
PH YSI CA L RE VIE% B VOLUME 9, NUMBER 5 1 MARCH 1974

Surface effects on magnetic phase transitions
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The surface scaling theory previously presented by the authors is developed further, and derived
heuristically from a cluster model. Monte Carlo calculations are carried out to obtain the spatial and
temperature dependence of the magnetization in Ising and Heisenberg systems with free surfaces. The
exponent P, of the (surface) layer magnetization is shown to agree with the scaling value (P, 2/3)
previously derived. In the Heisenberg system, the results at low temperature agree with a spin-wave
calculation by Mills and Maradudin. Ising models with modified exchange J, =J(1+5,)QJ on the
surface are considered, both in mean-field theory and by means of high-temperature-series expansions.
The critical value 6, for surface ordering is found from the series to be 0.6, compared to the mean-field value
of 0.25. For ~ & 6, there is a temperature region in which the surface behaves like a bulk two-dimensional
Ising model near its phase transition. The critical exponents experience a crossover at 6 = b,, , which is reflect-
ed in poorly behaved series, and effective exponents differing from the true ones for hfdf . In the case of
weakened surface exchange (0 & J, & J), the layer magnetization is shown to fit a linear temperature
dependence over a large temperature range below T„ thus providing a possible explanation for previous
experiments. For suf6ciently strong negative J„mean-field theory predicts that the surface wi11 order
antiferromagnetically while the bulk is ferromagnetic.

I. INTRODUCTION

In a previous paper' (hereafter referred to as I)
the authors presented a theory of phase transitions
in Ising models with free surfaces, and made a
number of exponent predictions based on high-tem-
perature-series expansions and scaling relations.
The scaling theory of I was subsequently reformu-
lated and extended by Barber. Some of the expa-
nent predictions made in I, such as that for P„ the
magnetization on the surface layer, are, in princi-
ple, susceptible to experimental measurement, '4
and to direct series evaluation. ' Since prelimi-
nary results ' indicated a value P, =1, in disagree-
ment with the scaling prediction P, =3, it seemed
worthwhile to reexamine the scaling theory criti-
cally, and in particular to determine how sensitive
its predictions are to modifications in the model.
One such modification, which is of interest in its
own right, is to assume that the spins in the free
surface interact among one another with an ex-
change energy J which is different ' from the bulk
exchange J. It was observed earlier by Mills, on
the basis of mean-field theory, that for J, above a
critical value J„, the system would order on the
surface before it ordered in the bulk. As we shall
see below, such a situation is particularly interest-
ing since it would lead to the possibility of realiz-
ing experimentally a rather ideal two-dimensional
system. In Mills's original discussion of this ef-
fect, he expressed doubts on the applicability of
mean-field theory to such a delicate question, and
it seemed to us worthwhile to study it with more
reliable methods. Moreover, even within mean-
field theory, doubts were expressed on the validity

of Mills's prediction, but as we shall see below,
and as has been remarked by Mills, these doubts
are unfounded.

From our study of these more general Hamil-
tonians, and also of Heisenberg and spherical
models, we conclude that the theory presented in
I has quite general applicability. Moreover, we
find that the phenomenon of surface ordering is not
restricted to the mean-field approximation, since
it follows also from our series expansions. The
main difference between the two methods is that
the series yield a critical value J„=1.6J, which
is higher than the mean-field value J, = 1.25J.
For J, & J,„ the surface orders when the bulk
does, and it has the "surface exponents" described
in I. For J&J,, the surface orders at a tempera-
ture T,(J,) which is higher than the bulk T„(T,~)
and for T„&T& T,(J,) the magnetization decays
exPonentially into the bulk with a characteristic
length equal to the bulk correlation length (~ (see
Fig. 1}. In this temperature region the criticai
exponents are those of the two-dimensional [or
more generally (d —1)-dimensional] model. The
essential difference between the predictions of the
mean-field theory and the series evaluations is in
the values of T,(J,} and oi the critical exponents.

One important technical point which should be
mentioned is that the exponents which arise out of
the series seem to vary continuously with J, in the
range J,& J, , This unphysical behavior for the
layer susceptibility exponent y„ for instance, may
be explained as arising from the crossover between
the "surface" value y, = 8 for J, & J,„and the bulk
two-dimensional value y, =y~"= 4 for J,~ J, , On
the other hand, our only information on the correct
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FIG. 1. Schematic diagram of the magnetization as a
function of distance from the surface, placed at z =0.
The exchange at the surface is J~=J(1+6), where J is
the bulk exchange. There is a critical value 4, above
which the surface orders before the bulk [part (a)j, and
the magnetization decays exponentially into the bulk, with
a characteristic length equal to the bulk correlation length

For T & T,& [part (b)], the magnetization reaches its
finite bulk value at large z. For 4&b, [part (c)j the sur-
face only orders when the bulk does, and m (z) is smaller
at the surface than in the bulk.

value of y~ for J,& J„comes from series expan-
sions, and the question naturally arises as to why

the series for J, = J derived in I should itseU be
considered reliable. We have made a detailed
study of both the series results and the mean-field
approximation, and our conclusion is that the se-
ries are indeed more reliable for J,= J, than for
J& J, J, so that our previous result y, =0.88
+0. 1 does not seem to need modification. More-
over, even for J, = J ~, the series evaluation of
T,(Q is not as sensitive as the exponent determina-
tion, and thus our value of J„is probably also
reasonably accurate.

The possibility of realizing such a two-dimen-
sional magnet experimentaQy makes the search for
appropriate materials quite worthwhile. In gen-
eral, of course, the exchange interaction is weak-
ened rather than strengthened at the surface, so
that special conditions would have to be created.
The most promising method seems to be the depo-
sition of magnetic atoms on the surface of a less
magnetic crystal, but diffusion of these impurities
into the bulk may be a major problem.

The more common case of a weakened surface
exchange (J,& J) is also of interest. For sufficient-
ly strong antiferromagnetic interactions the mean-
field theory predicts a transition to a state of sur-
face antiferromagnetism We. have not gone beyond
mean-field theory in studying this case. In the
more realistic case of a surface exchange J, which
is less than J but not negative enough to lead to
antiferromagnetic order, there may be strong
crossover effects which yield effective exponents
differing from their true value. For example, we
have calculated, using Monte Carlo techniques, the
layer magnetization m, for a system of 55~55&20
spins, with two free surfaces. We find that with
J = &J, there is a large temperature region where
the data fit an effective exponent P,

f =1, even
though the true exponent is undoubtedly P, = 3. This
effect could be used to interpret the experimental
findings of Wolfram et a/. 4 The Ising model with
modified surface exchange has also been studied
in two-dimensions by Au-Yang, and the results
are in qualitative agreement with our mean-field
theory, with the important difference that there can
be no surface (d= 1) ordering at finite temperatures.

Our Monte Carlo calculations on Ising films also
yield an estimate for the shift in T as a function
of thickness. The data agree reasonably well with
those of Allan' and Fisher, "but extend to thicker
films, and lead to a. shift exponential,

u g
The previous calculation by one of us (K. B.) on
hypercubes' is argued to be consistent with this
value, although the T, shifts were so large there
that the data were far from the asymptotic region
of AT, -O, and they were thus also consistent with
the value X= 1 quoted in Ref. 13.

We have also carried out Monte Carlo calcula-
tions on a classical Heisenberg system with a free
surface, which yield an exponent P, = 0. 75 with
rather large errors in the data. At low tempera-
tures, the magnetization profile in the films is
shown to agree quantitatively with the spin-wave
calculations of Mills and Maradudin. '4

In Sec. II the scaling theory of I is reviewed and
generalized somewhat, and a number of new expo-
nents and scaling relations are found. This theory
is then "derived" from a cluster model, in much
the same way as bulk scaling can be obtained from
the cluster picture. Section III is devoted to a
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discussion of numerical calculations on Ising and
Heisenberg models, in order to test the sensitivity
of the exponents found in I to the Hamiltonian. The
exact results for the spherical model are also brief-
ly discussed and compared with the scaling theory.
In Sec. IV the Ising model with modified exchange
(Z, 4 J) is studied both in mean-field theory and
with high-temperature series. The criteria for
surface ordering are found, and the exponents are
calculated as a function of J,. Section V contains
a detailed summary of our results, and our conclu-
sions.

fI()'1 = -618,

and we have assumed" that

(2. 10)

(2. 11)

Differentiating F~ with respect to h yields the "sur-
face" magnetization m„and differentiating with
respect to h, yields the "layer" magnetization'
m1, which has the form

mt(f » hs) =
l
f1'~8gi(l f

I
'h, Ifl '»!) ~ (2. 12)

Then according to the definitions given previously, '
II. GENERAL SURFACE SCALING AND CLUSTER MODEL

em eF
eh eh (2. 13)

A. Scaling relations em1 8 F em,
eh eheh1 eh1 ' (2. 14)

E(n, h, h&, T) = n"f (n "h, n "~h~, n
f
t

f ), (2. 1)

where h is a magnetic field acting on all the spins,
h, is a field acting on the first and nth layers, and

t= [T —T,(n)]/T,-= t+a(n),

f=[T T.( )/T. , -
(2. 2)

(2. 3)

In this section we wish to present a slightly more
general formulation of surface scaling than in I,
and to introduce a number of new exponents and
scaling relations. We will then show that the sur-
face scaling theory follows from a generalized
cluster model, with an additional assumption on the
shape of the clusters. We shall present our results
using Barber's ' generalization of the scaling the-
ory of I. For the moment we confine our attention
to Ising-like models, all of whose properties are
well defined below T,. The modifications required
for isotropic (Heisenberg and spherical) models
will be discussed in Sec. III. We write the singular
part of the free energy (per spin) of a d-dimension-
al system of n (d-1)-dimensional layers as

em1

1 1

we may define the exponents y„y„y11, by

Xx=xgff "~,

X~, =X, )fff "~ &, t-O, h=h~=O,

X, =X,'fff ",
as well as p„p1, 5, , g„and g.,. .

(2. 16)

(2. 16)

m, = m'( t)'~, -
m, = m', (- t)~&,

m -h«6.
S 7

m -h'~'
1 7

hl/51, 1m1 1

t-O, h=h1=0,

t-O, h=h1=0,
h-0', t=h1 —-0
h-0', t=h1 =0

h1 0', t=h=O.

(2. 17}

(2. 18)

(2. 19)

(2. 20)

(2. 21}

(y, =a+8 ', (2.22)

Then the following scaling relations may be proved
in the usual way, from the above equations:

E.(h, f) =
I fl f.(l f1 'h),

E.(h, hi, f)= lfl~"
xf, ( f

f
f h

f
f

f
-&~h )

where

(2.6}

(2. 7)

a(n}=[T,(~) —T,(n)]/T, =bn ', n-~. (2. 4)

From the definition of the bulk and surface ' free
energies, F~ and F„we have

E(n, h, h~, T)=E~(h, t)

+2n E~(h, h&, t)+ ~ ~ ~, n
(2. 6)

From the general scaling ansatz (2. 1), we may
write

y, =y+8

e, =P-8',
2-a -P=2 —a —P =4

P1+y1=P+y =P, +y. =&,

P1~1 = P.~s =~,
Pg(1+ 64 g) = P.( +1~.),
r g(6g, g

—1)= Pi, i(6i —1)

y1, 1+P1 P1 1,1 1 '

The equality of cross derivatives yields

P1+&1=2P1+y1, 1= 2 —&„
P, +6 =2P, +y, =2-a„

(2. 23)

(2. 24)

(2.aS)

(2. 26a)

(2. 26b)

(2. 27}

(2. 28)

(2. 29)

(2. 30a)

(2. 30b)
g = —(2 —a)8 = —(2 —n, )e —1,
y= —68,

(2. 8)

(2 9)
which can be combined with (2. 29) and (2. 26) to
give
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(2. 31}

2-a.,=2-n -8-'=2P, +y, , , (2. 32}

Equation (2. 23) with 8 = v was first obtained by
Watson, 19 and Eqs. (2. 22), (2. 24), and (2. 25) are
contained in Refs. 11 and 20. Equations (2. 29},
(2. 30a), and (2. 32) were derived by the authors in
I, and Eqs. (2. 26a), (2. 30b), and (2. 31}are due to
Barber. The remaining relations, involving P„
6„and 6„are new. Moreover, it is clear that in
principle only the assumption X &1 [Eq. (2. 11)] is
necessary to obtain these relations, and not the
assumption

2yq-y( q -y =0.
Furthermore, from Eqs. (2. 30), (2. 29), and (2. 22)
we get
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FIG. 2. Monte Carlo calcalation of a typical spin con-
figuration for a cross section of 55 x55 x20 Ising film
with two free boundaries, at T=0.63T,. Clusters of
overturned spins are surrounded by a solid line, and it
is clear that these occur more frequently near the free
surfaces.

or

8= v-'

X=v '.

(2. 33a)

(2. 33b)

P=(T -2)la
6=1 o.

(2. 36)

(2. 39)

In the case"

X=1, 8&1, (2. 34)

8 ' is replaced by 1 in Eqs. (2. 22)-(2. 24) and Eq.
(2. 30) does not hold, since the leading term in E,
is independent of h, . ' ' As pointed out by Barber'
this invalidates Eq. (2.32). Such a situation arises
in the spherical model for d» 4, as discussed in
Sec. III C. Thus if in three dimensions the value

Pg 3 is obtained for the Ising model, this consti-
tutes a test of the scaling relations, Eqs. (2. 32}
a.nd (2. 33a).

B. Cluster model

m=1 —2Z Ln, .
L=O

(2. 36)

Inserting Eq. (2. 35) and changing the sum to an

integral we find

me =
I

fl" "'5g,(lfl "&), (2. 37)

which is of the form (2. 12), with

For bulk systems it is possible to "derive" the
scaling relations from a simple cluster picture.
This is done by writing the number of clusters of
l -reversed spins in a field h, as

n, ~ exp]- [al tl I'+hi+1. 1nf]}, (2. 35)

where t is the reduced temperature (we consider
only f & 0), a is a constant, and &r and r are unknown

exponents. The quantity l' represents the mean
surface area of the cluster and the lnl term is a
somewhat ad hoc representation of the main cor-
rections to the "cluster free energy" for large l.
The magnetization of a cluster is proportional to
ln„and the mean magnetization of the whole sys-
tem is

m1=1 —2c Z I 1 1n;,
1=0

(2. 41)

which upon changing to an integral becomes,

m1= lfl "5}I1(lfl"a lfl '1»}, (2. 42}

where

il ( 1 al 1 2)~a1

S' = I/a„
+1 a1 1~a1

(2.43)

(2. 44)

(2. 45)

This expression is again of the scaling form of Eq.
(2. 12), except that the exponent d' is arbitrary,
and not necessarily related to the bulk exponent b, .

When our system has a surface, we expect the
probability of occurrence of clusters to be different
at the surface and in the bulk. This is illustrated
qualitatively in Fig. 2, which represents a typical
spin configuration in a Monte Carlo calculation of
an Ising model with two free surfaces (and periodic
boundary conditions on the other surfaces). When-
ever a group of at least two adjacent spins are
overturned we designate this group as a cluster and
have surrounded it with a solid line. From the
figure it is clear that the clusters are more fre-
quent near the free surfaces than in the bulk. We
shall attempt to incorporate this fact by expressing
the number of surface clusters (i.e. , clusters that
touch the free surface} as

n;~ exp[- [al tl P1+hl+ ch1l'1, 1+7, Inl]}, (2. 40)

where c is a constant. The cluster is assumed to
have l spins in all, of which al'~ are on the surface
of the cluster, and cl'~. ~ intersect the free surface
of the system and interact with the field h„ the ex-
ponent 7,' is a correction analogous to r in the bulk.
The layer magnetization for the surface layer is
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From Eq. (2. 42) we may derive those scaling rela-
tions involving the local exponents P» y„&» yf
and 61 1, namely,

P1~1 P1 +y1 (2. 46)

and Eqs. (2. 28) and (2. 29). If we integrate Eq.
(2. 42) with respect to h, to find F„we obtain in
general an integration constant which is equal to
the surface free energy for h, =0, F,(h, ht=0, t}.
Assuming that this quantity scales with the same
exponents as the full E„we may then derive the
other relations of Sec. IIA, except those involving
the bulk exponents n, P, y, 6, and h. In particular,
Eq. (2. 31}is seen to hold in this case, but Eq.
(2. 32) reads

2 -~, =2P, +y1, 1, (2. 47)

without reference to a. If F,(h, It, = 0, t) has differ-
ent scaling exponents from F,(h, It„ t}, then certain
scaling relations do not hold, as for example in the
four-dimensional spherical model, studied in Sec.
III C.

The assumption that the exponent 4' of Eq. (2. 42)
is different from the bulk exponent 4, means that
o&o, [cf. Eqs. (2. 39) and (2.44)]. In that case the
surface area of a cluster which touches the sample
surface is, even asymptotically, different from
that of a bulk cluster. Although this assumption
yields a possible scaling formulation with surface
exponents unrelated to the bulk exponents, it does
not seem physically realistic. In particular, if the
correlation length in the system is the same in the
bulk and at the surface (as is the case in two di-
mensions and probably also in three dimensions'),
one would expect surface and bulk clusters to have
similar shapes and surface areas, i. e. ,

0' = 0'1 ~

Then

(2. 48)

(2. 49)

and the scaling formulation of Sec. IIA is recov-
ered, provided the integration constant mentioned
above is not anomalous. In that case the entire
difference between surface and bulk clusters can
be taken into account by the logarithmic correc-
tion T,'lnE, and the interaction with the field h1 If
we insert the values of the exponents for the two-
and three-dimensional Ising models into Eq. (2. 45)

number of spins in a surface cluster which touch
the sample surface (-I'~') is of the order of a line
segment in three dimensions, and considerably
less in two dimensions, so that the exponent o1
does not have an obvious geometrical interpreta-
tion.

III. SURFACE EXPONENTS FOR DIFFERENT MODELS

As stated in Sec. I, there is some doubt, both
experimentally4 and theoretically about the scaling
ansatz (2. 7), which leads to the predictio~ Pt =3.
Furthermore, it is of interest to test the sensi-
tivity of the results to the particular model under
consideration and to the method used. We have
therefore performed numerical calculations on both
Ising and Heisenberg models, and have obtained
independent estimates of the magnetization profile
near a free surface.
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FIG. 3. Transition temperatures of Ising films of
thickness L, plotted vs L ", to determine the shift ex-
ponent A,. The different symbols are I, Monte Carlo
studies on hypercubes (Ref. 13); I-, exact calculations for
hypercubes (Ref. 13); 0, series expansions by Allan and
Fisher (beefs. 10 and 11); 0, this work. For small values
of nTJT~ the data approach a straight line which goes
through the origin, indicating that A, = v '.

A. Ising model

We have performed a Monte Carlo study of finite
Ising "films "with periodic boundary conditions on
the four sides, and free boundary conditions on
the other two ends. ' The critical temperature
T,(L) for each value of the thickness I. was deter-
mined by extrapolating the mean magnetization of
the film to zero. The results, for systems of size
55 & 55 &L with L = 2, 3, 5, 10, and 20 are plotted in
Fig. 3, along with the series results of Allan and
Fisher, ' "and theprevious results'3 by one of us on
hypercubes with six free boundaries [in the last
case L is the effective thickness of the hypercube
(see Ref. 13)]. It is seen that for small enough
values of d. T/T the results are consistent with the
value X = v ' [Eq. (2.33)], but there is a substantial
deviation for larger n, T/T, which led to the original
observation" that ~"'= 1 for hypercubes with
2~ L~ 12. That this last result is probably due to
the nonasymptotic character of the data is seen by
replotting the same information in Fig. 4, as
[T,(~) —T,(L)]/T, (L) vs L ' ", which leads to a.
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FIG. 4. Same data as in Fig. 3, but plotted as [T~(~)
—T~(L))/T~(L), rather than [T~(~) —T~ (L))/T~(L). The
fit of the hypercubes and thinnest films to a straight line
going through the origin is much better than in Fig. 3,
indicating at the least that some of the data are not in the
asymptotic region.

2.5 3,0 3.5
KI T/J

4.0

FIG. 6. Monte Carlo results for the magnetization of
the Ising model as a function of temperature for different
layers. The curve marked d = —0.5, corresponding to a
weakened surface exchange, is consistent with an effec-
tive exponent pf ~1 over a considerable temperature
range, even though there is a crossover to a lower value
of p& very near T~.

much better fit. Although the improved agreement
with the relation X = v ' is only suggestive, it does
show that the apparent violation of this relation for
hypercubes was probably due to the nonasymptotic
nature of the n. T/T data. We note the agreement
between the Monte Carlo and series results on
films, and we conclude that the present data on
thicker films lend further support to the scaling
conjecture"' ' 4 X = v ' = 1.5. In particular, the

LOO—

BULK

0.75

alternative conjectures of Fisher and Ferdinand20
and of Domb, that X& v ', have no basis in the
present data.

Our numerical calculations also yield informa-
tion on the spatial distribution of the spontaneous
magnetization in Ising films, and on its tempera-
ture dependence. Figure 5 shows, as an example,
the magnetization profile for (T, —T}/T, =0. 147, in
films of different thicknesses. Except for the thin-
nest film (L = 5}, the magnetization reaches its
bulk value in the middle, so that these films are
adequate for a study of the semi-infinite system,
at least for T not too near T~. The "bulk" magne-
tizations agree with each other for the various
film thicknesses, and with the Pade approximants
of Baker, ' thus providing a check on the numerical

I
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0.25— 1 ——~ 0, 147T
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c 0'3
E
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0 0.1

FIG. 5. Monte Carlo calculation of the magnetization
of Ising films as a function of position for different thick-
nesses L. For all but the thinnest film the magnetization
reaches its bulk value (for that temperature) at the center,
denoted by a dashed line. Thus the film results are ap-
propriate for a semi-infinite system as well. The open
circles show the effect of a weakened surface exchange
on the magnetization [g~ = J(1+n }= $Z}.

0.06 I I s I s a s s I I I i I ~ ~ ~ ~

0.01 0,02 Q03 0.05 0.10 0.20 0.30 0.50 1.00
(T/ Tc I

FIG. 7. Same data as in Fig. 6, plotted on a log-log
scale, displaying the exponent P& = p. For 4= —0.5 the
exponent is P+& = 0.86, with T, fixed at its bulk value, but
if T, is allowed to vary, then a slightly higher p~ gives a
better fit.
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FIG. 8. Surface magnetization [defined in Eq. (3.1)],
for Ising films, as a function of temperature Oeft-hand
scale), compared with the scaling prediction P~=-0.33.
The scaling theory is tested directly by comparing m~/m&
with the bulk correlation length ( on the upper curve
(right-hand scale). The data have been multiplied by the
function e &, which is regular near T~ but is con-
structed to cancel out some of the low-temperature cor-

rectionss.

methods. The temperature dependence of the
magnetization is shown in Fig. 6, on a linear scale,
for the first and second layers, with subsequent
layers omitted, but approaching the bulk value uni-
formly. (The curves in Figs. 5-7 labeled 4 = —0. 5

will be discussed in Sec. IV D. ) The same results
as in Fig. 6 are plotted on a log-log scale in Fig.
7, where the exponent P, = 0. 66 is shown for the
first layer, in the reduced temperature region
10 2~ 1 —T/T, ~ 2X10 '. This exponent agrees
remarkably well with the scaling prediction P, = 0.64
+0. 08 given in Eq. (6. 14) of I. The exponent Pa

for the second layer is also consistent with the
value 0. 66, but the magnetization breaks away
from its asymptotic dependence, in a typical cross-
over toward the bulk behavior. The effect is of
course stronger for the layers which are further
from the surface.

It is also possible to compute the surface mag-
netization,

with the scaling estimate IEqs. (2. 24) and (2. 33)j
p, = p —v = —3. A more direct test of scaling is ob-
tained by showing that m, /m, is proportional to the
bulk correlation length (. Since, however, for
T-0 m -1 —2e ' ~+~ and m -1 —2e "~ we5 1

have multiplied m, /m~ by the term e'0 ~~sr which
is regular near T„but which is designed to remove
the largest correction terms to the asymptotic be-
havior. The resulting plot is also shown in Fig. 8,
and the agreement with the bulk correlation length
exponent is reasonably good, within the rather
large errors of the data, . This plot also verifies,
at least approximately, the exponential spatial de-
pendence of the magnetization, with characteristic
length $.

Finally, we show in Fig. 9 the ratios for the
high-temperature-series expansion' of the layer
susceptibilities X» X2, X3, and the bulk suscepti-
bility X„ to illustrate the crossover from surface
to bulk behavior. It is clear from this graph that
the apparent exponent for p„say, cannot be the
correct one, since a straight line through the last
four points would intersect the ordinate at a com-
pletely incorrect value of T,. We expect the points
for y, to merge with those for X„but this occurs
for l values which are larger than those we calcu-
late, corresponding to a crossover temperature
close to T,.

Let us conclude this section by summarizing the
available information on the surface exponents for
the three-dimensional Ising model. The value y,
= 8 calculated in I, used in conjunction with the
scaling relation p, +y, = p+y, with P=~16 and y=+4
yields p, =16, whereas the value y, , =O of I, used
with Eqs. (2. 32) and (2. 33a) gives P, = 0.62 with
0. = 8, v= 0. 64. These estimates, with error bars
+0. 1 are fully consistent with the Monte Carlo

5.5

5.0
Al

O

O

4.5—

(3 1)

using the relation'
L

m, =lim —Z (m, —m„).
n=1

(3.2)

The temperature dependence of m, is shown in
Fig. 8, and its exponent P, is seen to be consistent

4.0—
I

0.'1
I

0.2
1

4gtE-1)

I

0.3
I

0.4

FIG. 9. Ratio plot of the high-temperature-series ex-
pansion for the layer susceptibility X„, showing the cross-
over from bulk to surface behavior
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value P, =0.66 of Fig. 7 for the simple cubic lat-
tice, but inconsistent with Barber's preliminary
estimate from a low-temperature series P~ = 1
+0. 12. More recently, Barber has obtained P~
= 0. 72 + 0. 03 for the fcc lattice, which overlaps the
scaling and Monte Carlo results. It must be
remembered, however, that even for the bulk, low
temperature series are often quite unreliable,
since they show seemingly spurious lattice depen-
dences, "so the quoted errors' seem to us rather
optimistic. Using the values P~=0. 64, n =8, and
v = 0.64 in Eq. (2. 30a}we obtain &

~
= 0. 6, and y~,

l= —0. 04. On the other hand, the value b, = ~ con-
jectured by Barber and Fisher, ' yields P, =0.735
and y, , = -0.235. This latter value seems unlikely
to us, since it is difficult to reconcile with the di-
rect series evaluation of y, , given in I. Thus at
the present time we are inclined to prefer the
values 4, =5 —,

' and p, =3, to the choice 4, =~, p&

= 0. 72, suggested by Barber and Fisher. '
Having checked that the scaling ideas put forward

in I are reasonably consistent with the numerical
data, we now turn to a study of the Heisenberg
model, to see whether there might be noticeable
deviations in this case.

B. Heisenberg model

6m„= m„—m, = SZ cos(2k n) n(A„-), (3.3)

where k is a three-dimensional vector appropriate
to the geometry of the sample, Qg is the spin-wave
frequency, and n(As) = [exp(RA~/ksT —I] ~ is the
occupation number. The bulk magnetization is
given by

Although we expect the bulk exponents for a
Heisenberg model to be close to those of the Ising
model, there are known to be differences between
the two systems, and it is possible that these dif-
ferences are magnified in the surface properties.
For instance, it is possible that the scaling rela-
tion X= v [Eqs. (2. 33)] is violated in the Heisen-
berg system, and that P, is quite different from
3 thus explaining the expe rime ntal result refer red
to earlier. Moreover, at low temperatures, the
existence of spin waves in the Heisenberg case
strongly influences the thermodynamic properties,
both in the bulk and near the surface. We have
carried out Monte Carlo calculations to study some
of these questions, and have found that the critical
behavior is not severely modified, and that the
low-temperature behavior is accurately described
by spin-wave theory. Before discussing the nu-
merical results we shall briefly review the spin-
wave theory for finite and semi-infinite systems.

According to Mills and Maradudin' the deviation
of the magnetization in the nth layer from its bulk
value is given by

m, =S-SZn(A, ).
p7

(3.4)

Taking the classical limit, S-O, S-, SS-const.
and normalizing the magnetization to unity at T= 0,
we obtain n(A) ~ T/A, and

m„- m~ gf cos(2k, n}C@'

1 —m~
(3.6)

The sums are over the Brillouin zone —m ~ k, ~
m,

in intervals of L, , where L, is the ith dimension,
and for a simple cubic lattice with unit lattice con-
stant we take

Ay=A(3 —cosk„—cosk„—cosk,), (3 6)

where A is a constant. For n-~, and L, -~, we
may convert the sums to integrals and we find

m„- m~
n

1 —m~
(3. 7)

with a coefficient independent of temperature. A

more detailed evaluation of the spin-wave result
will be described below, with reference to the spe-
cific system considered in our numerical calcula-
tions. It is interesting to note that Eq. (3.7) pre-
dicts a logarithmically divergent surface magneti-
zation m„according to Eq. (3. 2), so that the ex-
pansion in Eq. (2. 5}does not seem to exist in the
Heisenberg model in zero field below T . The
modifications required in the scaling theory of Sec.
IIA will be discussed below with reference to the
spherical model.

Our system was a cube of 16~ 16& 16 spins, with
periodic boundary conditions on the four sides, a
free boundary on one end, and "effective-field"
boundary conditions on the other end. As shown
in previous work by Muller-Krumbhaar and
Binder, ' ' this boundary condition simulates bulk
behavior, thus effectively making the system into
a semi-infinite cylinder with a 16&&16 cross sec-
tion. The appropriate values for the effective field
were taken from the results of Ref. 30. In Fig.
10, we show a typical cut through the system at a
temperature T = 0. 77T,. The arrows are the pro-
jections of the magnetization in the y-z plane, both
in direction and magnitude (in this classical system
all spins have unit length). The average magneti-
zation is assumed to point in the y direction. It
is clear from the figure that near the free boundary
the order has been considerably decreased, in
comparison to its value at the other end of the sam-
ple, where the magnetization has its bulk value.
This effect is shown quantitatively in Fig. 11, which
is a plot of the average magnetization (m(n) }
= m„(n), as a function of the distance n —= z+ I from
the free surface, for different temperatures. As
the temperature is raised toward T the effect of
the free surface extends further and further into
the bulk, and even at low temperatures the mag-
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FIG. 10. Monte Carlo results for the cross section in

the y-z plane of a 16 x16 x16 classical Heisenberg spin
system at T = 0.77T„with a free boundary at z = 0, an
"effective-field boundary" simulating bulk behavior at
z =16 (see Ref. 30), and periodic boundary conditions on
the other faces. The arrows at each site denote the y-z
projection of the (unit) spin vector. The average magne-
tization points in the y direction, but its magnitude is
clearly smaller near the free surface.
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FIG. 11. Monte Carlo data for the magnetization pro-
file in the Heisenberg system shown in Fig. 10 for various
temperatures. The effective-field boundary condition at
g = 16 forces the magnetization to its bulk value, thus
leading to unphysical behavior for T near T, and & &12.
(The dashed lines represent the bulk calculations of Refs.
30 and 31). The number of configurations used is also
shown, in units of Monte Carlo steps per spin pal-B.

FIG. 12. Data of Fig. 11 are plotted again in a reduced
form, to compare with the spin-wave theory given in Eq.
(3.5). The agreement is seen to be well within the scatter
of the numerical data, at least for T/T~& 0.6.

netization does not reach its bulk value exponen-
tially, as in the Ising model in Fig. 6, but rather
according to a power law. Such a power law be-
havior is also expected for the analogous case of
superfluid helium, thus invalidating the phenome-
nological theories, ' even away from T,. As men-
tioned earlier, the effective-field boundary condi-
tion forces the magnetization to have its bulk value
at the 16th layer, so that at high temperatures the
finiteness of the system leads to an artificially
rapid variation of m for n «12. The dashed lines
in Fig. 11 represent the bulk values obtained from
earlier Monte Carlo calculations, ' '" and the solid
lines represent the expected behavior for a semi-
infinite system.

In order to make a quantitative comparison of the
data of Fig. 11 with the spin-wave theory, ' we
have evaluated Eq. (3.5) for a system of size 16
X16&&~, which is periodic in the finite cross sec-
tion, namely, we took finite sums over k„and
k, [k„,=j v/16, j= 1, ... , 16], and performed an
integral over k . The results are shown in Fig.
12, where [1 —m„]/[1 —m, ] is plotted versus the
distance n. It is seen that the temperature inde-
pendence of this quantity predicted in Eq. (3.5) is
quite well verified up to T= 0. 7T„within the ac-
curacy of the numerical data, and the quantitative
agreement with Eq. (3.5) is excellent. Only the
points at n=1 and 1 —T/T, =0.306 and 0.424 are
outside the scatter in the data, and there finite-
temperature corrections to spin-wave theory un-
doubtedly come into play. The spatial dependence
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FIG. 13. Data of Fig. 11 are plotted on a log-log plot
to show the 1/n dependence predicted by the spin-wave
theory. Most of the points corresponding to large n have
been omitted, since they are strongly perturbed by the
finite size of the system. The solid line drawn through
the data at 1 —T/T, = 0. 09 is intended to illustrate this
effect, and has no theoretical significance.

1.00

is shown again in Fig. 13, in a log-log plot of
(m~ —m„)/m~ vs n, which shows the 1/n behavior
of Eq. (3.7}, for large n, at various temperatures.
We have omitted the low-temperature data since
the magnitude of (m~ —m„)/m~ is quite small and
the errors in the calculation are relatively large, '

we have also omitted most points for n~ 12, where
the effective-field boundary condition has a strong
perturbing effect (an example is given for the data
at T= 091T, .}Finally, in Fig. 14 we show the
layer magnetizations m, and m~ as a function of
temperature on a log-log plot. The behavior is
quite similar to that of the Ising model (Fig. 7},
with a slightly higher value of P, (=0.75+0. 1}, and
fewer points close to T,. In the temperature re-
gion 0. 03 & (T, —T)/T, & 0. 15, however, which is
the one studied in the low-energy-electron-diffrac-
tion (LEED) experiment, 4 it is possible to exclude
the value pe1" = 1 for the Heisenberg model. Thus
we can surmize that the surface exponents of the
Heisenberg model are close to those of the Ising
model, and we must look elsewhere for an ex-
planation of the data. Before turning to our study
of modifications of exchange constants at the sur-
face, we briefly review the available information
on the spherical model.

C. Spherical model

The bulk properties of this model are anomalous
below T„due to the divergence of the suscepti-
bility as h 0, in three dimensions, and diver-
gences in higher derivatives for d~ 4. Thus there
is an essential asymmetry between T & T and
T& T . Strictly speaking, of course, the scaling
functions for Ising-like models discussed in Sec.
II are also not functions of I tl, i.e. , they may be
different for t &0 and t& 0. We have suppressed

1
y1, 1

—2y

y1 2 1 2
(3. 10)
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FIG. 14. Layer magnetization in the Heisenberg model
as obtained from Fig. 11 on a log-log plot vs reduced
temperature. The T~ value used is that of Ritchie and
Fisher (Ref. 29), J/k~ T,= 0.3458.

this difference, however, since it does not affect
the exponents, which are expected to be symmetric.
For the spherical model, on the other hand, the
asymmetry is significant, and one must introduce
scaling functions which depend on the sign of t
[e.g. , in Eqs. (2. 1}-(2.7} different functions f',
ff, f; for f&0and t&0, respectively]. Inparticu-
lar, for d = 3, the exponents y, y» y» n, and n,
are only defined above T„and the exponent P, does
not exist. Otherwise, this model has X = v ' = 1,
and the homogeneity postulate (2. 7) holds away
from the coexistence eumble (h=0, t& 0}, with dif-
ferent functions f; for t &0 and t& 0, respectively.
The critical exponents follow from the scaling rela-
tions of Sec. IIA (except those relations involving

P,), with a = —1, b =-,', and ~, = ~ (see Table I).
For d~ 4, there is another anomaly ' ' in the

spherical model, namely, that X = 1 and v ' = 2. The
other bulk exponents have their mean-field value
(apart from logarithmic corrections for d=4, which
we neglect), i.e. , a=0, b, = —', . Thus

F.(» h, f) = If lf: (h/Ifl")
+

I
fI'~f':(8/I f I", h /I fI"), (3. 8)

and the s-subscripted exponents, coming from the
first term, behave anomalously. They are

o, =l, y, =2, 6, = —3, P, =-p. (3.9)

It must be emphasized that just as for d= 3, these
exponents may be undefined for t& 0, depending on
the precise behavior of the function f„as its argu-
ment goes to 0. We have not studied this function
in detail, but we note that P„ in particular, may
not exist for certain values of d. The other expo-
nents are easy to find from Eq. (3.8), namely,
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TABLE I. Spherical model. 'g
((

= 2 = 'gg + 2 . (3. 16)

d&4 These exponents satisfy the scaling law [cf. Eq.
(5. 27) of I]

for both d =3 and d~ 4. The spherical-model ex-
ponents are summarized in Table I.

The Heisenberg model is expected to behave
similarly to the spherical model, namely, to satisfy
a homogeneity postulate, with singularities on the
coexistence curve. One consequence is the non-
existence of a surface magnetization, for h = 0, as
already noted on the basis of spin-wave theory in
Sec. IIIB.

'yf 1

Not defined.

These exponents satisfy the scaling relations
(2. 28}, (2. 29}, and

(3.11)

but the equations relating s-subscripted exponents
with others do not hold [e.g. , (2.27), (2. 30a),
(2. 32)].

When P, is defined we have in addition the rela-
tions

(2 —n, ) = P,(5, + 1)= y, + 2P, . (3. 12}

C,(z) ~z' ',
from which'

gq —1-g~+1,

and for parallel correlations,

C„(p) ~p ",
which implies

(3. 13)

(3. 14)

(3. 15)

The above values of y, and y» were quoted pre-
viously by Barber, and a.„y„and 6, were calcu-
lated by Watson [he denoted them as n(0), r(0),
and 5(0), respectively].

The correlation exponents may be easily calcu-
lated from the pair correlation function given in

Eq. (81) of Watson's review. " We find for per-
pendicular correlations at T,

IV. ISING MODEL WITH MODIFIED SURFACE EXCHANGE

Let us consider a semi-infinite Ising model with
exchange interaction J between all nearest neigh-
bors, excePt for spins in the surface layer, whose
interaction is J, = J(1+4) (the interaction between
a surface spin and an interior spin is assumed to
be J). Clearly, for very large values of d, the
surface behaves like a (d —1)-dimensional Ising
model and the bulk can be neglected, i.e. , the
two-dimensional surface will order (d = 3), but not
the one-dimensional surface (d=2). For J, = J, the
surface orders when the bulk does, and it is rea-
sonable to assume that for d = 3 there exists a criti-
cal value O'„=J(1+4,), above which the surface
will order at a temperature T,(d, ) which is higher
than the bulk transition temperature T,~(J). We
shall first study this problem using the mean-field
theory.

A. Mean-Geld theory

According to the phenomenological theory dis-
cussed in Refs. 1 and 24 the existence of surface
ordering depends on the sign of the extrapolation
length &, which is one of the parameters of the
theory. A positive extrapolation length corresponds
to b & b,„whereas X & 0 implies 4 & b, . The tem-
perature and spatial dependence of the magnetiza-
tion for various values of X were discussed in Refs.
1 and 24. In particular, for the case where the
surface orders while the bulk is paramagnetic, the
magnetization decays exponentially into the bulk,
with a characteristic length equal to the bulk cor-
relation length. As noted by Mills, this is not the
situation envisaged by Sukiennicki and Wojtczak,
so that their discussion cannot be used to rule out
a state with surface ordering.

For our nearest-neighbor Ising model, the pa-
rameters T and & may be expressed in terms of
the microscopic Hamiltonian, following the method
of Mills. The critical value 4,, = 4 for surface
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ordering and the extrapolation length X = (1 —44) '
were found by Mills' and written in Sec. IIB 2 of I.
In Appendix A we solve the mean-field equations
more completely, and derive the transition tem-
perature T,(4) and the susceptibility exponents.
The results for the simple cubic lattice in three
dimensions are

T&(6) = T. o
——6J,

1
yg —2 p

1
y1, 1

b, & 4,'
1

(4. la)

T~(h) = T~(168 + 166 + I}/24k,
(4. 1b)

T.(r)=T

y~=1,
1

y1, 1 2y

(4. 1c)

These results are depicted in Fig. 15. The sudden
change from "surface exponents" for b & 4 to bulk
two-dimensional exponents for b, &4 is expected to
lead to crossover effects, as explained in detail
below.

In the case of antiferromagnetic surface exchange
(J, & 0) the surface layer behaves roughly like an
Ising antiferromagent in a (temperature-dependent)
field. At T = 0 this field is uniform and equal to
J, and the system makes a first-order transition
from an antiferromagnetically ordered state
(m~=0), for J& z, l J, l, to a ferromagnetically or
dered state for J & z, I J, I (z, is the number of near-
est neighbors in the surface layer). At finite tem-
peratures the transition on the surface becomes
second order, in both the high- and low-tempera-
ture domains (T~ T„and T-o, respectively). We
have not solved the mean-field equation for inter-
mediate temperatures (see Appendix B and Fig. 16).

When Mills first calculated' the value of h„he
expressed reservations about the validity of mean-
field theory, since it completely neglects fluctua-
tions. In an effort to clarify the situation we shall
first discuss the exact solution of Au-Yang~ in two
dimensions, and then present series expansion
results in three dimensions.

B. Exact result ford=2

The work of McCoy and Wu has been generalized
by Au-Yang to the case of arbitrary J, = J(1+4).
Since the one-dimensional layer cannot order by
itself, the transition temperature is independent of

Moreover, the surface exponents were also
found by Au-Yang to be independent of 4, with only
the coefficients being functions of 4. Au-Yang cal-
culated the layer magnetization as a function of 6
and T. At T=O the surface behaves like a one-di-

mensional Ising antiferromagnet in a field J, caused
by the aligned spins in the second layer. This
system shows a first-order transition from an anti-
ferromagnet to a ferromagnet with a total magneti-
zation given by

m, =o,

m, = I/&6,

mf 1

T=o, J&2IJ I, J, 0

T=o, z=2IJ.
I

T=O,

(4. 2a}

(4. 2b)

(4. 2c}

EtIuations (4. 2a} and (4. 2c} are the same as those
found at T =0 in molecular field theory above. At
finite temperatures there are deviations of order
e '~ ~~, but no antiferromagnetic order in the one-
dimensional surface, unlike the prediction of mean-
field theory. The full temperature and b, depen-
dence of m, is shown in Fig. 4 of Ref. 9. In three
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FIG. 15. (a) Transition temperature for the surface
of an Ising model with exchange J,= J(1+6), calculated
in mean-field theory and plotted vs 6 (J is the bulk ex-
change). For A&A~= 4 the surface orders at the bulk
transition temperature, whereas for b, & b~ the transition
in the surface occurs at a higher temperature T~(A) & T~&.
For very large A, T~(A) becomes asymptotic to the two-
dimensional transition temperature of the surface T~
=4 J~=4J(1+4), denoted by the dot-dashed line. (b)
Critical exponents y& and y& &

for the layer susceptibilities,
plotted as a function of A, shown as heavy lines. A sharp
crossover occurs at Ll= , which is reflected in contin-
uously varying effective exponents obtained from series
expansions (ratio), or from fits to the susceptibilities
over a finite temperature range Jog-log). At &=&~, y~
=& and Vg, g =k.
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FIG. 16. A "phase diagram" comparable to that in
Fig. 15a, but extended to negative values of J~, calcu-
lated in mean-field theory. The nature of the surface
and bulk order is indicated in each region by the symbols
P for paramagnetic, F for ferromagnetic, and A and A
for antiferromagnetic, preceeded by the symbols B for
bulk and S for surface. In the state A the surface spins
have both a finite total magnetization and a finite stag-
gered magnetization. Full curves denote second-order
transitions, and the dot-dashed curve is the conjectured
form of the transition line, obtained by a smooth extra-
polation between the high- and low-temperature solutions
(see Appendix B).

In an effort to determine the properties of a two-
dimensional surface, we have carried out series
expansions analogous to those in I, but for arbitrary
values of J, = J(1+n ). The correlation functions
are represented in the form

C(r', r'+r, t) = v™dZ c,(r, r', k, ) v',
l

(4. 3)

dimensions and for T &0, it is expectedthat the sys-
tem will follow the mean-field behavior more closely,
since in contrast to the two-dimensional case, the
surface can order independently of the bulk.

C. Series results for three dimensions

where v =tanh(2J/ksT). It is to be noticed that c...
(which occurs only if both rand r' are on the surface)
is a coefficient of the two-dimensional Ising model,
thus providing a welcome check on the calculation.
The susceptibilities are then calculated just as in
I. The values of the expansion coefficients of X„
y, „and )(, are given in Tables II-V for d = 3 (X,
coefficients are also listed for d=2). The ratio
plots for X, (d= 3) for dUferent values of d are
shown in Figs. 17 and 18. From the intercept at
I/I - 0 we see that T, is unchanged for n & h„where
we may estimate

4~ = 0. 6 + 0. 1, (4. 5)

and T,(h) rises for 4 &&, [Fig. 18(a)j.
A different plot of T, vs 4 is given in Fig. 19,

as an illustration of the similarity of the series and
mean-field results. ' From the slopes of the ratio
plots we find an exponent y, which seems to vary
continuously with 4 for b & h„until it reaches the
two-dimensional value y =4 and then remains inde-
pendent of 4 for 4 &4,. A similar result is fotund
for the exponent y» of X, & &. These continuously
varying exponents, denoted as "effective exponents"
are plotted in Fig. 20(b). In a,ctual fact we believe
them to be artifacts of our relatively short series
(for reasons discussed below), and we believe that
the true exponents experience a finite jump just as
in the mean-field theory. Since, however, we wish
to assert that our series are accurate enough to
determine T,(d ), and in particular 4, reliably, we
must examine our extrapolation procedures rather
critically. Our conclusion will be that Eq. (4. 5)
gives a realistic estimate of the value of h„even
though for d ~ 4, the exponent is badly in error.
Moreover, the series for b, = 0 are better behaved
than for 4 finite, so that the exponents calculated

TABLE II. Series-expansion coefficients for the layer susceptibility X&..
00

r~=ga&(A)v~; a&(41= pa&
l*o m=o

Table of g& m

1
5

21
93

409
1837
8209

36 969
166 041

4
28

152
736

3508
16 396
76 608

354 900

12
120
768

4256
21 848

108 936
531 954

36
436

3340
20 692

116304
617 584

100
1480

12 980
90 392

522 656

276
4716

47 232
363 552

740
14544

162 384
1972

43 348 5172
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E/m

TABLE III. Ising 3d: Series-expansion coefficients for the surface susceptibility X

00

x, = gc((cL)v', c, (n,) = —
g c, ~n

t~o ms=0

Table of c&,

-1
—1

—10
-71

—440
-2553

—14 126
—76 071

—399 868

4
32

200
1104
5872

30 080
151856
752 200

12
132
948

5876
33 424

182 352
962 724

36
472

3956
26 952

165 912
957 704

100
1580

14960
112872
747 862

276
4992

53 328
440 644

740
15284

180 810
1972

45 320 5172

in I are expected to remain within the error limits
quoted there (+0.1).

The inaccuracy of the exponent value for b & b,
(but 6 0 0), may be seen from Fig. 17 (for 6 = 0. 2,
say) by noticing that a straight line through the
ratio points intersects the ordinate axis at a point
corresponding to a temperature helot T,~. This
result is clearly incorrect, since the interactions
are entirely ferromagnetic and we must have T (6)
~ T,(0) for n &0. The expected behavior in this
range is for the points to follow the straight-line
extrapolation until they reach the curve for b = 0,
and then to "change over" to the dependence corre-
sponding to the exponent y, (d = 0). For b =6,
=0.6, the straight-line extrapolation comes into

T, ~ and the effective exponent is f, corresponding
to bulk two-dimensional behavior, and thereafter
the effective exponent does not change, but the T,
value increases. For 4 &b, we expect no change-
over, and the effective exponent is the real one
[see Fig. 20(b)]. In determining h„we have as-
sumed that for 4 &4„T,depends linearly on

(b, -6,), whereas in general T,(b, ) may have a

more complicated dependence (in mean-field theory
it is quadratic) thus leading to a slightly different
value of 6,. Our ignorance of this dependence is
reflected in the error estimate quoted in Eq. (4.5).

A different method of data analysis is to calcu-
late X,(T) from the series by Padd approximants,
as shown on a log-log plot in Fig. 21. For 6, = 0.2,
for instance, there is a clear changeover from a
y', f' = 1.5 for n, T/T, &4X10, to a smaller exponent
for n, T/T, & 4&10 '. This latter exponent is not
equal to the expected true exponent, because the
Pads approximation is based on a small number of
terms in the series, but it appears reasonable that
with more terms the function would eventually
curve over to a behavior characterized by y& =0.9.
For 4 = —0. 6 the effective exponent is less than
0. 9, and the curvature goes in the other direction,
whereas for b, =0 there is no perceptible curvature
in the plot. The same is true for 4 &0. 6, thus
leading to the conclusion that the effective exponents
for 6, = 0 and 6, &4, = 0. 6 are the true ones, and the
others are strongly affected by the changeover.
The effective exponents y;" from both Pads and

TABLE IV. Ising 3d: Series-expansion coefficients for the local susceptibility X f f.
00 L

yen(n)v1. ctt(n) g cit nm

1=0 fe=o

Table of a&'~

1
4

12
40

136
516

1968
7904

31484

24
108
424

1684
6704

27 700
114936

12
108
600

2864
12 648
55 324

240 416

36
400

2760
15 176
75 724

357 968

100
1380

11100
70 292

387 992

276
4440

41 412
293 736

740
13804

144816
1972

41 376 5172

~Note that this entry was incorrectly given in Table VII of I.
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TABLE V. Ising 2d: Series expansion coefficients for the layer susceptibility X&..

x(= (a)iA)v; ag(n) = g ag ~D
l=0 m=0

Table of a) ~

9 10

0
1
2
3
4
5
6
7
8
9

10

1
3
7

19
49

127
321
813

2041
5117

12 063

2
6

16
44

114
304
808

1994
5032

12 658

2

8 2
24 10
66 34

188 102
522 269

1292 784
3306 2064
8454 5390

2

12 2
46 14

148 60
436 208

1216 644
3284 1860

2
16 2
76 18

284 94
928 378

2
20 2

114 22 2

ratio methods are shown in Fig. 20(b). The dis-
crepancy between these determinations (=0. 07),
even for b, = 0, is a measure of the inaccuracy of
our knowledge of the true exponent. For y», only
the ratio method was employed, and the result is
also shown in Fig. 20(b).

As a test of these ideas, we have carried out a
similar analysis of the mean-field expression for
X, given in Eq. (A10} of Appendix A. Figure 22 is
a log-log plot of X„which shows the change in ef-
fective exponent as 6 increases toward b,,= ~, and
considerable curvature in the lines between b = 0
and 4 =&, (since we are using the correct mean-
field expression rather than a Pade approximant
as in Fig. 21, the changeover is to the tme ex-
ponent close to T,). In Fig. 23 a ratio plot is
given for eight terms of the high-temperature-
series expansion of x, [Eq. (A10)]. The linear
extrapolations again cross the axis helot' the bulk
T, showing that the effective exponents are not the
true ones. In this case, even for 4 = 0, the expo-
nent and the T, are incorrect, corresponding to
deviations from the asymptotic behavior at iT/T
=5x10 in the 4=0 curve of Fig. 22. As 6 ap-
proaches 4, the extrapolated T, and the effective
exponent come closer to the true ones. The depen-
dence of y on 6 in mean-field theory is shown in
Fig. 15(b).

From the phenomenological theory of Refs. 1, 3,
and 24, we may see that for b =b, the effect of
the surface on the magnetization disappears, i.e. ,
the magnetization is a constant throughout the sys-
tem [dm(z}/dz=0, for z=0]. It is clear that the
same will be approximately true in the real sys-
tem. More precisely, it is l, ikely that the average
magnetization m (integrated over z) just becomes
equal to m~ when b, = 4, and that m is larger than
m~ for 4 &4„and smaller for 4& 6,. From Eq.
(3. 2) it follows that the surface magnetization m,
vanishes at b, =d, .

The surface susceptibility X~ has a particularly
strange behavior as a function of 4. For b, ~ b, ,
we have

with T,(a) &7+~ for 6 &6,. Thus we have

y =y~",

(4. 6)

(4. 7a}

(4. 7b)

5.2—
=0.4

5.0—

N

4. 8—
O

O

4, 6 g y =1.05

= 0.3

= 0.2

p =O. l

4.4—

l

O. i 0,2 0.4

FIG. 17. Ratio plot for the high-temperature-series
expansion of X&, for different values of the surface ex-
change J,= J(1+4). The series for D&0 are seen to be
unreliable since they extrapolate to a T~ value below the
bulk (e.g. , for d =0.2).

whereas for 6 & b„ the usual surface scaling ap-
plies [cf. Eqs. (2. 23} and (2. 33a)]

(4. 7c)

The high-temperature-series expansion will be
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g6- 7/4
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=0,8

g=p. (o)

4
0

I

0.1

y =7/8
a I

I

0.2
I

0.3

5=0
I

0.4

3
0 05 hc

I

1.0

1

4R(S-1 )

FIG. 18. Continuation of the plots in Fig. 17 for higher
values of ~. The plots are quite linear, and lead to
higher T~ values than the bulk for»b~ = 0.6, whereas
the exponent remains at the bulk two-dimensional value

—7'y= 4'

particularly ill behaved, since the sign of X, changes
at b =b„corresponding to the change in sign of m,
referred to above. Since X, always starts from
unity at high temperatures, and its absolute mag-

0.5—

ef& PAOr
RATIO

/
y

i

RaT&O

0 I

l I

—0.5 0 05 LLG

y ~y *y *7/4
b

(b)

I

1.0

FIG. 20. An analogous plot to that in Fig. 15, except,
using the high-temperature series results. The critical
value of D is seen to be A~= 0.6. The crossover of ex-
ponents is again accompanied by effective exponents
which vary continuously with 4.

0.4—

nitude diverges at T„ its behavior will be as shown
schematically in Fig. 24(a). When a finite number
of terms are used in the high-temperature series,
the effective coefficient of the divergence, y, ,
changes sign at a value 6& b, and the effective ex-

0.3—

C
D

(2d)MF

0.2—

(3d )MF

0.1—

0
10

(~c- ~)«c
10 ' 100

0
0 0.1

l

0.2
tanh—J

ksT

I

0.3

FIG. 19. Surface ordering temperatures of Figs. 15
and 17 replotted as tanhJ(1+4)/k&T vs tanh J/k&T, show-

ing the similarity of the mean-field and series results.

FIG. 21. Log-log plot of the (3, 4) Pads' approximants
to some of the series in Fig. 19, plotted vs (y~-v)/p~
(v = tanh2J/k~T) showing the curvature associated with
the crossover. The curve for 6=0 has no curvature,
and is presumed to yield the true exponent j q. The (4, 3)
Pads approximants yield identical results.
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x,
10

1O4
1 —(TC T

I

10

ponents are quite meaningless near that value.
These effective exponents, as derived from our
series, are shown in Fig. 24(b), along with the
"true" exponents of Eq. (4. 7). It is seen that in
the range 0& b & 6, the behavior of the series is
quite anomalous, whereas for 5» rh,, the usual
crossover behavior occurs.

FIG. 22. Log-log plot of the layer susceptibility X f in
mean-field theory, vs temperature for different values of
4, showing the change of apparent exponent as d -.

ordering at the surface). The temperature depen-
dence of the layer magnetization m, in this case is
shown in Figs. 6 and 7. On the log-log plot of Fig.
7, with the T, fixed at its bulk value, the effective
exponent over the range 0. 03» r T/T» 0. 2 is P,
=0.86, but the linear plot in Fig. 6 shows that when

T, is not known (as is the case in experimental
situations), an exponent of P, = I fits the data quite
well up to ET/T, =0.03. The experiments of
Wolfram et al. ~ covered roughly the temperature
range of the data in Fig. 6, so that a weakened
surface exchange (J, = 0. 5J) is a possible explana-
tion of their data. We expect of course that closer
to T, the exponent will change over to its scaling
value P, =~~.

V. CONCLUSION

We conclude by stating the principal results of
this investigation.

(i) The surface scaling theory ~ has been further

D. Monte Carlo calculations for three dimensions

In an effort to simulate more realistic experi-
mental situations, and to test the sensitivity of
our Monte Carlo calculations to the parameter 6,
we have repeated the film computations described
in Sec. IQA, for 4 = —0. 5. This is shown as the
dashed curve in Fig. 5, where the further weaken-
ing of the order at the surface is clearly visible
(although 6 is negative it is not large enough in
absolute magnitude to lead to antiferromagnetic

(0)

TC

T

0.95—

ru

O

O

0.90—
MEAN-

ye 1

100 g ————

=1/2

Q= 1/4

h=0.2

4P+0

x~,

eff(g) I &s c Yj&
(Q )e Rd+V5d

(b)
5 /

7 (h)eff

~c
g(h) yy V3d~ Sd

y (a) y~d
s

0.5 hC

0.85
0 0.1 0.2

4i(z 1)

0.3 p.4

FIG. 23. Ratio plot of the high-temperature series for
the mean-field layer susceptibility X~. For no value of
b, &6 do the series extrapolate to the correct T~, nor do
they show the correct exponent (V& =$}.

FIG. 24. (a) Schematic plot of the surface susceptibil-
ity X~ as a function of temperature, for various A. Since
X~ is expected to change its sign near T~ as b, goes through
A~, the behavior of the series will be quite irregular. (b)
The exponent y~ is plotted vs b, along with the effective
exponents derived from series. Both the crossover at
4=4~ and the change in sign shown in part (a) for b, & b~
make the effective exponents quite erratic.
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corroborated in Ising, Heisenberg, and spherical
models. In the last two cases, however, the scaling
functions have singularities as h-0 for fixed
T& 1;, and a number of scaling relations fail to
hold. The scaling theory follows from a cluster
picture in which the probability for the appearance
of a cluster is different near the surface and in the
bulk. It may be noted that this generalized cluster
model may be used to calculate nucleation rates
near the surface (heterogeneous nucleation}, in
much the same way as one employs the usual cluster
model for calculating homogeneous nucleation rates."

(ii) Monte Carlo calculations on Ising and Heisen-
berg models with free surfaces yield results con-
sistent with scaling near T„and in the case of
Heisenberg models, consistent with the spin-wave
results of Mills and Maradudin 4 at low tempera-
tures. In particular, the prediction of I that the
layer magnetization exponent P, for the Ising model
should be 0. 64 +0. OS is confirmed. In addition,
the scaling assumption" ~ that the T, shift expo-
nent X for films is equal to v ' also is correct for
Ising systems in three dimensions.

(iii) A detailed study of the three-dimensional
Ising model with modified exchange at the surface
(J,'33 J), shows that for J', )1.6J the surface orders
at a higher temperature than the bulk, and behaves
like a two-dimensional Ising model above the bulk
ordering temperature. The critical exponents ex-
perience a crossover at the critical value J, ,
=1.6J, and for J& J,» J„the series-expansion
method yields extremely inaccurate exponents.
Evidence for the existence of surface order above
the bulk T has been reported by H]](jlund Nielsen
in the order-disorder transition of AuCu3. A mag-
netic system where a similar effect could occur
was suggested by peschel and Fulde. o' (See Note
added in proof. )

(iv} For the case of weakened surface exchange
(J,& J), which would usually occur in practice,
crossover effects also modify the effective expo-
nents. Monte Carlo calculations for an Ising model
in the case J,= ~J show a large temperature region
in which the layer magnetization m, has an effec-
tive exponent P&" = 1, which is consistent with the
experimental results of Wolfram et al. When the
surface exchange is negative and sufficiently large
in absolute magnitude, the surface can order anti-
ferromagnetically, while the bulk is either para-
magnetic or ferromagnetic (Appendix B).

Note added in proof. Recently, Weiners has
argued that surface ordering would occur in a
Heisenberg system above the bulk transition tem-
perature. This result seems highly implausible to
us, for the same reason that a Heisenberg system
of finite thickness does not order. ~' We wish to
thank H. Fukuyama, B.Halperin, A. B.Harris, and
C. Herring for discussions of this point.

APPENDIX A: MEAN-FIELD THEORY WITH
FERROMAGNETIC SURFACE EXCHANGE

Let us solve the mean-field equations for our
system, and find the condition for an ordered state.
These equations are

H zJ
m„=tanh —+ ' m„+ T(m„4, +m~i)~3 n) 2

)
(Al)

H+H(
m, =tanh

T + ' 'm, +Tm: (A2)

where m is the magnetization in the nth layer, H
is a uniform field acting on all spins, and H, acts
only on the first layer. The quantity z, is the num-
ber of nearest neighbors in each layer, and the
exchange interaction is J, except between surface
spins, where it is J,.

Near T, we can linearize E(ls. (Al) and (A2) and
we find

H g,J J
m„= —+ ' m„+ —(m„„+m„,), n 2 (A3)

H+H, g,J,
m ~ (A4)

The system may be solved by setting'

m =m +ye-"n
n 7 (A5}

and we find (for z, =4, i.e. , d=3, and a simple
cubic lattice)

H~ 6to
3( —3 —44 l(t—1)(3t—3)],'4),

H t() ) ~St 3+[(to —1)(Qto —3)] ~—

T 1, -1 3t—3 —44 [(t—,1)(3t, —~3)]',4)'
where (z =6) A6

J, =- J(1+i)),
to = T/z j= T/T, (t4 = 0) . (A7)

For d & ~ the denominator in the large parentheses
is positive for to ~1, so the susceptibilities first
diverge at to=1, namely,

T, = zJ= T, (O4 = 0) = Too 3
t) & g .

In this case it is easy to verify that

(A8)
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em1 6 1
aB, T,t 1 —40+[6(T —T )/T ]'0) '

T &T, g&-,' (A9)

em, W6 1
4(( T (1 —40)[(T —T, )/T ]'a) '

T & T~, 6 & B . (A10)

For 4 &4, on the other hand, the denominators
vanish at a shifted T, equal to

T,(r2. ) = T~(16'). + 166 + I)/244, 6 & B . (All)

In the limit of large b, this answer goes to (z, =4,
z=6}

tions are in zero field, with J,& 0,

i-z IJ I

—z. l J.l

Let us set

(B3)

(B4)

T,(d ) = 2 T,or2 = z,JE = zBJB, (A12)
m"' —m +6"'

n n (B5)

which is the mean-field value of the transition tem-
perature in the two-dimensional layer. The sus-
ceptibilities are

X) =Xg(T —T,), T & T, & T~, & &B, (A13)

Xo, =(3+A)[3+-,'21+9/(2A)] ', (A14a)

and linearize the above equations with respect to
6„"', obtaining

a

5„'+—(5„"., + 5",) (1-m'„), n~ 2 (B6)n T n T n+1 n-1

A = [(9T, —3T~)/(T, —T~)]'/',

X2, q
——

Xq q(T —TB) 2
T &T,& T~a

X2, i = 6[3+zA+ 9/(2A)] ' .

(A14b)

(A15)

(A16)

From Eqs. (A9}-(A15)we have the exponents

524 B B 5s 5A

58 B B~ 5A 5B (11 T 1 T 2

-m, ),2

—m', ),

(B8)

(B9)

1
y1 2y

1
y1, 1

(A16a)
„=tata ' + —( „.. .)), 2 (BtOa)

zsJ J

y1=1

y, 1=1

y1=1,
1

1 b, =4.
y1, 1

(A16b)

(A16c)

—z. l J, I

m, =tanh
T

' m, +T m, .

Setting
Bg„=6+ -5n,

we find

(Blob)

(Bl1)

The results for the critical temperature and the
exponents as a function of 4 are shown in Fig. 15.
From Eq. (A5} it is easy to show that for 6 & B,

q [6(T —TBo)/T~] +, T- T~, 6 & B~, (A17)

and for 6, &4

T IJI 2——z ' (1 —m, ) [7, =]7z(1 —m, ).J S J (B12b)

q= —ln[(6T, —4(1+F4}T,O)/T~], 4 &B. (A18)

Thus the transition for 6 & 4 is indeed to a state
with bulk ordering (q —~), whereas in the case
4 &4 the order decays exponentially with a finite
decay length given by the inverse of Eq. (A18).

APPENDIX B:MEAN-FIELD THEORY VfITH
ANTIFERROMAGNETIC SURFACE EXCHANGE

In this case we must allow, in our molecular
field equations, for a nonuniform magnetization in
each layer. We shall confine our discussion to a
two-sublattice configuration. The mean-field equa-

Equations (B10) and (B12) are a coupled set of
nonlinear difference equations which are in general
difficult to solve. One would have to obtain first
the local magnetization m„ from Eq. (B10), and
then insert the answer into the linear set (B12).
There are, however, two limiting cases where the
solution may be obtained analytically, since the
local magnetization has a particularly simple form.
The first case is that of high temperatures, where
the total magnetization mn is zero. Since we are
considering negative values of J, it is clear that a
magnetization appears in the system only below
T,~=zJ. Thus mn=0 for T T,~, and we must solve
the equations
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T
J+~s ~~ ~~+y+~n-g ~

T I J.l

g~ gg gQ )

which may be done by setting

and eliminating q to obtain

(813a)

(813b)

(814)

that m„~ (T„—T) for n within a distance $~ of the
surface, so we indeed expect that to leading order
in T,~ —T we may neglect I„in Eq. (812a). Thus
Eq. (815}is also expected to describe the transi-
tion for T immediately below T, ~.

The other region in which the local magnetization
is known, is the low-temperature case, where the
spins are aligned in all layers, in the ferromagnet-
ic state. By analyzing Eqs. (810) we may show
that for sufficiently low temperatures we have

T„ 1 + z, ( I Z, I / 8'+
I J, I z/8')

J z,(1+ IZ, I/J) (815) m„= m~ =tanh(zJ/T)m~, n» 2 (81Va)

Equation (815) gives the transition temperature for
a transition to a state of surface antiferromagne-
tism, when no bulk magnetization is present. For
large values of I J, I we have

T„,ie, /, (816}

which is the mean-field result for the transition in
the surface, when the bulk is completely absent.
For finite IZ, I, Eq. (815) predicts that T„&z IZ, I,
which means that the effect of the bulk is to enhance
surface antiferromagnetism, when the bulk is itself
paramagnetic. This effect is almost certainly an
artifact of mean-field theory, and in any case the
enhancement is numerically small at all tempera-
tures.

When the bulk is ferromagnetic, we must in prin-
ciple solve for the local magnetization m„ from
Eqs. (810) and then insert it into Eqs. (812). How-
ever, for T just below T„, we know that I„is
small, so its effect on Eqs. (812) may be negligi-
ble. In particular, it was shown in Sec. II of I,

m, = tanh m~ (81Vb)

Using Eqs. (81V), we may again solve Eqs. (812)
to find, for T-O,

T„T„ I J.I—"ln —~-21 gJ J,, ' J (818)

At low temperatures the problem is analogous to
that of an antiferromagnet in a uniform field,
with a similar singular point at T=O, where the
antiferromagnetic transition is of first order.

The high- and low-temperature solutions are
plotted in Fig. 16 as solid lines. For intermediate
temperatures, 0& T& T, ~, the mean-field equations
[(810) and (812)] are relatively difficult to solve,

. and we have not attempted it here. In Fig. 16 we
show by a dot-dashed curve a smooth interpolation
between the two limiting cases, but we cannot rule
out more complicated behavior, such as a first-
order transition.

Part of this work was carried out while K. B. held a
Post-Doctoral Fellowship at the IBM Zurich Laboratory,
8803, Riischlikon, Switzerland.
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