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The low-order frequency moments for two-spin light scattering in antiferromagnets are cal-
culated in terms of static multispin correlations and compared with experimental data in
MnF2, NiF2, and RbMnF3. Expressions for the integrated scattering intensity A (the zeroth
moment) and the first moment (ig) over the full temperature range (0 «T ~ ) are obtained.
These can be evaluated exactly in the limits of infinite temperature and of zero temperature,
within the spin-wave formalism. For intermediate temperatures, suitable approximations
are made. In the paramagnetic phase, the multispin correlations are decoupled into products
of two-spin correlations which are evaluated using recently published results for pair cor-
relations in Heisenberg ferromagnets. In the ordered state, A and (w) are estimated using
the molecular-field formalism, but modified to include the effects of short-range fluctuations.
Exact expressions for the second moment (ig ) in the infinite-temperature limit are also de-
rived. In MnF2 the intensity increases with increasing T, in qualitative agreement with theory,
although an anomalous, unexplained increase is observed in the paramagnetic state. The first
moment (&) decreases with increasing T and shows critical-type behavior near the Noel tem-
perature TN,. in the paramagnetic state the agreement between experiment and theory is very
good, especially at TN where the observed (rz) =17 cm ' is to be compared with the theoreti-
cal value of 15 cm . The observed high-temperature (& ) are also in reasonable accord with
theory. Detailed comparison is made between theory and experiment for (co) in the zero
temperature limit in MnF2, NiF2, and RbMnF3. The implications of these results for studies
of the dynamics of short-range spin correlations and for a determination of the spin-system
parameters are discussed.

I. INTRODUCTION

The Raman scattering of light by two-magnon ex-
citations in antiferromagnets has been of consider-
able experimental and theoretical interest in re-
cent years. Extensive experimental data on two-
magnon scattering in a number of diverse systems
have been accumulated in the few years since the
first observations ' of the effect in MnF and FeF&.
At the lowest temperatures, one observes a well-
defined asymmetric line at about twice the maxi-
mum zone-boundary magnon energy. As the tem-
perature increases, the peak in the scattering pro-
file decreases in energy, the linewidth increases,
and the spectrum shows an alppa~ent decrease in
intensity. In a number of the systems, ' the spec-
trum is observed to persist to temperatures well
above the Noel temperature T&, showing a broad
featureless line with a small nonzero energy shift.

The theoretical description~' of the scattering
process is based on a spin-photon interaction which
causes simultaneous spin deviations on adjacent
antiferromagnetically coupled spin sites. Using
this interaction, Elliott et al. and EQiott and
Thorpe developed a Green's-function theory for
two-magnon scattering and applied it at zero tem-
perature. Their decoupling scheme, which is used
to evaluate the time-dependent four-spin correla-
tion function that characterizes the scattering pro-
file, explicitly includes the effects of magnon-mag-

non interactions which occur because of the crea-
tion of magnons on adjacent spin sites. In general,
their predictions for the position and shape of the
scattering profile have been in excellent agreement
with experiment.

Unfortunately, this and similar theories "have
been less successful in explaining the observed
scattering spectra at higher temperatures, partic-
ularly in the region of T& and above. The difficulty
arises primarily from the inability to evaluate re-
liably the time-dependent four -spin correlation
function as a function of temperature. %'ithin the
Green's-function formalism, various authors '
have estimated the behavior of this correlation in
the spin-wave region. They obtain reasonable
agreement for the position of the scattering peak to
temperatures T-0.8T&, but the predicted linewidth
is typically less than is observed. Equations of
motion and random-phase-approximation decou-
plings have also been used in the paramagnetic
phase. ' Kawasaki obtained a general expression
for the line shape which agrees quite well; how-
ever, he used both frequency and peak intensity as
adjustable scale parameters at each temperature
and thus made no serious attempt to compare tem-
perature variation of the peak frequency or inten-
sity. In fact, his estimates of a 60% decrease of
the peak frequency in NiF& between T= 0 and T&
and a. total intensity which decreases as tempera-
ture increases are not in agreem, ent with the ob-
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served' 20% decrease and (as reported here) in-
crease of total intensity with increasing tempera-
ture. S6lyom confined his treatment above T& to
renormalization of the zone-boundary magnon en-
ergy and obtained good agreement with the ob-
served 20% figure in NiF~. Since his theory con-
tained no damping effects he could not discuss line-
width or intensity of the scattering profile, and his
peak excitation energy did not go to zero at T = .
The work of Pershan and Oseroff which relates the
peak frequency to the magnetic heat capacity is
quite successful below && but considerably under-
estimates the renormalization above TN.

Recently, we reported' ' briefly on compre-
hensive experiments and theory for two-spin fluc-
tuation light scattering in MnF& from well below to
well above &z, a similar study in the canted anti-
ferromagnet NiFq has also been conducted. The
analysis of the scattering profile is novel in that it
is based on the frequency moments and integrated
intensity of the spectrum. The moments and in-
tensity are useful quantities to measure since they
involve static correlations which can usually be
calculated with reasonable reliability; in particular,
one can now obtain useful expressions for the scat-
tering behavior in the paramagnetic state for direct
comparison with experiment. A calculation of the
overall line shape, on the other hand, typically re-
quires the decoupling of dynamical equations.

Here we present a complete detailed discussion
of the theoretical formalism for the spectral mo-
ments of two-spin light scattering and compare the
results with experimental data in MnF&. Expres-
sions for the integrated scattering intensity and

first moment over the full temperature range
(0~ T —~) are obtained; the second moment in the
infinite-temperature limit is also derived. In gen-
eral, the results are in good agreement with the
observed behavior in MnFz, particularly at the very
lowest temperatures and, with the exception of the
intensity, in the paramagnetic phase. The implica-
tions of these results for studies of the dynamics
of short-range spin correlations and for the de-
termination of spin-system parameters are con-
sidered.

II. THEORY

A. Spin-system Hamiltonians

For the two-sublattice antiferromagnet, we con-
sider a general spin Hamiltonian of the form

Ho = —Z J))Sq ~ S) +DQ (S;)
ig

+ —Z ZK qy~S) S~,
~y Ng

where i and j are summed over the N magnetic ions
in the crystal and &, P=x, y, z. Here, the exchange

+ C(EfEQ+EfE2)o)~o)~+D[(E&Ep+EfE))

&& cr(~o(~+ (Ef g+Eq*Eq)o(~o()]]

x[5, ~ S&+ (y —1)SfS~&] . (3)

The coupling constants &, &, t-" and D for the scat-
tering process are proportional to a ground-state-
excited-state exchange interaction and are assumed
to be nonzero only for the next-nearest-neighbor
(nnn) ion pairs ( ij) coupled by the antiferromagnetic
exchange J&. E& and E~ are the electric vectors for

interaction is expressed in the usual isotropic
Heisenberg form with exchange constants J;~. Ex-
change interactions between all pairs of magnetic
ions are included although, in practice, they are
normally only appreciable for a limited number of
near neighbors. The axial single-ion anisotropy
term D can be positive or negative and, in the or-
dered magnetic state, typically leads to an easy
plane or easy axis of magnetization, respectively.
The final term in Eq. (1) represents the dipolar in-
teraction

K;~ =g ps(r&~6, z —3x'or&&)/r';, , (2)

where r, &
is the vector joining the pair (ij ); this is

generally a small term. In many cases, the aniso-
tropic effect of the dipolar term and of any small
anisotropic exchange which may be present will be
included in an effective value for D.

The crystal structure for the rutile-structure
antiferromagnets, such as MnF2, is shown in Fig.
1; the magnetic ions are situated on a body-cen-
tered tetragonal lattice. For MnF the spins order
along the crystal c axis [chosen to coincide with
the s axis of Eq. (1)] at temperatures below the
Noel temperature TN = 67.7 'K. Inelastic neutron-
scattering studies ' at low temperatures show
that the spin-wave spectrum is adequately de-
scribed by Eq. (I) if one only includes isotropic
exchange interactions between three types of mag-
netic neighbors, as indicated in Fig. 1, and the
dipole-dipole interaction; the single-ion anisotropy
D is negligible. The next-nearest-neighbor anti-
ferromagnetic exchange J is dominant, with the
nearest-neighbor ferromagnetic J, about a factor
of 5 smaller and the antiferromagnetic J3 consider-
ably weaker.

The basic interaction Hamiltonian ~ for two-
spin fluctuation light scattering in antiferromag-
netic materials has been extensively described and
developed elsewhere. ' The specific form for
the Hamiltonian is determined by the crystal sym-
metry. For the rutile-structure antiferromagnets,
Fleury and I oudon have determined its character-
istics in some detail and obtain, for the dominant
terms,

H ' = —Q (A ( f Eq+EEqEg) + BEfE2
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B. General procedure for moment calculations

Cation

Anion

FIG. 1. Crystal structure for the rutile-structure
antiferromagnets. The first- three neighbor exchange
interactions J& for the magnetic cations are indicated.

H'= —P QG, [8 ~ S + (y —1)S'S'),
2aB

(6)

where e and P are the directions of polarization for
the incident and scattered light waves. For the
case & + P, the nonzero 6,& vary in sign among the
eight nnn pairs and satisfy the useful relation

ZG', /
=0 . (6)

In previous treatments of the scattering it has
been common practice to consider only the trans-
verse components (S;S/+ S&S/} in H' since they give
the dominant contribution to the two-magnon light
scattering at low temperatures. For a detailed
study over the full temperature range, however, it
is essential to retain the longitudinal components
S,S& as well.

the incident and scattered light waves, respectively.
The rr&& are phase factors for the nnn pairs &ij & de-
fined by

ci/ = sgn(ri/}a t u = xy py z

and are equal to either +1 or -1. The quantity y
represents an anisotropy factor (for y & 1}which is
allowed by the tetragonal symmetry. Contributions
to Eq. (3) from antisymmetric terms, which are
also allowed by the crystal symmetry, have been
shown experimentally~ to be negligible for MnF&
and several other rutile-structure antiferromag-
nets. Likewise, additional terms which may be
important in pseudospin systems like CoF& are also
omitted from Eq. (3). For our purposes, we re-
write Eq. (3}in the more manageable form

A = &H'(i)H'(0}&,.0 . (s}

Thus, the calculation of A is reduced to the evalua-
tion of a static (time-independent) four-spin corre-
lation. The general nth moment &~"& of I(~) can be
determined from the compact expression

The intensity of inelastic light scattering with

frequency shift co is proportional to

I(~) = J".e '"'&H'(i)H'(0)&di, (7)

where &H'(t)H'(0}) is an appropriately defined time-
dependent four-spin correlation function with the
angular brackets indicating a thermal average.
The time dependence of &' is governed by the spin
Hamiltonian Ho of Eq. (1),

HI(i) g//Of /Ilgwu(0) /HPt/II (8)

Previous calculations of the overall scattering pro-
fQe I(&), which required the decoupling of time-
dependent Green's functions to evaluate this cor-
relation function, have been quite generally suc-
cessful in explaining the observed scattering spec-
tra at low temperatures. However, the extension
of these techniques to higher temperatures, par-
ticularly in the region of the Noel temperature T„
and above, has met with less success. By con-
trast, a determination of the frequency moments of
I(&o) involves the evaluation of static spin correla-
tions which can often be calculated with greater re-
liability.

It is, of course, true that the first few moments
provide one with considerably less information than
is contained in the complete intensity profile so
that having a theory for, say, the first moment &u&&

is in no way as satisfactory as having one for the
full I(&u). Nonetheless, &&o& is a quantity which can
readQy be measured experimentally and which
generally can be calculated more easily than the
whole spectrum. Thus it becomes possible to
make meaningful comparison between theory and
experiment without any adjustable parameters
and normally with fewer approximations if one con-
tents himself with the less ambitious task of ana-
lyzing the lower-order moments. Here we make
comparison over the full temperature range, with
particular emphasis on the paramagnetic region,
T» TN.

The integrated scattering intensity A (area), or
zeroth moment, is obtained by the integration of
I(&o) over all frequencies and yields the result

00 OO d"
4r"& = (u"I((u}d&o I((u}d(o = (i) „H'(i) H'(0)

~00 ygn t 0
&H'(i)H'(0)&, .0 . (10)

The higher moments (n ~ 1}are normalized with
respect to the integrated intensity and, as we shall

show later, they will permit a more meaningful
comparison between theory and experiment than is
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obtainable for the intensity A. .
The time derivatives of H' in Eq. (10) can be

readily expressed in terms of commutators in-
volving Ho and H', and the evaluation of ((d"& in-
volves static spin correlations whose complexity
increases rapidly with n. For our purposes, only
the first and second moments of I((d) will be of im-
portance and they take the forms

1 ([H(), H']H') 1 ([[H(), H'], H'] )
(H'H'& m (H'H'&

we discontinue the t= 0 notation and understand that
henceforth only static spin correlations are to be
considered. These moments and the intensity & in-
clude contributions from both the Stokes and anti-
Stokes components of the scattered light. Since the
intensity of the Stokes component, which corre-
sponds to energy loss, is greater than that of the

anti-Stokes one, (v& as given by (11) is an intrinsi-
cally negative quantity. For convenience, how-
ever, we treat it as a positive quantity in specific
expressions which follow so that formulas for ((d)
more properly are for 1((d& I .

The usual expression for the first moment ((d)
is given by the first equality of Eq. (11) and, due
to the forms of H' and Ho, requires the calculation
of five-spin correlations in the numerator. Be-
cause of the Hermitian properties of Ho and H',
however, (e& can be rewritten in the form of the
second equality of Eq. (11}and the numerator is
then expressible in terms of four-spin correlations,
as occurs for the intensity A. Thus, the evalua-
tions of A and ((d) are quite similar and this will
prove extremely useful in our calculations for the
temperature region T ~ T„. It is easily shown that
all of the odd moments can be similarly rewritten.
For the second moment (co ), a calculation of six-
spin correlations is required.

Using the interaction Hamiltonian of Eq. (5), one
obtains for the integrated scattering intensity

A = (H'H') = —5 G, &G~, [((S& ~ S&)(Ss ~ S,})+ (y —l)((S& ~ S&)S~S,'+ S'8'(5 ~ S,)) + (y —1) (S&S&S)')SQ] .
f jkl

(13)

Here, we suppress the n, P dependence of A solely for convenience and clarification; its effects will be
properly included when calculations for specific scattering geometries are undertaken. For the higher mo-
ments, we obtain the commutators

I
[HO, H ]=[!ZZ J,~G»(S, &&S,}~ ~~+i(y —1}ZJ,~~ Z G~rSs(S, xS,)'

Gii[([)i si'I si+ s[(si 4 ) ])4(D rG [iifs(s isi ) ( i si) sf] (14)

and

I II
s [[Ho, H'], H']= ——Z E Z,~ G» Z [(G;, —G;,)(S, ~ Ss)(S, ~ S~)+(G )G)„)(S, ~ S~)(S, ' Ss)

ij k l

+ (G~, —Gs) )(S )
~ S [)(Sq ~ Ss)] + (G,q

—G»)(Sq ~ S„)(S,~ Sq) + (Gqs —G,s)(S, ~ S„)(Sq ~ Ss)

+ (G[s —G;~)(S[ ~ S~)(S, ~ S,)+S(S+1)[(G,~ —G(s)(S~ S),)+ (G» —G;~}(S,~ S,)

+ (G —Gi )(S Si)[), (14)

where the restricted sums over k and l ensure that
no two spin sites are the same unless explicitly
written. In Eq. (14) we include only contributions
from the exchange terms J&& and the anisotropy D.
The effect of the dipolar term on ((d& and ((d & is
typically quite small and its general calculation is
mathematically tedious. Therefore, we defer a
discussion of its characteristics until such time
as its inclusion is necessary for the explanation of
scattering data. Likewise, in Eq. (15), we further
omit the effects of the anisotropy term D and the
anisotropy factor y on the first moment (co&. Our
detailed calculations involving these parameters,

I

which are too complex to warrant including here,
show that their effect on (&u& is small over most of
the temperature range. In particular, the anisot-
ropy D contributes only additive terms to Eq. (15)
and, thus, to ((4)&.

C. Calculations for infinite and zero temperatures

The integrated intensity A is determined by a
four-spin correlation function and this can be eval-
uated exactly in the limits of infinite temperature
and of zero temperature (assuming a Neel ground
state). For infinite temperature, where the spin
system is totally disordered, the evaluation of this
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&P,'& =0, &Sq™Sq&= —,'S(S+ I)5,~5 (16)

Thus, Eq. (13) reduces to the form, for T-~,

correlation is relatively straightforward since all
spin states have equal probability of being occupied.
In this case, one finds

The ratio for MnFI (S= 2) is 4. 08; the spin-wave
correction to the Noel state reduces this value to
3.74.

The zero-temperature &&o& has significantly dif-
ferent values depending on whether a Neel or spin-
wave ground state is used. For the former, Eq.
(11}yields

A. = abS(S+1)]'(2+y')~g~ . (17) &(u& = 2JZ/g= 2+zs, (22a)

Reinserting the n, P dependence of the G,~ and per-
forming the summation, Eq. (17}then becomes

A's=+ZQS (S+1)2[3(2+y )](G e) (18)

where N is the total number of magnetic ions in the

crystal (or more appropriately, in the scattering
volume) and Zz is the number of next-nearest
neighbors, which is eight for the rutile structure.
The functional dependence on the spin S is the same
for the different scattering configurations, although

the absolute intensity will differ because of the G ~

factors. Since these absolute intensities are ex-
tremely difficult to calculate and measure, we have
chosen to compare the intensities (theoretical and
experimental) relative to their values at zero tem-
perature.

In principle, the calculation of the four-spin
correlations at O'K in Eq. (9) is also straightfor-
ward since only the ground state of the magnetic
system is occupied. However, the true ground
state for the Heisenberg system is not known and

so, as a first approximation, we assume a Neel
state with fully aligned spins. Within this approxi-
mation, one has the results

&S;&=+S5, , &(S",}'& =&(S",}'&=-.'S, (19)

where the + sign is to be taken for the "spin-up"
sublattice, and one obtains for the zero-tempera-
ture intensity

A = '.Z, nrs'(G")'-, a~P . (20)

With the assumed Neel state, the longitudinal com-
ponents ~&8& of H' do not contribute to A~~ for n +P
because of the property of Eq. (6}. It is also pos-
sible to compute moments for a spin-wave ground
state. Details of this calculation, which is valid
to all orders of magnon-magnon interactions, are
presented in Appendix A. The spin-wave result in-
creases &0 of Eq. (20) by 9% for MnFz.

For the ratio of the infinite-to-zero temperature
intensities, one then has

(21)

so that, for the isotropic case (y = 1), the integrated
intensity is predicted to increase with T for 8 & &.

which shows just the interaction shift expected on
the basis of Ising-model considerations. How-

ever, the result &to ) = &e& also holds for the trun-
cated Hamiltonian. Further, if anything, one
might expect that removing S&~~ terms from &'

would increase &&u& since the longitudinal operators
should contribute mainly to excitations at near-
zero frequency. The results (22a) and &sP& =&&a&

for p = 1 have previously been noted.
The spin-wave calculation (Appendix A} does not

suffer from the above difficulties. We find for
the full If' of Eq. (5) with y = 1,

&~& =2&~& -~,./g, (22c)

where 2&2& is the value of (&u& calculated in the ab-
sence of magnon-magnon interactions, and ~,„is
equal to ~ within better than 1%. Thus the spin-
wave treatment, including all interaction effects,
essentially reproduces the Ising-like results (22b}
and is in accord with the Green's-function calcula-
tions.

Evaluation of &&2& for the rutile structure yields
the final zero-temperature spin-wave results

g&~&*' = 16S(1+0. 073/2S)

x[p 96&T2 p 126J, p 756'~] J~,
(23a)

= 16S(1+0. 073/2S)

x [0.968&2 —0. 37&) —0. 504&3] —Jg,
(23b)

for S intersublattice neighbors coupled by an inter-
action J and taking y = 1 in Eq. (5). The quantity

(dzp is the frequency of a zone-boundary magnon,
and thus Eq. (22a} shows that there is no decrease
of &&u& due to magnon interactions~ within the con-
text of a Neel state. We regard this as a basic
weakness of the Neel state for detailed zero-tem-
perature calculations. A further difficulty is that
the Neel state yields &~'& = &&u& at 0 'K so that the
spectrum would have zero width, which is obviously
not correct since, even without interactions, the
two-magnon density of states is spread over a range
of spin-wave frequencies less than 2(d». It may
be worthwhile to note that if the ~&SJ terms are
truncated from the interaction Hamiitonian (5) so
that only two-magnon (transverse) operators are
included, then the Neel state calculation gives

&~& = 2(g J/g,
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h~((d )~8= 34ZzZzS(S+1) 1—
5Z3 2+y

9X g+, Q4P. (24a)

For the rutile-structure antiferromagnets (&z = 8),
the anisotropy correction (y & 1) will be quite small.
In addition, an independent theoretical or experi-
mental determination of y is not currently avail-
able and we therefore neglect its effect in further
calculations. If one now includes the first three
neighbor exchange constants and the anisotropy D,
the results are

R'( ')*"=+8Z'S(S+1( 1 —2 (~)
2 2

+2 ~ ~ +3 ~

in which the factor 1+0. 073/2S is the Oguchi cor-
rection for energy renormalization, as discussed
in Appendix A. Of particular interest is the dif-
ference

h ((d)" —(u)) = 16S(1+0. 073/2S)

&(0.252}(&,-&,), (23c)

which can and will be used to extract information
about the difference between the weak exchange.
constants &, and J,. Equations (23} neglect small
dipolar corrections which will be considered later.
[Note that according to Eq. (1}7 &0 indicates anti-
ferromagnetic coupling so that ((d)"' &((u)"" for a
ferromagnetic &, and an antiferromagnetic &3. ]

The first moment (&o) at infinite temperature is
identically zero. The infinite-temperature second
moment (uP)„can be determined exactly although
the calculation is somewhat lengthy. A related
quantity (uP, ), the second moment at the zone
boundary wave vector qo, has been given by
Kawasaki as a function of temperature for 7.

' —&&.
For convenience, we include initially only the dom-
inant antiferromagnetic exchange ~2 and the anisot-
ropy factor y, and obtain

J, and J3, yield different values of (&u ) for the xy
and xz (or equivalently, yz} scattering geometries.
The inclusion of the dipolar terms in (uP) „com-
plicates the calculation considerably, and their
contributions to the two scattering geometries are
slightly different. However, it is relatively easy
to shorn that, for the case y =1, there are no cross
terms between the dipolar terms and either J;& or

Thus, the dipole terms only contribute additive
terms to Eqs. (24a) and (24b) and lead to small rel-
ative increases in I ((d ) „on the order of (g' pzz/

ao} /Jz, where ao is a nnn distance.
Based on the low-temperature neutron-scattering

determination' ' of the exchange constants in
MnFz, Eqs. (24b) and (24c) would predict

and

g(((d2)xv)1/2 23. 4 cm ~

+(((d')" )' '=24. 9 cm '

(24d)

(24e)

Calculations of the intensity A and first ~oment
((d) for other temperature ranges require knowledge
of the temperature dependence of the many four-
spin correlation functions incorporated into Eqs.
(13) and (15); to date, reliable values for such cor-
relations are not available. Recently, however,
Ritchie and Fisher" have obtained expressions for
two-spin correlation functions based on series ex-
pansions in cubic Heisenberg ferromagnets for the
paramagnetic phase (T~ Tc, the Curie tempera-
ture). We now proceed to obtain appropriate ex-
pressions for A and (v) which will permit applica-
tion of their pair correlations for the bcc lattice to
the rutile -structure antiferromagnets.

1. Reduction to two-spin correlations

For high temperatures, these values will possibly
be changed due to thermal effects on the exchange
constants; however, one mould still expect a notice-
able difference in the linewidths for the two geom-
etries.

D. Calculations for T —TN

+ PD [S(S+1)—4], (24b}

For the isotropic case (y = 1), the intensity A re-
duces to an evaluation of correlations in the ex-
pression

a'(~')**--'Z Z'S(S+1} 1-2 —i
Z2

s
A= —Z G, G,((S; ~ f)(S ~ 0,)),4 igkt

(25)

g '(} 2 J 2

[aD'[S(S+ 1) —-', ],
~2 i ~2

(24c}
where we have used the tables of Rushbrooke and
Wood ' to evaluate a number of the multispin cor-
relations. These results show that, even in the
disordered state, the weaker exchange constants,

where the 6,&
are restricted to next-nearest neigh-

bors in the rutile-structure antiferromagnets
(nearest neighbors in the bcc lattice) and where
repeated spin sites are allowed. Since the summa-
tions run over all possible values, the correlations
to be evaluated extend over any and all sites in the
full crystal. If one restricts the spin Hamiltonian
Ho to only antiferromagnetic next-nearest neighbors,
then Eq. (15) becomes
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I II
a ([[Ifo,ff'], H'])= ——Z Z J«~G'q~ E [(G„—G~, )((%« ~ 5~)(S« ~ 5~))

iS k l

+(G«,«
—G««)((s, ~ fy)(S« ~ S«, )&+ (G«« —G~«)((f« ~ 5«)(Sy ~ 5q}&]+(G«~ —Gy~)((F~ Sq}(5« ~ S~)&

+ G«q((f «
~ S~)(Sy ~ Sq)) —G«~((s« ~ S J}(S« ~ S~})+S(S+1)[(Gyq —G«~)(s« ~ Sq)

+ G«q(Sy ~ S~) —Gq~(S« ~ Sq&]
~
. (26)

i

Here, no two spin sites are the same unless explic-
itly written. Since J&s=J2 and Gs~ are restricted
to nnn pairs and l is always a nnn of i, j or k, these
correlations are confined to near neighbors in the
lattice and the evaluation of Eq. (26) will be decid-
edly easier than that of Eq. (25).

The evaluation of these expressions depends on
our ability to decouple the four-spin correlations
into products of two-spin times two-spin correla-
tion functions in a reliable manner. If all four in-
dices are different, we assume the standard de-
coupling employed by several previous authors.
For our purposes we then take

((S« ~ S«)(K, ~ 5«)& = g, ~ Ky&g«« ~ S,&
+-.'g, s,)(s, 0,)+3g, sp(s, s,)

(i,j, k, l unequal) (27a}

(s, s,)/s'(s+ 1)'- (1k')

)
&-. —.—.),

(28)
where there is no restriction on repeated indices
in the summation. The quantity (» &) is the pair
correlation, normalized to S(S+1), between a spin
at the origin and one at (~, ~, 4), i.e. , the correla-
tion between nearest neighbors on opposite sublat-
tices, and is negative for an antiferromagnet.

Since the first term in Eq. (28) is a.n unrestricted
sum, it can conveniently be reexpressed as a sum
over a single wave vector q, so that we have

2 Z
i G;i'(sg ~ 8 g& /S (S+ 1)2

for isotropic correlations. The case for three un-
equal indices ((S, ~ fz)(fz ~ S,)) is handled by noting
that such a correlation occurs in Eqs. (25) and (26)
only for i and j near neighbors and j and k near
neighbors (in bcc). We then find that the approxi-
mation

where

2S(S+ 1)

3
S(S+ 1) 5 ii 4$(S+ 1))

(29)

((S« ~ S~)(S« ~ s««)& = 3S(S+ 1)(S, ~ 5~)

+ -,'[1 —3/4S(S+ 1)]g, ~ S &(S, ~ S,&

(« ~ k) (27b)

and

(s; s;)=Z e" ««(s,. s,)
P~S

G-=Z e'~'
«&G«« .

r"&S

(3O)

(31)

is exact to the lowest nonvanishing order of I/T in
a complete high-temperature expansion and is exact
to all orders in an expansion which includes only
ring diagrams (high-density approximation). It is
also exact for S = 2. Similarly we take

((s« ~g)'& = 3S'(S+ 1)' —k g«

+ g[1 —3/4S(S+ 1)) g« ~ S~&, (27c)

which is exact under the same conditions as is
(27b). The decouplings (27) appear to be the most
sensible means of reducing the four-spin correla-
tions to combinations of two-spin ones, which can
then be handled in terms of the Ritchie and Fisher
calculations.

With the results of (27) the integrated intensity,
when normalized to the infinite-temperature re-
sult of Eq. (18}, can be expressed in the form

A 1
G

Z G yG (S«S )
2 fSk l

For the rutile-structure antiferromagnets, the G;
are still dependent on the particular scattering
geometry studied and have the forms

~
G;

~

= Z2G [sin( —q„a)sin( —q,a)cos(&q~)]

~

G&'
~

' = Z2G [sin(2q, a)cos(2q, a)sin( &q~)]

with a and c the lattice constants for the tetragonal
crystal structure. Thus, the total scattering in-
tensity, and the higher moments, will emphasize
different portions of the lattice 9rillouin zone for
different scattering geometries. However, within
the context of a single exchange constant 42 and a
bcc lattice which we used for computational pur-
poses at T—T~, this distinction between scattering
configurations disappears.

%e have also calculated the effect of a nonunity
anisotropy factor y on Eq. (29). Within the context
of isotropic correlations and our decoupling scheme
for the four-spin correlations, we find little change
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in the results for the paramagnetic state; for rea-
sonable values of the anisotropy y, A/A„ typically
shows only about a 1-2% change at T„

In a similar manner, we can reduce the four-
spin correlations of Eq. (26) to products of two-
spin correlations. If one normalizes the expres-
sion by the infinite-temperature intensity, the re-
sult is

([[a„H'],H'])

= &2&p[2(a k 2 ) —(100) —(110)]

x 1 —~ S I
(---') -(100) —(110)+(111)

4S S+1
(33)

where again the correlations have been normalized
to S(S+1). For the bcc lattice, the quantities (100),
(110), and (111) represent pair correlations for
same-sublattice near neighbors located along the
cube edge, face diagonal, and body diagonal, re-
spectively. For the antiferromagnets, all these
correlations, except (~ k ~ ), are positive quanti-
ties. The first moment (&u) is obtained by forming
the ratio of Eq. (33) to Eq. (32).

Whereas the intensity expression of Eq. (82) in-
cludes correlations between all possible magnetic
pairs in the crystal, the correlations of Eq. (33)
are confined explicitly to magnetic ions contained
in the tetragonal unit cell. This dependence of (u&)

on short-range correlations is consistent with the
picture of the two-magnon line being governed by
very short wavelength spin-wave-like excitations
which can propagate above T&. The dominant term
in (33) is linear in the correlation g ~ ~) and is
therefore proportional to the internal energy of the
magnetic system. The magnetic specific heat,
which is just the temperature derivative of the in-
ternal energy, is known to exhibit singular-type
behavior in antiferromagnets at T& and one might
then expect a discontinuous thermal derivative for
the numerator term of (co) at T„. If the intensity
varies smoothly through T„, as the data in Sec.
III would seem to indicate, then the first moment
(~) should show indications of critical-type be-
havior in the region of ~N.

2. Evaluation of pair cornetations

As was mentioned previously, the evaluation of
the pair correlations for T~ Tz, as used in (32)
and (33}, is based on the recent results of Ritchie
and Fisher for two-spin static correlations in
Heisenberg ferromagnets for the paramagnetic
phase, &~ &&. Their study is confined to cubic
lattices (sc, fcc, and bcc) of an isotropic Heisen-
berg system with only a single dominant exchange
interaction between nearest neighbors; however,
several spin values from S= ~ to S= ~ are consid-

ered. They also point out that the results are di-
rectly applicable, in magnitude, to the correspond-
ing antiferromagnets in the classical limit, S-~.
For our purposes, their findings for the bcc lattice
will be applied to the body-centered tetragonal
arrangement of the rutile structure.

Based on previous work of Fisher and Burford~
for the Ising system, Ritchie and Fisher (hence-
forth referred to as RF) have obtained for the
Heisenberg case convenient approximants for the
normalized neutron-scattering intensity function
X(q, T) [see Eqs. (2. 16) and (6. 1) of Ref. 22] at all
wave vectors q and all temperatures above the
critical value T, (for our case, we assume T„=T,)
These were obtained from numerical analyses and
extrapolations of high-temperature series expan-
sions for the magnetic susceptibility, for the in-
dividual correlation functions and for the second
and higher moments of the correlations. The scat-
tering function X(q, T) is just the required normal-
ized spatial Fourier transform of the correlation
function as used in Eq. (32), namely,

X(q, T) =(S; S;)/S(S+1) . (34)

The particular near-neighbor correlations of (82)
and (33) are then obtained from the inverse Fourier
transform

(S, S,)=A-'Ze-" ~~(S- S -)

The intensity ratio A/A„and the first moment
(&u) are calculated numerically using these correla-
tions, the required summations in q space are car-
ried out over 10 points in the full Brillouin zone.
For T» T the calculations are relatively accu-
rate, ' however, as & approaches T„sizeable er-
rors develop in the pair correlations and, there-
fore, in A/A„and (&u). We show in Appendix B that
these errors do not result from the numerical com-
putations but are intrinsic to the approximant
X(q, T), and we make simple corrections to the cal-
culated results which serve to reduce our errors
in the region of T,= T&. These corrected values
for A/A„and (&o) at and near T, are, however, to
be used with caution.

Considerably more accurate values for A/A„
and (&v) at T,= T„can be obtained using the critical
values for the near-neighbor correlations as given
by RF. By extrapolating the high-temperature
series expansions for the spatial correlations to
the critical temperature, they obtain and tabulate
reliable estimates for the nearest-neighbor criti-
cal correlations for the cubic lattices and several
spin values; a number of the other near-neighbor
correlations for the S= case are also listed. In
addition, RF find that, for a given lattice structure,
the critical spatial correlations (So ~ Kg), and

(Sp Ss)+ for ion pairs separated by the nearest-
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neighbor distance & and. a general distance r, re-
spectively, are related through the quantity rtaken
from Eq. (5. 12) of Ref. 22]

(36)

which is essentially the same for a number of dis-
tinct spin models (i. e. , the Heisenberg S = ~ and
the Ising S= ), ~); here, a is the nearest-neighbor
lattice spacing and g =0.0427 is a critical exponent.
Using Eq. (36) and the tabulated near-neighbor
critical correlations for the S = ~ Heisenberg sys-
tem, we have obtained values for D(r) and used
them to extend the nearest-neighbor critical cor-
relations for a general spin S to all r. For x-3a,
D(r) varies for each discrete r but typically lies
between 0. 85 and l. 0. To estimate the critical
correlations for r &3a, which are not given for any
S, we use the asymptotic (r- ~) value for D(r) ob-
tained by RF using lattice Green's-function tech-
niques; for the bcc lattice, D(r) =0.935. In this
manner, we determine all the spatial correlations
at T, and, hopefully, are able to obtain more re-
liable values for A,/A„and (&u), than is possible
with the approximant y(q, T).

In Figs. 2(a)-2(c) we plot the results of our cal-
culations of the intensity ratio and first moment
for antiferromagnets at T T~. Except for the S= ~

case, we have adjusted the calculated values so
that, as T- T&, the results based on the approxi-
mant y(q, T) go over smoothly into the more reli-
able values at T& obtained using the critical corre-
lations. For S = ~ and S = & this adjustment is very
small, but it does become more significant as S
decreases; the difference between the two results
at T„ is more pronounced for A/A„ than for (u).
For the S= & system, the results in the critical re-
gion are only approximate, ' the large discrepancy
between the two correlation calculations at T„and
the general difficulty in obtaining reliable correla-
tions for S= ~ prevent our being more specific about
the behavior near T„.

The curves for A/A„shown in Fig. 2(a) display
several features of interest. For S= ~, the intensi-
ty exhibits a sizeable decrease of 25% on going from
high temperatures to T = T&, as S decreases, the
variation in intensity also decreases, showing little

1
change for S = 1 and indicating an increase for S = ~.
The behavior for S = 2 is not unexpected since Eq.
(21) predicts a low- to high-temperature intensity
ratio Ao/A„= 1.33, which is increased further when
the spin-wave corrections to the assumed Neel
state are included. The small increases in intensi-
ty for the other low-spin values, as the tempera-
ture is reduced from T=~, is apparently real. A

high-temperature series expansion of the intensity
in powers of (1/T) shows that, for finite S, the
linear term in (1/T) leads initially to an increase
in intensity for antiferromagnets when T is lowered.
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The effect should be greatest for the smaller S but,
because of the experimental error in the intensity
measurement, it is probably not large enough to be
observed.

The variation of the normalized first moment
k(&u)/Z, i.e. , the first moment per unit value 8, is
given in Fig. 2(b). One notes that the curves for
the various S are quite similar, except near and at
T& where the larger spin values show the larger
(&u). Generally, the first moment at T„ lies in the
range 5J—7J. In Fig. 2(c) we plot the quantity
k(co)/2ZZS, where 2ZZS is the maximum noninter-

FIG. 2. Theoretical temperature dependences of the
intensity and first moment for bcc antiferromagnets for
T~ Tz. Results for S=y, 1, ~, ~, and ~ are presented;
at fixed T, the results vary monotonically with S between
the limiting curves for S=y and S=. For S=y, the re-
sults in the critical region are only approximate. (a)
shows the integrated intensity A relative to the infinite-
temperature intensity A; (b) shows the first moment (cu)
per unit value of exchange J and (c) gives (ur) relative to
2ZJS, the maximum noninteracting two-magnon energy
at T= 0.
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l ' &S;&'[S(S+1) —&(S;P&] .S2 (41)

The full expression for &&u&
' is obtained by forming

the ratio of E[l. (41) to E[l. (39). At T=O, the pre-
dicted first moment is +(&u&0 = —2ZzZ2S, which is
just the two-magnon energy in the absence of mag-
non-magnon interactions [Eq. (22a)]. For T~T„,
&[d& '-O.

Using molecular-field theory one can calculate
the predicted temperature dependences of the quan-
tities &Sf& and &(Sf}&. For simplicity, however, we
choose ((S;) ) to have the form

&(Si) ) = 3 (S+ 1)+ s &S,) (1 —1/2S), (42)

which reduces to S at T= 0 and to 3S(S+ 1) at T„,
and is independent of temperature for S= 2 as it
should be. One then obtains the results, for anti-
ferromagnets,

lations below &N are difficult to predict, we have
used the following scheme to estimate more accu-
rately A and &[d& in the ordered state, and particu-
larly in the critical region:

A =A~+n(IT - TNI), (44)
&~&=&~&"+f(IT-T I),

where a(I T —T„l) and f(I T —T„l) are the contribu-
tions of the short-range fluctuations which are as-
sumed to be the same for a given temperature dif-
ference above and below T„. These terms are ob-
tained directly from the experimental and/or theo-
retical results for A and &&o& in the paramagnetic
state, » TN, where long-range order is absent.
For S~ 1, the term a(l T —T„l}is subtractive since
the A result predicts too much intensity for
T~ TN,' f(IT —TNI) contributes an additive term to
&[d& . Our assumption of the forms for a(l T —T„l)
and f (I T —T„I), at least in the critical region, is
consistent with the results of scaling hypotheses.
%'e shall consider the characteristics of these ap-
proximations further in Sec. III when we discuss
the experimental results.

III. EXPERIMENTAL RESULTS AND DISCUSSION

28 Mo

S+1

( —.-'): (=.)' (.-".)"

(43)

where we have replaced the ratio (S',)/S with the
term M/Mo, the relative suMattice magnetization
For our purposes, the values for M/Mo in MnFz
will be taken directly from the published experi-
mental results ' rather than from the molecular-
field (mf} calculations.

At low temperatures, T «&N, where the mf for-
malism is generally applicable, these expressions
should describe the temperature dependences fairly
accurately (neglecting, of course, spin-wave effects
at very low temperatures). As T- T„, however,
their error increases substantially. Although the
molecular-field theory attempts to include properly
the contributions from long-range order and same-
site spin correlations, it totally neglects the effect
of short-range correlations which become increas-
ingly more important as one approaches TN. This
is evidenced by the fact that the molecular-field re-
sults show constant (T- ~) values for A and &a&& in
the paramagnetic phase. Our earlier calculations
for ~—~N show, however, that they still display
appreciable temperature dependences in this region,
particularly near TN.

Since the contributions of the short-range corre-

The magnetic scattering spectra of antiferromag-
netic MnF2, NiF2, and RbMnF, were obtained using
a conventional Raman-scattering facility which in-
cluded an argon-ion laser, a double-grating spec-
trometer, a cooled phototube, and photon-counting
detection. The usual 90' scattering configuration
was employed with a typical instrumental resolution
of 5 cm ", on occasion, the resolution was increased
to 1 cm ' to study the scattering characteristics
close to the laser excitation frequency. Tempera-
ture control was achieved with a variable-temper-
ature Dewar which used a flowing He exchange gas,
except at 2 'K where the sample was immersed in
superfluid He. A given temperature could be sta-
bilized to better than 0. 1 'K over long times, al-
though we estimate our value for the temperature
in the scattering volume to be accurate only to + 5,
—3 'K.

The oriented single crystals were fabricated
from high-optical-quality material which showed
very little parasitic scattering. The majority of
the magnetic scattering spectra were obtained in
the x(yx)y scattering configuration, with the inci-
dent and scattered light polarizations normal to
each other and to the crystal c axis. Spectra for
the x(yz)y geometry in MnF2, wherein the polariza-
tion of one of the light waves lies along the c
axis, showed essentially the same behavior al-
though the intensity was about a factor of 2 less.
In addition, the scattering of the E~ phonon line
( 245 cm ~) was also measured in MnF[. By com-
paring the observed temperature dependence of the
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lar, that on going from 70 to 62. 5 'K there is a
marked decrease in scattering intensity near zero
frequency shift, whereas the scattering peak shows
relatively little change in position. Such behavior
indicates that the first moment (e) is changing
much more rapidly than the two-magnon frequency
in the critical region.

The temperature dependence of the integrated
scattering intensity (both Stokes and anti-Stokes
components) relative to its 3 'K value is shown in

Fig. 5; the intensity has been corrected for experi-
mental and absorption effects as discussed pre-
viously. Data for the x(yx)y and x(yz)y scattering
geometries show essentially identical behavior.
The observed increase in intensity with increasing
temperature is in qualitative agreement with theory,
but contrary to the earlier reported results of a
decrease in intensity for the isomorphic NiF~ sys-
tem. (More recent work~8 in NiFz shows that the

scattering intensity does increase if the raw data
are properly corrected for a strongly temperature-
dependent optical absorption effect. ) As seen in
Fig. 5, the observed high-temperature intensity
for MnF~ exceeds its 2 'K value by a factor of 4. 45
which is significantly larger than the predicted
ratio, A„/Ao = 3.74. The predicted intensity vari-
ation for T—T„, which is based on the evaluation
of the static correlations of Eg. (32), is also given
in Fig. 5. One notes that the predicted 25% in-
crease in intensity from T& to infiaite temperature

FIG. 4. Typical magnetic light scattering spectra in
antiferromagnetic aud paramagnetic MnF2 (T&=67.7 K).
The instrumental resolution of 5 cm ~ is denoted by the
vertical bars.

integrated scattering intensity for the E~ phonon to
its predicted behavior, one can determine the effect
of varying experimental conditions and of any tem-
perature -deyemSent absorption characteristics in
MnF& on the scatteriag profiles, and the magnetic
scattering spectra is thea suitably corrected for
such effects. Furthermore, all data were obtained

0

using the 4579-A Easer excitation to minimize laser
light absorption amit So eliminate sample fluores-
cence in the region of the magnetic scattering spec-
tra.

In Fig. 4 we show typical magnetic scattering
spectra for MnF2 as obtained in the x(yx)y geom-
etry. At low temperatures the spectrum is char-
acterized by the usual two-magnon line at -100
cm ~ as has been previously reported. As the tem-
perature is raised, the scattering increases in in-
tensity and the scattering peak moves to lower fre-
quency shifts until, at temperatures well above the
Noel temperature T„=67.7'K, the spectrum is
characterized by a symmetric near-Gaussian line
centered at zero frequency shift. Note, in particu-
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FIG. 5. Temperature dependence of the magnetic
scattering intensity in MnF2. The solid and open circles
give the observed integrated scattering intensity relative
to its 2'K value for the x(yx)y and x(yg)y scattering
geometries, respectively. Above TN, the solid curve
shows the theoretical relative intensity based on the re-
sults of Fig. 2(a). For T ~ Tz, the dashed curve is the
predicted intensity A based on molecular-field theory
whereas the solid curve is the intensity obtained by com-
bining A and the theoretical results for T~ Tz, as dis-
cussed in the text.
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is only about half as large as is observed.
An anisotropy (y —l) = 0. 25 is one possible

means to remove the observed discrepancy in
A„/Ao, although such a large value does seem un-
likely. Besides, as our discussion of Eq. (32}
pointed out, a nonunity y of this magnitude in MnF~
will have negligible effect on the predicted intensity
variation for T» T& and, therefore, cannot repro-
duce the data for the paramagnetic regime. We
have further considered the possibility that a
strongly temperature-dependent scattering at zero
frequency shift due to extraneous mechanisms,
such as second-order phonon scattering, etc. ,
might occur and could lead to an apparent increase
in magnetic scattering intensity at high tempera-
tures. A comparison of the scattering intensities
near zero frequency shift at 300'K for the z(xx}y
scattering geometry, where the magnetic intensity
is small and where two-phonon scattering is ex-
pected to be large, and for the z(yx}y configuration
would indicate, however, that this effect is unim-
portant.

The increases at high T could also result from
thermal effects on the ground-state-excited-state
exchange parameters, on the many scattering
cross-section parameters, and on the assumed
constant relationship between the phonon and mag-
netic scattering, as used in the intensity correction
process; unfortunately, the effects of these pro-
cesses on the spectra are difficult to assess. We
do note, however, that the measured intensity ratio
of 3 at TN agrees extremely well with the predicted
value of A,/Ao= 3. 0, which is obtained by extending
our theoretical intensity curve down from the pre-
dicted high-temperature ratio, A /Ao = 3.74.

A similar discrepancy between the theoretical
and experimental intensity variation in the para-
magnetic state has also been observed' in the NiF2
system. The measured high-temperature -intensity
ratio exceeds the predicted value by about 20%,
whereas the predicted intensity variation between
T& and infinite temperature is only about 2%a. Here
also, however, one obtains good agreement between
experiment and theory for the intensity ratio at T„.

In the ordered state we use the molecular-field
results of Eq. (44) to estimate the behavior of the
scattering intensity. The dashed curve of Fig. 5

represents the contribution of the A~ of Eq. (44)
as obtained from published values ' for the rela-
tive sublattice magnetization in MnF~; this curve
has been normalized to account for the spin-wave
corrections to the intensity at very low tempera-
tures. The solid curve represents the full esti-
mate for A when the short-range fluctuation term
a(l T —T„l ) is included in the calculation. Here,
we use the Neoxetical A for T &TN to obtain direct-
ly the form of a(l'T —T„l) rather than the experi-
mental values, because of the anomalous increase

in the latter for T & T„. The resultant A is seen to
give reasonable agreement with the data in the
critical region. More accurate calculations for the
ordered phase, based possibly on the spin-wave
techniques" "mentioned in Sec. IIE, may improve
the agreement between experiment and theory.

The exact reason for the increased scattering in-
tensity in the paramagnetic phase for MnF2, and
for the isomorphic NiF2 system, is not known. The
good agreement between the experimental and theo-
retical values for A,/Ao would appear to indicate,
however, that the problem occurs only at high tem-
peratures and that the observed temperature varia-
tion of the intensity in the ordered phase is behav-
ing properly, even though reliable calculations for
this region are not currently available. Further
studies in other systems would be of use in deter-
mining if this behavior at high T is a general fea-
ture of the magnetic scattering in antiferromagnets.
Measurements in cubic antiferromagnets, where
p =1, would be particularly useful in this regard;
unfortunately, such intensity measurements in
cubic systems are extremely difficult since there
are typically no first-order phonon lines in most
of those materials to aid in correcting for absorp-
tion, etc.

In Fig. 6 we show the observed temperature de-
pendences of the first moment (&o) of the integrated
scattering intensity and the energy shift of the
Stokes scattering peak. The smooth variation in
the scattering peak energy over the temperature
range, even through T„, is quite similar to pre-
viously reported behavior in NiF, and several other
antiferromagnets'; at Tz, the two-magnon energy
(as inferred from the peak position) is renormalized
by about 45/o. By contrast, the first moment shows
a much more pronounced decrease with increasing
temperature and, at T&, is reduced to 15% of its
low-temperature value. Also, the data near T&
appear to indicate a discontinuity in the temperature
derivative of (&o) at Tx, as compared to the appar-
ently smooth behavior of the scattering peak fre-
quency and the intensity in this same region. Such
behavior is not unexpected, as our previous calcu-
lations would indicate that (u&) should show critical-
type behavior near TN. This behavior could prove
useful as a means for studying the near-neighbor
correlations in the critical region.

Since the first moment is normalized relative to
the total scattering intensity, a more meaningful
comparison between experiment and theory is ex-
pected for (&u) than was obtained for the intensity.
The solid curve for T—T& in Fig. 6 is the pre-
dicted temperature dependence for (&o) based on ex-
pressions (32) and (33) and on the pair correlations
of Ritchie and Fisher. The results contain no ad-
justable parameters since the value of the dominant
nnn exchange constant J2 is taken directly from the
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FIG. 6. Temperature dependence of several aspects of
magnetic scattering in MnF2. The hexagons are the ob-
served first moment (cu) for the total magnetic scatter-
ing in the x(yx)y configuration. Above TN, the solid
curve is the predicted (~) obtained from the results of
Figs. 2(b) and 2(c). For T ~ T~, the dashed curve is the
predicted (co) based on molecular-field theory and the
solid curve is the full (cu) obtained by combining (cu)
with the ((d) for T~ TN, as discussed in the text. The
dotted curve is the observed energy shift for the Stokes
scattering peak in the x(yx)y scattering geometry.

I ((u) = 12&(1+ 0. 097/2S)(0. 9468) —&, (45)

independent of scattering geometry, assuming a
single nearest-neighbor (2 =6) exchange constant.

neutron scattering data' '" for MnF2. The agree-
ment between theory and experiment is quite good
over the full range and particularly at T„, where
the predicted value of 17 cm ' is to be compared
with the observed (~) =15 cm '. The inclusion of
the nn exchange 4„which is really not negligible
for MnF2, into the theory might improve the agree-
ment at T„; however, calculations of the spin cor-
relations for a Heisenberg system with several ex-
change constants are not presently available.

In the ordered phase we again use the molecular-
field approximation to estimate the temperature de-
pendence of (&u). The dashed curve of Fig. 6 is the

(e) ' of Eq. (44) based on the published sublattice
magnetization results, ' whereas the solid curve
includes the short-range fluctuation contribution

f ( I 7 —&„1). In this case, f( I T —T„I ) is taken from
the combined theoretical and experimental behavior
of (&u) in the paramagnetic phase. Again, we obtain
reasonable agreement with experiment in the criti-
cal region, although more accurate calculations for
the ordered phase are still required.

The spectra at 2 'K have been analyzed for the
first moment and the resulting (&u) compared with

Eqs. (23) for MnF2 and NiFz. The corresponding
equation for cubic RbMnF, is

Table I shows the measured first moments and

those calculated from Eqs. (23) and (45) using pub-
lished neutron-scattering measurements of the ex-
change constants S,so,3 W'e have put in dipolar
corrections to (ur)™8which are of the order of 1 cm ~

or less for noncubic MnF~ and NiF2. These have
been calculated using the Neel ground state for sim-
plicity. A single-ion anisotropy interaction DS& is
also important in NiF2, and its contribution of
(28 —1)D to (&u) has been included. Agreement be-
tween experiment and theory, together with the
published exchange constants, is seen to be quite
good.

The difference (v)* —(u&)~ can be used to infer a
light scattering value for J, -4, according to Eq.
(23c). The so-determined numbers for J, -Z, are
shown in Table II together with the neutron results.
Agreement is quite good for MnF2 but less satis-
factory for NiF&, although within experimental er-
ror. W'e feel that our value Jg J3 for NiF& is the
more accurate, both because of the larger quoted
errors on the neutron measurements and because
a +3 +f as large as 1 cm ' predicts a 4 -cm ' dif-
ference between (~) and (u&)~ which would be
easily detected in our experiment, whereas the xz
and xy moments are nearly identical.

In Figs. 7(a) and 7(b) we show spectra for the

x(yx)y and x(yz)y scattering configurations obtained
at 300'K using an instrumental resolution of 1.5

cm '; even with this relatively high resolution, we

are unable to approach closer to the laser 1.ine than
a few cm ' due to the relatively strong Brillouin
scattering from the acoustic phonon modes. One
notes the pronounced differences in the linewidths
for these two spectra. The measured values of
((&u) ) =25. 5 cm ' and ((&o)')'~ =28. 6 cm are
to be compared with the predicted high-tempera-
ture results, ((&o )"„') ~ =23. 4 cm and ((uP)'„)
= 24. 9 cm, given by Eqs. (24d) and (24e); for
MnF2, the high-temperature (T- ~) limit should be
fairly well satisfied at room temperature. Al-
though our measured results are about 1(Po larger
than the predicted values, the increased width for
the yz spectrum over the xy is as expected and

points up the influence of the weaker exchange con-
stants, ~& and J„on the high-temperature spectra.

The increase in the measured (uP) over the pre-
dicted results is not fully understood; it might
arise from thermal effects on the exchange param-
eters but there is a strong possibility that much of
the disagreement is experimental in origin. Be-
cause of the limited signal-to-noise ratio, it is dif-
ficult to obtain reliable data in the far wings of the
spectrum, where slight increases in intensity can
cause noticeable increases in the higher moments.
In addition, our inability to acquire data very close
to the laser line can have pronounced effects on
the measured (&u ); presently, we estimate the be-
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TABLE I. Theoretical and experimental values of (fd) together with values of parameters used.
All numbers are in cm '.

Material Parameters used in calc.
Theory

(co )"' (t'~ )XC

Expt. (this work)
((d )~ (~ pg

RbMnF3

MnF2

J=4.72+ 0.42~

J) = —0.45 + 0. 02

J2 =2. 45 + 0. 02~

J3=0.065+ 0. 02
dipole-dipole

131.8+ 12 131.8+ 12

95. 5 + 1.5 100.2 + 1.5

131.4+ 0. 5

97.6 + 0. 7 102.9 + 0, 7

NiF2 Jg = —0.21 + 0. 50
J2=13 38+ 0 36c

J3 = 0.76 + 0.40C

D=4. 36+ 0. 14
dipole-dipole

196.3+ 11 200. 5 + 11 201.1 + 0. 7 201.5 + 0. 7

~Reference 30 (J as defined here is called 2J in Refs. 30 and 18).
Reference 18.
Reference 31. The single-ion term E is not included since it does not affect (cu). Values of J

found in Ref. 31 have been reduced by 3.7% to account for the Oguchi correction.

havior of the spectrum near + =0 based on theoret-
ical results" which treat the line shape of the high-
temperature scattering profile in terms of a gen-
eralized diffusivity model. Finally, the presence
of appreciable nonuniform background scattering,
as is particularly evident in our x(yz}y spectrum
of Fig. 7(b}, introduces significant uncertainty into
the measured (&u~}. Farther more comprehensive
studies of these high-temperature spectra are
planned to see if one caa obtain reliable values for
(&aP} with meaningful error limits on the results.
Such measurements co~kl then prove useful for
studies of the temperature and pressure depen-
dences of the exchange parameters in the paramag-
netic phase.

IV. SUMMARY AND CONCLUSIONS

X(YX}Y (a)

I
4A
Z

z

of infinite temperature and of zero temperature
within the spin-wave formalism. For the inter-

We have calculated the low-order frequency mo-
ments for two-spin fluctuation light scattering in
the rutile-structure antiferromagnets as a function
of temperature and have compared the results with
comprehensive measurements in the MnFz system.
The moments (including intensity, the zeroth mo-
ment} are directly related to static spin-correlation
functions, which can generally be computed with
reasonable reliability, and do not require the same
decoupling procedures of dynamical equations as
are needed to calculate the overall spectral line
shape. The determination of the moments provides
another test for the general theories of light scat-
tering in magnetic systems and, in particular,
permits the first direct comparison between theory
and experiment for the paramagnetic state.

Expressions for the scattering intensity A and
first moment (v} for all temperatures from well
below to well above the Noel temperature T& are
obtained. They are evaluated exactly in the limits

6z
CC X(YZ)Y (b)

I

100

ENERGY SHIFT ]esn 1)

I

100

FIG. 7. Spectra of magnetic light scattering in para-
magnetic MnF2 at 300 K. Instrumental resolution is
1.5 cm '. (a) and (b) are spectra obtained in the @{yes)y
and x(yz)y scattering configurations, respectively.
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TABLE II. Properties of weak exchange constants J~
and J3.

Material J3 Jf ~ this work J3 —Ji, neutron data

MnF2
NiF2

0. 59+ 0. 14 cm
0. 07+ 0. 35 cm

0. 52+ 0. 04 cm
1.0+ 0. 90 cm

~Inferred from observed (co )~- (~ )~ and Eq. (23c)
plus dipolar corrections.

Reference 18.
Reference 31.

mediate temperature region, the required corre-
lations are determined using suitable approxima-
tions. In the paramagnetic phase, T —T&, the
multispin correlations are decoupled into products
of two-spin correlations which are then evaluated
using previously published results of Ritchie and
Fisher for pair correlations in Heisenberg ferro-
magnets. In the ordered state, T~ T„, A and (&o)

are estimated using the molecular-field formalism
to describe the effects of long-range correlations
and the results of the paramagnetic phase to char-
acterize the behavior of the short-range fluctua-
tions. In addition, we also obtain exact expres-
sions for the second moment (&u ) in the infinite-
temperature limit.

In general, the measured spectral moments for
. MnF2 are in good agreement with the theoretical
results. The integrated scattering intensity in-
creases with increasing temperature, showing its
most pronounced variation in the region of TN. The
measured ratio of the intensity at T„ to the zero-
temperature value agrees very well with theory;
in the paramagnetic phase, however, we observe
at high T an anomalous increase of 20%%uo in the in-
tensity over its predicted behavior, which remains
unexplained.

The first moment (e), on the other hand, de-
creases with increasing temperature and shows
quite good agreement with theory, which contains
no adjustable parameters, over the full tempera-
ture range. In the paramagnetic phase, in partic-
ular, the agreement is very good, even near and at
T„. The measured (&o) shows pronounced rapid
changes in the region near T&,

' by contrast, the
peak of the scattering spectrum, which has been of
primary interest in previous studies, shows a
smooth variation with changing temperature, even
tnrough T&. These changes in (&u) show indication
of critical-type behavior near && and could prove
useful for studies of the dynamics of short-range
correlations in the critical region.

The fact that we do obtain good absolute agree-
ment above T& for (u&), which is insensitive to
thermal effects on the scattering parameters,

APPENDIX A: SPIN-WAVE EVALUATION OF (w)

We start with the Dyson-Maleev description of
spin operators:

S) —- S —a]a),t

S~ = —S+ Q~Qy,

S;= (2S)»'n

(Ala)

(A1b)

(Alc)

makes us believe that the methods and correlation
functions we have used are basically correct. It
thus seems more likely that the anomalous behav-
ior in the total intensity above T& is due to some
extraneous temperature dependence of the param-
eters which cancels in the numerator and denom-
inator of the expression for (&u) than due to some
fundamental inadequacy of the calculation of (ff'Jf')
for the model system.

Detailed comparison between theory and experi-
ment has been made for (u&) in the zero temperature
limit for RbMnF3 and NiF&, as well as for MnF2.
Good agreement is found. Of particular interest
here is the fact the difference (&o)"' —(&o)~ can be
used to infer the difference ~, -4, between the weak
exchange constants in rutile-structure antiferro-
magnets. It appears likely that at least for NiF~
light scattering provides a more reliable value for
~, —~& than does neutron scattering. This is an
illustration that analysis of the spectra by moments
can provide a quick answer for certain of the more
subtle properties of the exchange constants. It is,
however, possible to get the same-and possibly
more information about J, and J, from fitting low-
temperature intensity profiles to Green's-function
calculations, but the computational procedures in-
volved are likely to be much more tedious.

At high temperatures, the spectrum is character-
ized by a symmetric line centered at zero fre-
quency shift; an analysis of the averall spectral
profile is given elsewhere. The variation in the
second moment (&u ) for different scattering geom-
etries, which results from the presence of several
exchange constants, is in qualitative agreement
with our infinite-temperature calculations, although
the measured (uP) are about 2(P/p larger than pre-
dicted. Much of the discrepancy is believed due to
experimental effects and further studies of these
high-temperature spectra are planned. If the ex-
perimenta1 difficulties can be resolved, however,
the measured (uP) could provide an effective and
convenient technique for determining the temper-
ature and pressure dependences of the exchange
parameters in. the paramagnetic phase.
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S, = (2S)'~'at(1 —a]a, /2S),
S+ (2S)ll2h

Sy
—(2S)'~'(1 —b~~b~/2S) b~,

(Ald)

(Ale)

(AU)

where a& and b& are Boson spin-deviation annihila-
tion operators for the "up" and "down" sublattices,
respectively. Diagonalization of the quadratic
part of Ho yields a set of noninteracting magnons
whose Boson annihilation operators a~ and g are
related to a, and b, (a, =N '~'g, a, e' ', 'etc. ) by (HH)=Zgq. (A6)

above expression for gk assumes that G~& and J;;
are confined to nearest intersublattice neighbors.
The interaction corrections to gk, represented by
c, are wave-vector independent. Part of the con-
tribution to c comes from the four-magnon part of
S&S&,

' so the longitudinal part of S~ ~ S& does affect
the two-magnon line, contrary to the Neel state re-
sult for (H'H). The integrated intensity is given
immediately by

~a= k&k+~kp-k
t (A2a)

and

hk AW+ I k+W ~ (A2b)

H (two-magnon) = —Z GP& 5» ~ S&(two-magnon)es
2

=~gkakP k+H. c. ,t
k

(AS)

where &k and p.k are coefficients of the Holstein-
Primakoff or Bogoliubov tra.nsformation. (The
above relations, in which the transformation in-
volves only two parameters and the modes are
degenerate in the absence of an applied field, as-
sumes uniaxial anisotropy with respect to the
equilibrium z direction. )

Use of (Al) and (A2) in (1) and (6) then produces
an Ho and an H' which contain combinations of four-
magnon operators as well as quadratic terms.
Evaluation of (~) then in principle involves handling
a multitude of expressions each of which can con-
tain as many as ten magnon operators (in [Ho
H"4~]H"~~, ten-magnon terms result since [ Ho ~,

H""] has six-magnon terms, where the super-
script (4) indicates four-magnon parts], and the
task would likely be impossible for a person with
average patience and life span if it were not for
simplifications at 0 'K which are discussed below.

The major simplification is that we are only
interested in that part of H' which describes tiie net
excitation of two magnons, since other parts of H'
will contribute to the intensity at points (ur = 0 and
&u = 4&ass) far removed from the main two-magnon
line. This amounts to truncating the Hamiltonian
in a manner similar to that in calculating moments
of the magnetic resonance line.

The renormalization of H' into an effective two-
magnon excitation Hamiltonian has been treated in
some detail by Davies. His result may be written
[we henceforth take y = 1 in Eq. (5)]

Numerical values of (A5) relative to the Noel re-
result are presented in Table GI.

The first-moment numerator ([H„H']H') may
now be considered. The Hamiltonian Ko contains
many four-magnon terms, but only a limited num-
ber can contribute to (~) at T = 0, and their charac-
ter can readily be identified. We first express Ho

in the form

H 0~~@(anal P+JPa)+Ho =Ho +Ho, (A6)
k

where Ho is a "true" four-magnon Hamiltonian in
which all creation operators stand to the left, and

cok includes all renormalizations which occur in the
process of moving creation operators to the left in
the formation of Ko . That is, a four-spin devia-
tion term such as nkakpk. pk. is rewritten

&k+kl k Pk +kk+ +kpk'+k~k
t t t t t (A7)

upon making use of the Boson commutation rela-
tions. The first term in (A7) becomes part of a
new quadratic Hamiltonian Ho which contains the
corrected spin-wave energy ~k as treated by Qguchi,
and the remaining term in (A7) becomes part of
H 0 ln Eq. (A6) ~

The contribution of the quadratic part of (A6) to
the first-moment numerator is readily calculated
to be

&[H,"',H']H'
&
=- 2gZa, g', .

k
(A6)

TABLE III. Ratio of integrated intensities in spin-wave
ground state to that in NOel state, A (spin wave)/A(NOel
state), assuming one dominant exchange constant. The
coefficient involving S is (1+c), where c is the Oguchi
correction.

at zero temperature, where it is exact within the
spin-wave formalism, in which

g»=GPSS(zz„+ p~~)(1+c), (A4)

Gk is the Fourier transform of Gk, and c is the
Oguchi corrections to the spin-wave energy. The

Lattice type

Simple cubic

Rutile
(or bcc)

A (spin wave)
A (NOel state)

(1.101)(1 + 0. 097/2S)'

(1.061)(1+0. 073/2S)2

Value for particular
compound

1.144, RbMnF3

1.140, NiF2
1.092, MnF&
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A more lengthy calculation gives, at zero temper-
ature,

([Ho, H ]H ) =NZJ»» g»»,
f

{A9)

in which g~& is the spatial Fourier transform of g~,
X is the number of spins on a sublattice, and the
superscript (0) on J„indicates opposite sublattice
couplings only. [Dipolar and single-ion anisotropy
contributions to (A9) are negligible and have been
left out. ] An interesting feature is that the only
part of Ho which contributes to (A9) comes from
the four-spin deviation operators in the longitudinal
S&S& terms of Ho with i and ) on opposite sublattices.
Contributions from the transverse terms all cancel
to give zero.

By using Eqs. (A5}, (A6), and (A9) in (11) we
then have

((o) = 2(a/ —J'„"/k, (A10)

where (»d») is the average magnon energy weighted
with respect to the interaction g» and where

(All)

G» = 2G(cosk a —cosk, a} (A12)

for cubic RbMnF~. Sums were computed on a CDC
6600 over n=10, 2. 5&&10, and 8&10 points in
the Brillouin zone (advantage was taken of sym-
metries} and the results, which fell on a straight
line when plotted versus I/n, were extrapolated to
n =~. Equations (23}are valid to first order in J,
and Je. Higher-order terms are completely negli-
gible for the relatively small values of Z,J,/Z»J»
and Z»J»/Z»J» encountered here.

is the average intersublattice coupling weighted
with respect to g», . The quantities g» and G„are
related by Eq. (A4}, and we note that since the
multiplicative correction to g„(1+c), is wave-
vector independent, it cancels out of the expres-
sions. Thus the quantity 2(»d») in (25) represents
the first moment which would be calculated for a
completely noninteracting set of magnons (but whose
frequencies do contain the Oguchi corrections).

Since g„has a different k dependence than G,
[Eq. (A4)] the quantity J„of (All) is not exactly
equal to J even if G;& and Jq& are confined to closest
intersublattice neighbors. However, calculations
show that the difference between J„and J is less
than 1% and thus negligible.

The numerical values shown in Eqs. (23) and

(45) are obtained by using the standard expressions
for X», »»», and»d»=&d»(1+c) for a two-sublattice
Heisenberg antiferromagnet (see, for example,
Ref. 2} together with G» given by Eq. (32) for the
rutile structures and~

(S+1)= —Z){(q, T) =1 .
(Bl)

This behavior is quite clearly displayed in Table
IV where, for the bcc lattice, the spin dependences
of the nearest-neighbor correlation and I" in the
critical region are shown. In the second column
are listed the critical nearest-neighbor correla-
tions (»»» ); as obtained by RF from extrapola-
tions of the high-temperature series expansions to
the critical temperature T„' this same correlation
(»»» );, obtained from Eq. (35) using the )f(q, T),
is given in the next column. The remaining col-
umns show the calculated r of Eq. (Bl) for the tem-
peratures T, and 1.4T„respectively.

For the S = case, the results are in good agree-
ment with predictions. The nearest-neighbor cor-
relations agree to within 5% (in fact, the agreement
at T, is quite good for all S) and the sum rule (Bl)
is well satisfied. For S = -„(Bl)is still fairly well
obeyed; however, for the smaller S the sum rule
rapidly breaks down, with 1" becoming appreciably
less than unity for T- T,. This causes the cal-
culated A/A„and (~). to become, respectively, less
than and greater than their "true" values.

The errors do not result from the numerical
computations since increasing the number of points
in the q-space summation has little effect on the
results, the problem must therefore arise from the
nature of the )f(q, T) approximant. RF show that,
at the critical point, )f(q, T) takes the form [see
Eqs. (6. 1) and (V. 1) of Ref. 22]

TABLE IV. Spin dependences of the critical nearest-
neighbor correlation Q y y)~le obtained from extrapola-
tions of high-temperature series expansions, the same
correlation (2 2 2)~~ obtained from the approximant
X(q, T), and the calculated sum I' of Eq. (B1) for the
temperatures T~ and 1.4T,.

Spin (1 1 l)gyp

0.273
0.263
0.254
0.240
0. 199

(1 1 1)gyy

0.259
0.250
0. 242
0. 229
0. 190

0. 995
0. 960
0. 929
0. 878
0. 729

r(1.4T,)

0. 996
0. 989
0. 980
0. 964
0. 908

APPENDIX B: INACCURACY OF X(q,T) IN THE

CRITICAL REGION

In the paramagnetic pha, se, A/A„and (»d) are
numerically calculated using the approximant )f(q, T}
as given by RF. As T- T„(T„), errors develop in
the results such that the calculated pair correla-
tions (S» ~ 5;) of Eq. (35) become noticeably smaller
than the more reliable values obtained from high-
temperature series expansions and there is an in-
creasing violation of the required sum rule,
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X(q~ r) = D/[X'(q)a', ]' "",
where

K (q) = (5/az} [1 —cos(—,'q, a}cos(zq,a)cos(2q, a) ]

for the bcc lattice, with lattice constant a and near-
est-neighbor distance ao, [K (q)

-
q for q- 0]. RF

further show that the q-independent D varies for the
different S (and also for different lattice structures)
but that g is spin independent and, thus, there is
no way that the sum rule of (Bl) can be satisfied
for all S. In addition, RF point out that the )f(q, T)
is designed, and has been numerically optimized,
to give the best results for small qa (or, equiva-
lently, for large r&z), whereas A/A„and (&u) are
heavily weighted by the near-neighbor correlations.

This effect may not be so important in light of the
relatively good agreement between the two indepen-
dent values for the nearest-neighbor correlations,
even at T~ (Other near-neighbor correlations show
similar agreements between the two methods. )

To correct for the effects of the sum-rule viola-
tion on A/A„, we divide our numerical result for
the first term in Eq. (29) by the calculated value of
I" and add the remaining terms in (2 —,

'
2 ), using

values obtained from Eq. (35), to the result. This
procedure brings the corrected value of A/A„ into
better agreement with the "true" value, especially
at T, where the result can be compared with an
alternative more accurate determination of A/A„.
The corrected value for (~) is then obtained by
forming the ratio of Eq. (33) to the corrected A/A„.
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