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Calc»tion of NMR line shapes in calcium fluoride irom mo@6ed moment expafsaions
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Theoretical second, fourth, sixth, and eighth moments of nuclear-magnetic-resonance absorption lines in

calcium fluoride are used to examine the convergence of two diferent modified moment expansions for
free-induction-decay (fid) curves. These expansions provide a systematic method of obtaining corrections
to two initial approxi~~tions to a line shape which are obtained from either the local-field model,
which gives a Gaussian fid curve, or the Abraf}f~m function. In the former case one obtains the Fourier
transform of the Gram-Charlier expansion and in the latter case a Neumann expansion. These expansions

may also be applied to the memory function, a local-field correlation function, rather than the fid

function since, in general, the functional form of a memory function is insensitive to the form of a line

shape and, in particular, these two curves are sinai&~r in shape for dipolar-broadened resonance lines. In
analyzing the results of these expansions we are led to formulate a condition for oscillations in an fid

curve. This condition is that local-field correlations persist for a time T which is at least of the order
of the mean beat period M, '". Here M, is the second moment of the resonance line and T," is the
relaxation time of the memory function. Also, a new trial function is proposed for CaI", fid curves
which gives the proper behavior at both long and short times.

I. INTRODUCTION

The moments of an NMR absorption line com-
pletely determine its shape and that of its associ-
ated free-induction-decay {fid) curve. At least the
first few of these moments may be calculated ex-
actly, as shown by Van 71eck, ' who evaluated the
second and fourth moments for a rigid-lattice spin
system with dipole-dipole and exchange interac-
tions. Recently the sixth '3 and eighth moments
have been determined for a similar system limited
to dipolar interactions between spins. These re-
sults apply to the F spins in calcium fluoride, a
system for which extensive experimental results
are available. ~~ It is therefore of interest to
compare this data with theoretical line shapes ob-
tained using these moments. This kind of approach
represents a compromise between a qualitative
description and fuQ calculation of the relevant spin
autocorrelation function and it utilizes a qualitative
form of an absorption line or fid curve as an initial
approximation together with some lower-order
moments, which are used to correct and improve
this initial shape.

For example, an approach to the line-shape
problem in calcium fluoride may be based on the
local-field model of dipolar broadening which is
applicable to this spin system. Describing the
dipole-dipole interaction by a local field along the
external field, thus neglecting the spin flip-flop"
terms in the Hamiltonian, one obtains essentially
a Gaussian line shape and therefore a Gaussian
fid curve. This prediction is in rough qualitative
and quantitative agreement with experiment and a
systematic method of obtaining correction terms
is available. This method is based on the Gram-

= G(0)Z (- I }"M„t'"/(2~)!,
n~0

G{0)= 1.
The moments M2n are defined by

Ms, = f (d G(4))4d

f G(u)d(o =1,
where C(&u} is a normalized line-shape function as-
sumed symmetric about ~ = 0. The moment expan-
sion (1) applies to all symmetric line shapes. In
order to obtain an expansion reflecting the approx-
imant Gaussian shape of a CaF2 fid curve one
writes G(t) =e ' g(t), where g(t) is determined by
(1) and the choice of a. This modified moment
expansion has the form

G(t) = e ' Z (- 1)"az„t~"/(2n)!,
n=0

(2)

Choosing a so that the Gaussian approximation has
the correct second moment gives

n —2M2y a2 —0
y

2

a4 ——Mt (M4/M q
—3},

az -—M2(M4/Mz —15M4/Mz+ 30),

Charlier expansion. ~io
The Gram-Charlier expansion, or more pre-

cisely its Fourier transform, is an example of a
reformulation or reorganization of the basic mo-
ment expansion for an fid curve. The moment ex-
pansion of a normalized fid curve is"

G{t)= G(0)(l —Mzt /2! +M4t /4! —~ ~ ~ )
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as = M2~(MS/Mz —28M'/Mz~+ 210M4/Mz —315) .
(3)

If a line-shape was precisely Gaussian then its as-
sociated fid curve would be e ~3' 2' and all but the
first of the coefficients ca„mould vanish. Thus,
for this choice of a, the terms in (2) are correc-
tions for a non-Gaussian line shape.

A different modified moment expansion may be
obtained as a Neumann expansion involving Bessel
functions. The development of this expansion was
originally motivated in part by the behavior of
terms in an fid expansion based on the basic for-
mula~~

G(t) =»(Sx{t)Sx}/»(SN .
A particular operator expansion technique for the
evaluation of (4) gives a, series of functions, suc-
cessive terms of which have the appearance of
Bessel functions of successively higher order mul-
tiplied by some function which decays monotoni-
cally to zero. ~2 Now it has been shown by Abra-
gam' that the particular function

G„(t)= e ' sin(Pt)/Pt

gives a good description of fid curves in CaF2 when
n and P are determined by the requirement that
G& give the correct M2 and M4. A systematic
method for obtaining correction terms to G& could
then be based on the Neumann expansiono

(5)

to a certain auxiliary function K{t), the memory
function. This relation is

K(t —t')G{t')dt' .dt (7)

The memory function thus relates the rate of
change of G at one time to its values at earlier
times, and its Laplace transform may be expressed
as the ratio of two infinite-order determinants in-
volving the moments of the absorption line. ~4

Furthermore, it may be shown to behave in the
fashion of a local-fieM correlation function. " For
example, K(t) decays to zero from its initial val-
ue K(0) in a. time of the order of Tg* which varies
widely according to the character of the spin-lat-
tice system. In rigid-lattice solids, like CaF2,
T~ =M&', whereas in nonviscous liquids Tz*~
«M&~ t~. Since in (:aF2 the decay of G(t) occurs in
a time Tg=Mz'~2, '8 G(t) and K(t) both decay in
about the same time and, in fact, they are simi-
lar in shape. " This suggests that we calculate an
fid curve indirectly using (7) by applying the mod-
ified moment expansions to K(t). Further motiva-
tion for this approa, ch is based on the fact that G
has been found to be less sensitive to approxima-
tions made to A than to similar approximations
made directly to G. '4'"

The moment expansion of K(t) is obtained from
(1) and (7) and is

K(t) =K{0)(1—Mmt2/2! +M~t~/4! —~ ~ ~ )

= K(0)Z (- 1/M' t "/(2n)! (8)

where v ~ —1, —2, -3 ~ ~ ~, the J„are Bessel
functions of order p, , and the coefficients b2„are
determined by moments through M~ and the choice
of c and P. The optimum leading term is obtained
when v is chosen so that the correct pattern of
zeros of G is obtained. From CaF~ fid data it is
found that G=O when t= tg 2' 3ty where
tj is the time from the beginning of a decay to the
first zero. This pattern of zeros is reproduced
by choosing v= &. If, in addition, a and p are
chosen so that the first term gives the correct M&

and M, then (5) becomes

G(t)=G„(t)+e " ' Zcz„j2„(Pt),

The parameters in this expansion are

K(0) = Mq, Mq ——Mq(Mq/M2 —1),
M4=Mt(Me/M2 —2M /M~+I),
M,

' = M,'[M, /M', —2M/M',

+ (3 - M4/Mz)M /M4~1] .
%e obtain modified moment expansions of the form
(2) and (6) by using (8) and (9) with M~„and K(0)
used in place of M2„and G(0). The calculations of
G from K presented in Sec. II were performed by
a method based on (7) which has been described
previously. '5

o'=-,'M, JI -P (3-MJM')]'"} (6)

P2=M [+(3—M /M~)]~t~

In this expansion cz„= (2/w)' ba„and the jz„are
spherical Bessel functions. Explicit expressions
for the coefficients cs and cs are rather lengthy
and can be obtained from results given elsewhere.

Another approach to the calculation of line
shapes may be based on a formal solution of the
line-shape problem which relates an fid curve G(t)

II. RESULTS

Theoretical moments for CaF23'7 expressed as
ratios to the second moment are given in Table I,
where they are compared to moment ratios for a
Gaussian and a rectangular line shape. These
comparisons show that the calcium fluoride line
shapes are more nearly rectangular than Gaussian
and that the actual moment ratios are less than the
Gaussian moment ratios, i.e. , Mz„/{M2)" ~ (2n)!/
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TABLE I. Theoretical moments for calcium fluoride
[G. %. Canters and C. S. Johnson, Jr. , J. Mag. Res.

~6 1 (1972); S. J. K. Jensen and E. K. Hansen, Phys.
Rev. 8 ~7 2910 (1973)] compared to moments of Gaussian
and rectangular line shapes.

CaF2
(100] [111] Gaussian . Rectangular

m,"' (G}
M 2 (yacc)
M4/M2

3.570
ll. 13
2. 125
6.325

25. 14

1.480
26. 85
2.373
8.485

43.75

1.8
3.9
9.0

(2"n! ) for n ~4. Assuming this inequality to hold
for all n, it follows by comparison with the Gauss-
ian fid curve that the moment expansion (1) is
uniformly convergent for 0 —t & ~. Consequently,
the modified moment expansions have the same
property. Their rate of convergence for a speci-
fied interval of time may be determined by com-
parison with experiment.

In Figs. 1(a) and l(b) the moment expansion (1)
truncated after the Me term and the Abragam func-
tion are compared to the data of Barnaal and Lowe
(BL) for two principal crystal orientations. The
truncated moment expansion is accurate for t
x M2'~~ and it ultimately diverges. The Abragam
function gives good agreement with the data through
the second zero but it decays too rapidly there-
after, as shown in Fig. 1(a).

As an alternative to the moment expansion one
could calculate upper and lower bounds to G(I).
However, bounds based on moments through M8
would become well separated in the neighborhood
of the first minimum of G, according to results of
applications to other similar line shapes. '

The expansion (6) may be used to calculate cor-
rections to G& using M and Ms to evaluate ce and
cs. Ne will label any correction term depending
on M6 and lower moments, G~, or first order.
Terms depending on Ms and lower-order moments
will be labeled G» or second order, whQe G& is a
zeroth-order term depending on M4 and Mm. For
the expansion (6) Gs= G„. G, and Gs obtained from
(6) for [100] orientation are shown in Fig. 2. Re-
sults for [ill] orientation are similar in form.
These terms are of opposite sign and init~&Uy zero.
G& increases more rapidly than IG, I, however, so
that for this initial period of time G~+ G~ is posi-
tive, thus tending to improve agreement of the
truncated expansion with the data of 9L. However,
it is evident from the numerical values of G, and
G~ that more terms are needed in the series for
this range of t. A disadvantage of pursuing this
approach that emerges from numerical application
of (6) is that the coei'ficients are quite sensitive
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FIG. 1. (a} Abragam function (solid curve) and trun-
cated-moment expansion (dashed curve) compared to ex-
perimental, data of Barnaal and Lowe (circles) for tl00]
orientation. Units of time are microseconds. (b) The
same comparisons as in (a) for [ill] orientation.

functions of the moments. For example, changing
Me by 1'Pz causes ce to change by about 14'. This
feature of the Neumann expansion (6) is not a prop-
erty of the Gram-Charlier expansion (2).

In Figs. 3(a) and 3(b) is shown the zeroth-,
first-, and second-order approximations to G cal-
culated from the Gram-Charlier expansion for
[100] and [111]orientations. For the moments
given in Table I the coefficients ae and ue have op-
posite signs so that G& and G& are both negative for
t &0, as can be seen in these figures. The second-
order approximation is in good agreement with the
data through the first minimum but the truncated
expansion cannot subsequently become positive so
that osciQations are not obtained. Applying the
same type of expansion to the memory function,
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FIG. 2. First-order {dashed curve) and second-order
{solid curve) correction terms in the v =) Neumsnn ex-
pansion for [100] orientation. Units of tirade are micro-
seconds.

however, gives the results shown in Figs. 4(a.)
and 4(b). In particular, by comparing Fig. 3(a)
and Fig. 4(a) it is seen that convergence is better
in the latter figure since oscillations of about the
correct period and amplitude are obtained in the
second-order approximation. In fact, each order
of approximation to K produces an oscillatory fid
curve. The period of oscillation approaches that
of the experimental data as more terms are in-
cluded in the memory-function expansion. These
oscillations are found to occur with the same peri-
odicity in the long;time form of a calcium fluoride
fid curve.

For t2'5M ' the calculated fid curves in Fig. 4

are described by the equation

G(t)=de 'cos(//f+c) .

The existence of oscillations in an fid curve may
be related to the value of Tz**, the relaxation time

12~

08 [1003

(a}
I

t(]0 sec)

50 60

of a given CaF~ fid curve is found to be the same
at both long and short times it is appropriate to ob-
tain this value from the data of BL. This additional
data has been included in the last column of Table
II. For the [111]orientation there is a discrepancy
between the data of BL and that of LBKG. This
may be due to the crystal used by BL being aligned
better than t at of I.BEG.'

Line shapes obtained from the zeroth- and sec-
ond-order Gram-Charlier memory-function expan-
sion for [100] orientation are compared with the
data of Bruce in Fig. 5. AQ three line shapes are
normalized to the same area. The zeroth-order
approximation corresponds to a Gaussian memory
function which depends on M~ and M4 as shown by
(8) and (9), and it resembles a broadened pair line
shape. The first- and second-order corrections
improve the line shape, particularly near the cen-
ter of the line. This corresponds to improvement
in the long-time behavior of the associated fid
curve.

III. DISCUSSION

This form has been found to be characteristic of
CaF& fid curves at long times' ' and it is revealed
by a plot of ln I C~I, where G~ is the value of 6 at
its peaks, as a function of the time of occurrence
of these peaks. The slope of the resulting straight
line gives the parameter a. The parameter 5 is
obtained from the periodicity of the zeros of G.
Values of these parameters obtained in this man-
ner from the second-order approximation of Fig.
4 are listed in Table II as a (calc. ) and // (calc. )
together with the values obtained from the data of
Lowe, Bruce, Kessemeier, and Gara (LBKG).
Comparison of these values shows that the second-
order fid curves of Fig. 4 decay too rapidly to zero
at longer times since a (calc. ) &a (expt. ). The
other orders of approximation give nearly the same
value of a (calc. ) but different values af 5 (calc. ),
as shown in Fig. 4. Since the period of oscillation

0

(b) 60

t(10 sec}

FIG. 3. {a) Zeroth-order {small dashed curve), first-
order (large dashed curve), and second-order (solid
curve) Gram-Charlier approximations to [100] fid curve
compared to the data of Barnaal and Lowe {circles).
Units of time are microseconds. {b) The same compar-
isons as in {a) for [111]orientation.
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FIG. 5. Zeroth-order (dashed curve) and second-
order (solid curve) absorption line shapes for [100] or-
ientation obtained by Fourier transformation of the ze-
roth- and second-order fid curves of Fig. 4(a). Compar-
ison is made to data of Bruce (circles) by normalizing
all three line shapes to the same area. Units of mag-
netic field are gauss.

-06
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90

FIG. 4. (a) Zeroth-order (small dashed curve), first-
order (large dashed curve), and second-order (solid
curve) approximations to [100] fid curve obtained from
zeroth-, first-, and second-order Gram-Charlier ap-
proximations to memory function. Comparison is made
with the data of Barnaal and Lowe (circles). Units of
time are microseconds. (b) The same comparisons as
in (a) for [111]orientation.

of the local-field correlation function K(t). We
recall that Mz't gives the average beat frequency
in a spin system which is unchanged by lattice mo-
tions and spin exchange. If there were only very
slow Quctuations in the local field, i.e. , T*
» M2', then an fid curve would exhibit oscilla-
tions at a frequency & = M~ ~. In this limit the mo-
tion of an individual spin in a frame of reference
rotating at the Larmor frequency wouM be pre-
cessional in character since the average beat peri-
od is much less than the time required for a sig-
nificant change in local field. If, however, the
fluctuations were rapid so that T~ ~ «M~' 2, then
individual spin motion in the rotating frame would

be of the random-walk type ' and the fid curve
wouM be nonoscillatory. The condition for oscil-
lations in an fid curve is then that local-field cor-
relations persist for a time greater than or of the
order of the average beat period, i.e. , T2 *

The validity of this inequality may be illustrated
by considering a hypothetical spin system consist-
ing of a large number of identical spin- & particles
subject to variations in spatial density and tem-
perature which allow the fourth-moment ratio of
their resonance line to vary between one and infin-
ity. Three limiting cases may be distinguished.
These situations have been described in an earlier
publication in which they were characterized by
their relative values of T2, T2*, and M~
First, if these spins are arranged uniformly in
pairs, each pair having the same orientation with
respect to the external field, then their resonance
line would approach a pair of 5 functions at ~
= +M2 as the distance between pairs is increased.
This is the pair limit in which Tg & Tg*»Mz~tz
and MJMz- 1. Second, bringing spin pairs to-
gether produces a broadening of the pair spectrum
and ultimately, in the solid limit, a single broad
line corresponding to a more or less uniform dis-
tribution of spins. This limit is characterized by
the relations Tf = Tf"=Mz~~z. Third, if lattice
motion is introduced the resonance line is nar-
rowed to Lorentzian form as MJMz- ~. This is
the Lorentzian limit, for which Tf »Mz~ z» Tf".

TABLE II. Parameters in long-time fo"m of calcium fluoride fid curves.

Orientation
a (calc. )
(psec-')

a (expt. ) &/5 (calc. )
(paec" ) (@sec)

&/b (expt. ) &/b (expt. , BL)
(psec) (psec)

[100]
[111]

0.059
0, 031

0.037
0.022

23.8
57

21.5
44

21.6
57
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The local-field correlation function's relaxation
time T2~~ decreases in this successio~ of line
shapes in contrast to the transverse relaxation
time T~, which decreases to a minimum of the
order of Ma~/~ and then increases during motional
narrowing. This behavior of T2 ~ is consistent
with its interpretation as the decay time of a local-
fieM. correlation function. "

We may use the succession of line shapes just
described to examine the possibility of oscillations
in an fid curve. The relation between G(t) and

G(~) is given bye

G(t)= gG(u&) cos(art)dw .

We look for the time t, for which G(t) first be-
comes negative. ~ Now G{&o) is positive for —~
& w & ~ and its values are significant only for those
frequencies for which I + I -M2 . Therefore, for
some time t, appreciably greater than v/Mz

~ the
overlap between G and cos(~t, ) will necessarily
produce a positive value of G(t~). For t= v/M2~~~,

however, the range of frequencies for which
cos(va&/M2'~ ) first becomes negative will overlap
the region where G is significant, thus allowing G(t, )
to become negative. In the pair limit and for some
broadened pair lines we have the bulk of 6 in the
negative region of cos(v&g/M~~~2). Fid curves for
these line shapes oscillate at frequencies near
Mp . Line shapes giving more weight to frequen-
cies near zero than broadened pair line shapes
will require a smaller value of tj to make G(f~)
negative, if, indeed, it is possible at all. In the
solid limit one is approaching the transition to a
nonoscillatory fid curve. For example, a Gauss-
ian line shape having M,/M&= 3 produces a Gauss-
ian fid curve, whereas the more Qat-topped line
shapes found in CaFz have M4/Mz~= 2 and their fid
curves oscillate at frequencies of the order of
M2 (Fig. 1). During the transition from a Gauss-
ian-like line to a Lorentzian line increasing
weight is given to frequencies near zero, there
are no oscillations in the associated fid curves,
and one has T~*&Mz . In the transition from the
pair limit to the solid limit, however, fid curves
exhibit oscillations which become increasingly
damped as the solid limit is approached and T~*
& M-1 /2

To summarize, the succession of simple line
shapes just described shows that the existence of
oscillations in an fid curve is consistent with the
condition T2~-M~' . They also seem to imply
that an equivalent condition is M4/Mz 3, but this
is not true, in general, since more complex line-
shapes, consisting of several component lines,
may have M JMz~ 3 and Tg~»Mz'~~.

A trial function exhibiting some of the behavior
just described is

Gr(t) = at csch(at) sin(Pt)/pt,

a'= —,'M, (5MJM,' —9),
p = gM2(21 —5M4/Mq) . (10)

G e"~/~& for E~M2~/~ .

TABLE III. Parameter values in trial function applied
to calcium fluoride.

Orientation

f100]
[111]

(psec ')

0.057
0. 032

~/p
(psec)

21.7
55. 8

These values of + and P are chosen so that G&

gives the correct second and fourth moments. The
function Gr is meaningful as an fid curve only for
real values of a, which requires M4/Mz -9/5.
When MJMz = 9/5 we obtain the fid curve asso-
ciated with a rectangular line shape which is non-
zero for l ~) ~ P. For somewhat larger values of
M4/Mz damped oscillations are obtained whose fre-
quency P remains approximately equal to M~ ex-
cept in the neighborhood of the transition point at
M4/M2= 21/5, where these oscillations have such
small amplitudes (a/P» 1) that they would be un-
observable. The range 9/5 ~ MJMz~ ( 21/5 includes
values of the fourth-moment ratios in CaF2. In
fact, G& gives a good description of CaF2 fid
curves at both long and short times. For example,
using values of 0. and P determined by theoretical
values of Mz and M4 we may obtain values for the
higher moments from (10). For [100] orientation
these predicted moment ratios are M8/M~~ = 6. 27
and Ms/M&4 = 22. 8, while for [ill] orientation one
finds that MIMI~ = 8.71 and M~/M2~ = 45. 6. These
ratios are quite close to those given in Table I.
When compared to the Abragam function shown in
Fig. 1, G~ is found to give oscillations having
slightly greater amplitudes. The half-periods of
these oscillations are given in Table III and are
in good agreement with experiment. The long-time
form of G& is

Gr - (a/P)sin{Pt)e " for f» M2'~~.

The values of a in (11)are given in Table III.
They are nearly equal to those given in Table II
for a (calc. ). Consequently, the function Gr gives
a better description of the observed fid curves than
either the Abragam function or the truncated ex-
pansions previously described. Qn the other side
af the transition point at M,/M,' = 21/5, p' becomes
negative so that Gr may be written as a sinh(at)/
ysinh(yt), where iy =P. Now, for large values of
M JM~ G& approaches the correct limit; i.e. , as
M4/M~~- ~ we obtain
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The relaxation time is given by (2P)-' si~(&p/o)
coshbr&u/n) + cosh(sp/n)

' (12)

This expression for T2 is in accord with the usual
estimates of this quantit'y that are based on the
values of M2 and M4. ~'

The normalized line shape corresponding to (10)
is given by

This transform is valid for M4/M~m~ 9/5. For
lul «n a f,orentzian form is obtained from (12).
When, in addition, M4/Mz» 1, this Lorentzian
form is valid for I w I -M~~~. In the wings of this
line, however, where I~i » n, GT has an exponen-
tially decaying form.

J. H. Van Vleck, Phys. Rev. 74, 1148 (1948).
E. T. Cheng and J. D. Memory, Phys. Rev. B ~6 1714
(1972); W. F. %'urzbach and S. Gade, Phys. Rev. B ~6

1724 (1972); %'. F. Nurzbach, S. Gade, E. T. Cheng,
and J. D. Memory, Ihys. Rev. B 7, 2209 (1973).

S. J. K. Jensen and E. K. Hansen, Phys. Rev. B 7,
2910 (1973).

C. R. Bruce, Phys. Rev. 107, 43 (1957).
D. E. Barnaal and I. J. Lowe, Phys. Rev. 148, 328
(1966).

Unpublished data of Lowe, Bruce, Kessemeier, and
Gara made available to us by Professor R. E. Norberg.

'N. Bloembergen, E. M. Purcell, and R. V. Pound,
Ihys. Rev. 73, 679 0.948).

H. Cramer, Mathematica/ Methods of Statistics (Prince-
ton U. P. , Princeton, N. J., 1945), pp. 222 and 223.

G. W. Parker, Phys. Rev. B 2, 2453 (1970).
B. T. Gravely and J. D. Memory, Phys. Rev. B 3,
3426 (1971).
I. J. Lowe and R. E. Norberg, Phys. Rev. 107, 46
(1957).
H. Betsuyaki, Phys. Rev. Lett. 24, 934 (1970).
A. Abragam, The Principles of Nuclear Magnetism
(Oxford U. P. , London, 1961), Chap. 4.
F. Lado, J. D. Memory, and G. W. Parker, Phys.
Rev. B ~4 1406 (1971). A review of different approaches

to the line-shape problem may be found in this paper.
56. W. Parker and F. Lado. Phys. Rev. B 8, 3081
(1973).
%'e are using the same notation as Ref. 15. T2 is the
relaxation time of the transverse magnetization and T2*
is the relaxation time of the associated local-fieM cor-
relation. f'unction. When the Bloch equations hoM expo-
nential decay obtains and T2 = T2.
G. W. Canters and C. S. Johnson, Jr. , J. Mag. Res.
6, 1 {1972).
O. Platz and R. G. Gordon, Phys. Rev. B 7, 4764
(1973).
In an earlier calculation, Ref. 9, experimental sixth
and eighth moments obtained from Bruce's data were
used to calculate t"~ and G2. For these moments these
two correction terms practically canceled each other
over the initial portion of an fid curve.
P. Borrkmans and D. Walgraef, Phys. Rev. Lett. 21,
1516 (1968); Phys. Rev. 167, 282 (1968).
D. Pines and C. P. Slichter, Phys. Rev. 100, 1014
(1955).
G. E. Pake, J. Chem. Phys. 16 327 (1948).
This restricted condition for oscillations is sufficient
here. More complex line shapes give oscillating fid
curves which are positive and for which Tz**»M2


