii) Both k and q are complex. Let k=k, +ik~,
q =q&+iq» where k» k» q» qz are real numbers;
then the location of the energy level of such a state
is determined by the signs of cosk, and cosq, . The
energy level may lie below the "triplet-pair con-
tinuum" which is specified by the envelope in Eq.
(5. 10). In this case both cosk, and cosq, are posi-
tive. The energy level may also lie above the
triplet-pair continuum but below the singlet-pair
continuum. In this case both cosq& is positive, but
cosk, is negative. In both cases X„and Y„decrease
exponentially as r increases (r/N «1. and N ~).
Such states are obviously bound states. (Actual
calculations show that there is no state lying above

~ cosk(etc el»Ãelg&iv 1)) p

a,p(cosK — cos)k(e'~ e+'» e'~'" ")
+a„[2p coskcosK(1+e' "e"")
—cosk(e', +e'»"e', '" "}]=p.

(5. 7a)

(5.7b)

1.0-
Ro

~ ~
~ 0

Jig = 1000
0

0

~ ~

The determinantal equation here is the generaliza-
tion of Eq. (4. 9), and reduces to that equation
when p, =0.

Equation (5.7) contains the complete set of solu-
tions to Eqs. (3.12). Let us examine the nature
of the possible solutions. In general, for a given
solution, both k and q can either be real or com-
plex. For the sake of clarity, let us assume that

05-

Jy= 2.5~0

&= J~/2JcosK&2. (5. 8)

Under this restriction, it can be easily seen from
Eq. (5.3) that k and q cannot be both real. We
have three types of states.

(i) The wave number q is real, and hence k must
be complex (pure imaginary}. From Eq. (5.2b)
we see that the energy of such a state lies within
the envelope

I
E Eo -4'T —hlE2 I

—4J'" cosK; (5.9)

JlP = O.OOI

LIB A A n m n n nnn
0.5 I.O

Cos KJ R I.O

J = 0.0

FIG. 5. This figure shows the dependence of the
Ro vs cos K curve on J~~. Notice that this set of curves
approaches a "saturation curve" when J~2 increases.
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the singlet-pair continuum. ) In Fig. 1, a schemat-
ic diagram of all the continua and bound-state spec-
tra is given.

We are mainly interested in the properties of the
bound states, in particular the lowest ones lying

below the triplet-pair continuum. For actual cal-
culation of the bound-state spectrum, we use the
limit N- ™such that the exponential factors e+"
and e""both vanish. The determinantal equation
associated with Eqs. (5. 7) then reduces to

2 cosK cosk —e' (cosk+ cosK)

p(cosK —cosk)e'~

—p, coske"
=0

2p, cosKcosk —coske"
(5. 11)

Recall that k and q are related to the energy eigen-
value (E -Eo) through Eqs. (5.2), so the energy
eigenvalues can be directly obtained from Eq.
(5. 11).

In addition to the energy eigenvalues, we can
also obtain the wave functions by finding a /a, .
There are two quantities of interest; they are

Rx= IFJXxl (5. 12)

R, -=i(X,/X, )i'. (5. 13)

The quantity R, is a measure of the mixing of the
singlet pairs to the triplet pairs, a state with a
small value of R, means that it is composed pre-
dominantly of the triplet pairs. The quantity Rp has
been introduced in previous discussions. It is the
relative probability of the (;}configuration to the

configuration which has two one-spin-flip triplets
sitting side by side.

Both Rp and R, can be expressed in terms of k

and q through Eqs. (5.6) and (5. 1). The explicit
expressions are

a4=E4,
where

(6.1}

(6. 2)

and where the Zf ~'s are coefficients to be deter-
mined. These coefficients must satisfy the periodic
boundary conditions,

f»M f+»g fg~ fig I ~'''s+(6
To solve this problem we calculate H@'f'~ and then
substitute the result into Eq. (6.1}. Shifting indices
under the summation, sign and noticing the linear
independence of various @'f"~ 's, we arrive at

(E —Eo —J&2 —4J)zy ~+ ( y ~,|+ y g s)

+ CT (Zf~g g+ Zf g»}

+( f.a+1+ f,r-1}( f.»+ » f) (6.4)

To solve Eq. (6.4), we again consider solutions of
the form

Ro —-1/cos k,

R, =
~

e"a,/e' a
~

where

(5. 14)

(5. 15}

Z eiK(f+g)Z
f~s

Z~=Z 8

Zp ——0,

(6.5)

a~ 2 cosK cosk —e"(cosk+ cosK)
a p(cosk)e"

For a given set of parameters (J; J', Z, 2 j, and a
given K, Eq. (5.11) can be solved with the aid of a,

computer to obtain the energy eigenvalues. The
corresponding Rp and R, can also be calculated.
The bound-state solutions are discussed in the
summary, and the results of numerical calculations
for certain values of the parameters are shown in

Figs. 2 —V.

It can be seen immediately for complex k and q
that cos'k & 1 whence Rp ( 1 Thus the side -by-side
triplet configurations still dominate the on-site
triplet configuration in the lowest levels.

VI. SINGLET-TRIPLET MIXTURE

where K=wn/N, n= 1, 2, . . . , N. Substitute Eq.
(6. 5) into Eq. (6.4) and simplify the result We.
then get

(E Eo —J,z —4J)z,-+ JcosK[z„„+Z, ,]
—iJ' sinK[Z...—Z, ]

+(5 ~ 0+5, 0)[JZ +J Z» ] 0

r=l, 2, .~, N —1.

(6.6)

Equation (6.6) can again be solved by Bethe's meth-
od. For r& 1, (X —1), Eq. (6.6) can be satisfied
by solutions of the form

Z =e'"' "+ye'~ " r=l, 2, ... , (N —1),
(6.7)

with corresponding dispersion relation

In this section we shall solve the eigenvalue
problem of two-spin-flip excitations in the subspace
of the singlet-triplet mixtures defined in Eq. (1.11);
i.e. , consider

E -Ep -4» -44+ $ cosk=0,

where

$=—2[J cos K+ J' sin K]~ ~

(6. 6)

(6. 9)
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I.O-
Ro

0
~ a

0

05-
a Jig= 0.001

O. I

o 0.5
2.5
l000

J = I.O

J =05

0.5 I.O

Cos K

FIG. 6. This figure is similar to Fig. 5 except that
the value of J' has increased. The result is a faster
saturation.

and where y is specified by

cosy —= 2JcosK/f, , siny = 2Z' sinK/$ . (6. 10)

~ei(ii-1)y(eikN ye ANN) 2(gZ g Z )
(6. 12)

From Eq. (6.8) we see that singlet-triplet
continuum" is specified by the envelope

The wave vector k and the coefficient y are then
determined by the boundary equations r = 1, N —1.
Setting r= 1 and r=(N -1) in Eq. (6.6} and simplify-
ing the results, we obtain

$e'"(1+y) —2(JZ, +J"Z„,) = 0, (6. 11)

mixtures. Under the operation of the Hamiltonian
considered, the singlet-triplet mixtures can be
solved separately from the other two types of states.

The eigenvalue problem in the subspace of the
singlet-triplet mixtures is solved in Sec. VI. The
solutions contain both continuum and bound states.
The energy gap between the center of the continuum
and the Eo level is (Z,&+2J+2J'). The envelope of
the continuum is

I
E —Eo —Z, z

—4J'
I

~ 2[J cos K+J' sin K]'~

(7 1)
Bound states are attached to the bottom of this
continuum at K=0. The half-width of the continuum
at K= 0 is 2J, so there is a gap of at least (J,z
+ 2J') between the entire spectrum and the Eo level.

The coupled eigenvalue problem of the singlet
pairs and triplet pairs is solved in some detail in
Secs. III-V. The results show that there are two
distinct continua. One of these is centered at a
level (2J,&+4J}from Eo. This one is called the
singlet-pair continuum, because the singlet-pairs
part of the wave functions of the states lying in this
continuum are simple waves. The envelope of this
continuum is given by

IE -Eo-(2&io+«) I=
I

«"cosKI. (~. 2)

There are bound states associated with this con-
tinuum. The other continuum, the triplet continu-
um, is centered at a level 4Z from Eo. The en-
velope of this continuum is given by

IE -Eo -4~
f

—14~ cosK f,

Ro
I.O-

I
E Eo —Z~z —4Z

I
—-2[4 cos K+J' sin K]'

(6. 13)
Thus the singlet-triplet continuum lies right in be-
tween the single-pair continuum and the triplet-
pair continuum discussed in Sec. V.

A schemetic diagram of the energy spectrum of
the singlet-triplet mixture is also contained in
Fig. 1. Bound states can again be obtained by con-
sidering the complex wave vector in the limit N
approaches infinity as was done in Sec. V. We
shall not repeat the details here.

VII. SUMMARY

0.5-

I

0.5

o Jp = O.OOI

I.O

Using the Hamiltonian in Eq. (2. 1), we have
solved the eigenvalue problem of the two-spin-flip
excitations relative to the F,~ state exactly. There
are three types of two-spin-flip states: the triplet
pairs, the singlet pairs, and the triplet-singlet

J= IQ
J = 0.95

Cos K

FIG. 7. This figure shows the Ro vs cos E curves
when J—J' is very small. Notice that the curves ate
almost independent of the value of J~2.
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So the bottom of this continuum touches the Eo level
at R = 0. The bound states lying below the triplet-
pair continuum are the lowest-lying states. These
are the states we pay particular attention to. Both
the energy spectrum and the wave functions of the
lowest-lying bound states can be found. It is the
wave function that reveals much of the physical
information. We studied two quantities of interest:
R, —=

I Y,/X~12 and Ro= IXO/X|I, defined in Eqs.
(5. 12) and (5. 13). The ratio R, is a measure of
the mixing ratio of the singlet pairs relative to the
triplet pairs. For a given state, the greater R, is,
the greater is the singlet-pair contribution to the
composition of this state. The ratio Ro is the rela-
tive probability of the (;) spin configuration to the
spin configuration that represents two one-spin-
flip triplets sitting side by side. The knowledge
of Ro gives information concerning the contribution
of the (;) configuration to the two-magnon bound

states.
To discuss the behavior in some more detail,

we reduce the results for the lowest-lying spin-
wave branch. From Eqs. (5. 11) and (5.3) we can
determine k (= ika) and q (= iq2), and then

Ro = (1/coshka)a, (7.4)

[1 —cosK/coshka]'
[2J,aZ '+2cosK(2coshka —P.e '&) —1]a '

(7. 5)
The equations determining k2 and q are

2 p. coshq, = 2 coshk, + X,

(e 2 cosK —coshka)(2 p, e'a cosK —1)

(7 6)

= p (coshka —cosK) . (7.7)

[The branch with k=v+ika gives Eq. (7. 7) but with

coshka replaced by —coshka. ]
From Eq. (7.7) we see that in the p, =0 limit the

right-hand side is zero. In this limit there are
two branches of roots to the left-hand side. The
first factor gives the triplet-pair bound state of
Eq. (4. 14), the second factor gives the singlet-
pair bound state' of Eq. (4. 3).

Another limit of interest is J»- ~. This implies
that X-~, and, from Eq. (7.6}, that qa-~. From

Eq. (7.7) this gives back again the triplet-pair
bound-state condition that was found when p. = 0:
e 2 cosK —coshk~ = 0. Thus the solution for k, as
a function of K saturates as J» gets large. Further,
the saturated values of k~ for K= 0 is k~ = 0, and the
value for K=v/2 is k, =~. The quantity cosKcoshka
that appears in the energy, Eq. (5.2a), varies
from 1 at K = 0 to 4 at K = v/2.

By substituting these results in Eqs. (7.4) and

(7.5}, we see that as J,a gets large, Ro also satu-
rates, the saturated value going from 1 to 0 as K
goes from 0 to v/2. Similarly, R, vanishes in the
limit. Thus for large J» and arbitrary p, the low-
est-lying branch has no singlet contribution and is
dominated by the side-by-side triplet-pair configu-
ration rather than by the on-site configuration.

As J» gets smaller, down to the order of J, both
Ro and R, remain always less than 1 but the shapes
of the curves as functions of K vary somewhat.

As p, gets smaller and finally vanishes, we see
from Eq. (7.5) that R, vanishes. This is consis-
tent with the discussion apropos of Eq. (3.12}, in
which it was seen that when J' = 0, the coupling
between singlet and triplet pairs disappears. The
decoupling of singlet and triplet pairs occurs if
either J»-~ or J=J'.

The results for intermediate values of the pa-
rameters are exhibited in Figs. 2-V. Thus the
main result of this calculation is that in the model
considered, the lowest-lying spin-wave branch of
excitations is dominated by side-by-side triplet-
pair configurations. The model depends on there
being two bands, each half full, and the on-site in-
teraction being of the isotropic Heisenberg type.
If the interaction is not isotropic, the above-de-
rived results are not necessarily valid although the
method used here is applicable. And in the case
where there are say three degenerate bands, but
only two electrons per atoms, it is hard to see how

to apply the method used in this paper, since the
ferromagnetic reference state is degenerate. It
would be interesting to see if the result found here
for the one-electron-per-atom-per-band model is
carried over to the general case of more than one
band per electron per atom, but a different ap-
proach would have to be used.
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See Ref. 2 above, p. 143.
~ The case J"=0 discussed in Sec. IV does not seem

to be implied by Eq. (5.1), since if a~=b„=0, then
Y~=0. Whereas in Sec. IV, Eq. (4.3), one of the
solutions occurred with Y~ and YN ~ the only nonzero
Y„. The approach to this bound state from the point

of view of Eq. (5.1b) can be seen by letting a~=e ~~,

and then setting q =iq2, where q2 is real. Using Eq.
(5.5b) it is then easily seen that if q2 approaches
infinity, the only nonzero Y's are Y~ and Yz &. Thus
the J"=0 limit in this case occurs by setting q2
The energy eigenvalue emerges from Eq. (7.7).


