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We have studied the dynamics of the classical Heisenberg chain at finite and infinite temperatures by
computer simulation of an array of 4000 spins. The evaluation of the spin-spin and energy-energy
wave-vector- and time-dependent correlation functions out to time 10J ~! made it possible to determine
the spin and energy diffusion constants. At infinite temperature we find D = (1.33 + 0.10)JSa? and
D = (34 1)JSa’ Values of D have also been determined, with less precision, for ferromagnetic and
antiferromagnetic interactions at temperatures k 5 T/J| = 1.0 and 0.5. Our results are compared with
various theoretical estimates. In addition, we calculate the time-dependent spin and energy

self-correlation functions.

I. INTRODUCTION

The hydrodynamic formalism has often been a
successful starting point for the description of the
response of many-body systems to low-frequency -
long-wavelength disturbances.! Originally devel-
oped for classical liquids, 2 it has been applied in
recent years to the characterization of various
transport phenomena in solids. The essential fea-
ture of these theories is the identification of a set
of densities, e.g., mass density, energy density,
momentum density, whose spatial integrals are
constants of the motion. Differential equations,
the hydrodynamic equations, are developed to de-
scribe the temporal evolution of these densities.
The normal-mode solutions to these equations are
typically characterized by velocities of propagation
and damping constants. The velocities are ex-
pressed in terms of parameters characterizing
the thermodynamic state of the system. The
damping constants, on the other hand, are com-
binations of phenomenological parameters.

The success of the hydrodynamic description
has spurred attempts to derive the equations using
a microscopic formalism.** In such a program
one obtains explicit expressions for the damping
constants in terms of the microscopic properties
of the system. In addition, information is gained
about the range of validity of the hydrodynamic
theory.

In the case of magnetic insulators the appropri-
ateness of a hydrodynamic description of the trans-
port of excitation in the magnetic lattice was ap-
parently first pointed out by Bloembergen.® The
essence of his argument is that in systems where

9

the dominant spin-spin interaction is of the Heisen-
berg form

the total spin, }; §,, is a constant of the motion.
Assuming no long-range order, the fluctuations in
the total spin, S(q,#)=J ,e'¥%§,(#), in the hydro-
dynamic region should be governed by the diffusion
equation

8@, » = -
——g%'L:_Dsqu(q,t) ’ 1.1
where Dg is the spin-diffusion constant. In addi-

tion, the energy density E(q, ¢) obeys a similar
equation,

BD - Dy’ ,

ot (1.2)

in which Dg is the energy (or thermal) diffusion
constant. It is important to note that the particu-
larly simple form for the hydrodynamic equations,
(1.1) and (1. 2), is a direct consequence of the as-
sumption that there is no long-range order in the
system. When this is not the case there is a cou-
pling between the spin and energy densities as well
as propagating modes (i.e., spin waves).%’
Experimental information about the magnitude
and temperature dependence of Dg and Dg is rather
limited. Inelastic neutron scattering, in principle,
provides the most direct information about the spin-
diffusion constant, since the hydrodynamic formal-
ism leads to an expression for the cross section
which is proportional to Dsg?/[w? + (Dgq?)?] for mo-
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mentum transfer q and energy transfer w (Z=1).
However, the measurements are hampered by
finite resolution, which complicates the identifica-
tion of the limiting behavior of the cross section
as ﬁ and w approach zero. To our knowledge the
only experimental information about Dz has come
from nuclear-magnetic-resonance studies in He.®

In this paper we report studies of spin and energy
transport in one-dimensional Heisenberg magnets.
The information is obtained by solving the equa-
tions of motion of a ring of 4000 spins governed by
the Hamiltonian

N1

H=—JE -S.l'°§i¢l—J§N.§l )
i=l

1.3

where N=4000. The spins are treated as classical
variables whose time evolution is determined by
the equation of motion

a8 - - -
7;=J[Six(si+l+si-1)] ) 1.4
where Z=1. As will be discussed below, initial

values for the §{ are chosen corresponding to the
system being in thermal equilibrium. Correlation
functions (S(-g, 0)S(g, t)) and (E(-gq,0)E(q, t)) are
computed, and from the asymptotic behavior of
these functions, estimates are obtained for Ds and
Dg.

Previous computer studies of spin dynamics in
Heisenberg magnets, ®~'! with one exception, '? have
focused on the short-wavelength and/or short-time
response of the system. In this paper it is the hy-
drodynamic region which is of primary interest.
We adopt the point of view that our analysis of the
ensemble of 4000 spins is an experimental study.
We regard our estimates for Dg and Dy as experi-
mental values, which are subject to uncertainties
inherent in the experiment. These uncertainties
are not unlike the uncertainties associated with
the interpretation of the neutron data.

Until recently, studies of one-dimensional mag-
netic systems had an air of unreality about them.
However, the discovery of compounds like
(CH;3)yNMnCl; (TMMC), whose magnetic ions form
exchange-coupled chains has made one a respect-
able dimension for experimentalists and theorists
alike.!®'!* Although our results are for classical
spins they are quantitatively correct in the quantum
case for S> 3, provided the usual replacement,
S§2~S(S+1), is made.

The remainder of the paper is divided into three
parts. In Sec. II we discuss the preparation of the
array, the solutions to the equations of motion, and
the determination of the correlation functions. Our
values for Ds and Dg are presented in Sec. III. In
Sec. IV we discuss our results. We also make
comparisons between our results and the predic-
tions of various theories.
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II. EXPERIMENTAL METHOD

The computer experiments consist of two parts,
(1) preparation of the equilibrium array, and (2)
solution of the equations of motion. The informa-
tion obtained by the above procedures allows the
determination of various correlation functions and
dynamical quantities of interest. Since the calcu-
lations reported here were undertaken with the aim
of inferring spin- and energy-diffusion constants,
most of the dynamical quantities extracted were
tailored to that goal.

Preparation of an equilibrium array of spins for
the one-dimensional Heisenberg magnets is fairly
simple given the conditional probability distribu-
tion for spin S, given §1,

P(§2 | §1\ o e‘”§2'§1 , (2.1)

where B=1/ks T. Our system consists of 4000
spins represented by three-dimensional unit vec-
tors, each described by three Cartesian compo-
nents. The first spin is arbitrarily chosen to lie
along the x axis. Each successive spin is oriented
relative to the previous one by choosing a polar
angle and an azimuthal angle distributed appropri-
ately according to the temperature. If @ is a ran-
dom number between 0 and 1, the appropriately
distributed polar angle is given by!

-

p=8;+8;1=(1/B8NIn[e® +2asinhpd] .  (2.2)
The azimuth is chosen to be distributed uniformly
between 0 and 27. For the special case of infinite
temperature the initialization procedure may be
greatly simplified, since the spins are randomly
oriented.

As a check on the array prepared in the above
fashion, the internal energy of the array may be
compared with the exact internal energy.'® Typical
arrays had energies within 1% of the exact values.

The temporal evolution of the equilibrium array
is followed by numerically integrating the equations
of motion (1.4). The method for doing this is iden-
tical to that used in earlier computer experiments
on three-dimensional systems by Watson, Blume,
and Vineyard.!® Several internal checks ensure
that satisfactory solutions are obtained for times
as long as 7=#J=10. (We refer to the dimension-
less parameter 7 as a precession time.) Both the
internal energy and magnetization, defined as

—J, J= =
E_Tz)ls,.-s,.ﬂ_Nansl, (2.3)
- 1 &

M=ﬁESi, (2.4
i=1

are constants of the motion. These quantities, cal-
culated as a function of time, remained constant to
within a few percent.
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Time-dependent spin and energy correlation
functions are calculated at selected intervals of
time and averaged over the array of spins. The
particular correlation functions derived from the
present experiments are the spin and energy self-
correlation functions, defined as

1 N-1
(SOSW)= 57—y g[sz(ms’;m
+S20ISHD) + SHOSHD] 2.5)
N-1
EQEWN) = 7 2 E,0F, (), (2.6)
- i=1l

where
E,(0=38,0 §,,00+8,1- 8,407,

and the wave-vector-dependent correlation func-
tions which are the spatial Fourier transforms of
the 7th-neighbor correlation functions. These are
given by

(S(~gq,0)S(g, 1)) =25 cosqr(S;.,(0)S;(¥)) , (2.7

(E(-q,0)E(g, t)) =2 cosqr (E;,,(0)E,()) . (2.8)

In practice, the spatial correlations between dis-
tant neighbors are very small, so that the summa-
tion over » may be truncated at values ranging
from 15 to 50, depending on the temperature.
These values were chosen so as to minimize the
variation of the zero-wave-vector correlation
functions over the interval 0 =7=10. Other cor-
relation functions for this system may be con-
structed in a similar fashion.

The experiments were performed on the Brook-
haven CDC-6600 computer. Each run required be-
tween 30 and 45 min of computing time, depending
on the length of the time evolution and the number
of wave vectors ¢ at which the correlation functions
were computed.

IIIl. RESULTS

The experimentally determined correlation func-
tions are subject to uncertainties resulting from
the finite size of the system and from round-off
error in the solution of the equations of motion.

In the case of the g-dependent functions, an addi-
tional error is introduced in the Fourier-transfor-
mation procedure. In an effort to minimize these
uncertainties as much as possible, the experiments
were repeated with different starting arrays. The
results for several choices of array (usually six)
were averaged together.

Since our interest here was in spin and energy
diffusion, most of our attention was concentrated
on the small-wave-vector region where this be-
havior is most clearly manifested. The major part
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of the analysis was carried out with ¢ = 7/8, 7/8VZ,
and 7/16. Experiments were performed at infinite
temperature and at two finite temperatures, kT
=0.5|J] and 1.01J1.

A. Infinite-temperature results

The experimental wave-vector-dependent cor-
relation functions at infinite temperature for the
three choices of wave vector are displayed in Fig.
1. Shown here are the individual results for six
different starting arrays as well as the average of
the six runs. Figure 2 shows the same results for
the energy correlation functions. The most notable
feature of this comparison is the fluctuation in the
initial value of the correlation functions for differ-
ent equilibrium arrays. For the energy case it is
possible to estimate the expected magnitude of
these fluctuations. Heller!® has shown that the
fractional rms fluctuation of the zero-time energy

<S(-q,0) S(q,t)>

ELAPSED TIME, tJ

FIG. 1. The wave-vector-dependent spin correlation
functions for three choices of wave vector g at infinite
temperature. The dashed curves are the results for six
different starting arrays. The solid line is the average
of the six runs.
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T I T _] T I T I T

<E(-q,0)E(q,1)>

ELAPSED TIME, tJ

FIG. 2. The wave-vector-dependent energy correla-
tion functions for three choices of g at infinite tempera-
ture. The dashed curves are the results for six differ-
ent arrays; the solid line is their average.

correlation function is given approximately by

(R 1 Lsin(ZR+1)g]”z
55~”[N'2N+2N sing ’

where N is the number of spins in‘the chain and R
is the cutoff of the spatial Fourier transformation.
For the conditions of the experiments, namely,
N=4000 and R=15, we find 68=0.087. Using the
experimental results for 6 different arrays, at
q=1/8, the comparable quantity (the square root
of the variance divided by the mean) is 0.082. In
other words, the magnitude of the observed fluctua-
tions is precisely what is expected, and is the re-
sult of the finite size of the arrays.

The self-correlation functions are somewhat
more accurate, since they do not involve a Fourier
transformation. However, these were also aver-
aged together for the six separate runs. The re-
sulting spin and energy self-correlation functions
at infinite temperature are shown (on a logarithmic
scale) in Fig. 3.

The short-time behavior of all the correlation
functions may be checked by comparing against a
short-time expansion which involves the first few
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frequency moments of the Fourier time transform
of the correlation functions. The moments are
defined (for the spin case) by

(s = Jew"8 (g, w)dw

[%8(g,wdw 3.1
where
Slg,w)= f_: e“*(S(-¢q,0)S(g, t)dt . (3.2)
Equation (3.1) is equivalent to
o _m & (S(=q,08(, t)>>
(w )S = (1)" otn ((s(_q’ O)S(q, 0)) £=0 (3- 3)

In the infinite-temperature limit the second and
fourth moments of the spin correlation function for
classical spins of unit magnitude are, without ap-
proximation®’

(whs =421 —cosq) , (3.4)
(whs =$J*(5 — 3cosq)(1 - cosq) . (3.5)
T T T T l T l T

0.40 .

0.10

0.08

0.06

<F(0) F(t)>

0.04

0.02

1 | L Il L | L | I
(o] 2 4 6

ELAPSED TIME, tJ

0.01

FIG. 3. The infinite-temperature spin and energy self-
correlation functions
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FIG. 4. Short-time behavior of the spin and energy
correlation functions for several wave vectors. The
points are the results of the computer experiments. The
dashed line is the short-time expansion, Eq. (3.8).

Similar results have been found for the energy
case, where we have'?

(WD g=4J2(1 - cosq) , (3.6)
{whp=34J*(5 —4cosg)(1 —cosq) . (3.7)
0.40 T T — T
0.35— —

0.30

0.25

< F(0) F(t) >

0.15

0.05

0.00

TIME , t{Jl

FIG. 5. The spin and energy self-correlation functions

at kgT=1.01J|. The solid points are for ferromagnetic

coupling, J>0; the open circles are for the antiferromag-

net, J<0.

The short-time expansion leads to the following
form which is valid for either the spin or energy

e BRI YL

Including the fourth moment, we found very good
agreement with the experimental functions up to
about one precession time (7 =1). This comparison
is shown in Fig. 4 for several choices of wave vec-
tor.

The fact that the arrays we have studied are fi-
nite in size has two effects. First, there is the
statistical accuracy of the correlation functions due
to the finite number of spins used, and second,
there could be an effect on the diffusion constant
as a result of the finiteness of the chains. The
statistical -fluctuation part is reasonably well un-
derstood and is proportional 1/V N, Indeed, we
have made studies for chains of 1000 spins and
these show a statistical spread a factor of 2 larger.
Moreover, by averaging about twice as many runs
we obtained an average spin correlation function

0.40 T ‘ T 1 T T T

0.35

0.30

0.25

0.20

<F(0) F(t)>

SPIN (AF)

0.05 —

-0.05 i
TIME, t Ul
FIG. 6. The spin and energy self-correlation functions

at kgT=0.5|J|. The solid points are for J>0; the open
circles are for J<0.



2176

identical to that determined from a 4000-spin ar-
ray.

The second effect is more difficult to quantify
accurately, but some qualitative observations can
be made. Clearly, size effects will be important
in two cases: when the correlation length is of the
order of the chain size, or for times such that an
excitation has a chance to propagate around the
chain. Hence, size effects should be important at
low temperatures such that £¢(7T)~ L, where £ is
the correlation length, and at times ¢ for which
vt~ L, where v is a characteristic velocity of prop-
agation of excitations. For L =4000, the tempera-
ture T at which £(T)~L is T~J/4000, since £¢~J/T
for low T. This is of course a much lower temper-
ature than any studied. Similarly, the time argu-
ment shows that physical size effects should occur
for times t~L/V~L/J, since the largest-velocity
spin waves in an antiferromagnet have v=J. Our
calculations extend at most to a time ¢#=10/J, so
that, for practical purposes, only statistical fluc-
tuations are significant, and these are well under-
stood.

B. Finite temperatures

The spin correlation functions were also studied
at two finite temperatures 237=0.51J| and kT
=1,0lJ!, for both ferromagnetic (/>0) and anti-
ferromagnetic (J <0) coupling. At infinite temper-
ature there is no distinction between the two types
of coupling. A study of the ¢g-dependent energy
correlations at finite temperatures was not suc-
cessful because of the large numerical fluctuations
from run to run. The results for the finite-tem-
perature self-correlation functions are given in

T T T T T T T T T
075, FERROMAGNET  kgT=10l| ﬁ

ANTIFERROMAGNET  kgT=1.Ol|

22 atssesgostnean,

<S(-q,0)S(q,t)>

O0g |

i L L i 1 | 1
0 I 2 3 4 5 6 7 8 9
TIME , t|J]

FIG. 7. The experimental data (circles) and the least-
squares fits (lines) to the interpolation model for a tem-
perature of kgT=1.01J1.
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> » ®» O P o

[}
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Ny =
o
FN -
(S48 o
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~
o
o+
e}

TIME, t|J]

FIG. 8. Spin correlation functions and least-squares
fits for a temperature of kg T=0.5J].

Figs. 5 and 6. The g-dependent results are shown
in Figs. 7 and 8.

The second and fourth moments at finite temper-
atures have been given by several authors.!®*°
For classical spins of unit magnitude they reduce to

(ws = % 1—'}1—‘7 (1 —cosg)(1 +u? — 2u cosq) , (3.9)

(w5 = 2d%w?s {5 - 3cosqg + (1 = 3u/BJ)
X (1 —3cosq +3/u) —u[6 cosq — (3 = 3u/BJ)

Xcos2q]}, (3.10)

where
u=cothBJ —1/8J .

As with the infinite-temperature case, good agree-
ment is found between the experimental results and
a short-time expansion to O(¢*) up to about one
precision time.

C. Method of analysis

In the small-wave-vector (or long-wavelength)
region, at sufficiently long times, the correlation
functions are expected to show diffusive behavior,
as noted in Sec. I, and should be described by the
asymptotic form

(F(-q,0)F(q, t)~ e“D"zt R

where D is the diffusion constant. From the pre-
ceding discussion we also know that at short times
they must behave as e¢=<“?"?/2, One may construct
a variety of models which interpolate between these
limits. We have chosen one of the simplest. It is

(3.11)
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(F(-g,0)F(g, t))
(F(-q,0)F(g,0)

=exp[—(W? fI{t-Ty(m)ar],

Clg,t=

(3.12)

so that the diffusion constant may be identified as
2 .
D=1lim W) ff(‘r)d‘r ,
a~0 q2 0

where f(7) must be a decaying function. Two pos-
sible choices are (a) f(7)=¢™* and (b) f(‘r):e"z'z.
Evaluating (3.12) for both forms yields
(@) Clg, 1) =exp{-HwH[2t/A - 2(1 —™t)/4%]}
(3.19)
() Clg, ) =exp{- (wz)[tfote"z“zdu— (1/242%)

X (1 - A%}, (3.15)

One may easily demonstrate that both of the above
forms have the correct long- and short-time limits.
Note that both involve only a single unknown param-
eter, A, related to the diffusion constant by

D= i—lim(%?) s

a-0

(3.13)

(3.16)

for Eq. (3.14), and

<S(-q,0) S(q,t)>

ELAPSED TIME, tJ

FIG. 9. The spin correlation functions (circles) and
the least-squares fits (lines) to the interpolation model
[Eq. (3.14)] at infinite temperature.

2177
y T T T T T T T T
A
s
w
S
o
L
w
A\
ELAPSED TIME, tu
FIG. 10. Energy correlation functions at infinite tem-

perature and least-squares fits.

v ((w2)>
D= _—1lim (—5~ (3.17
2A q-0 q
for (3.15). (The physical significance of A is dis-

cussed in Sec. IV.) Both of the above forms were
fitted to the experimental data using a least-
squares procedure. The two forms give almost

TABLE I. Infinite-temperature diffusion constants.
D/JSa%*
Spin Energy
Interpolation  fit to 1.34+ 0,02 2.6+0.2
model® averaged
data
average of fits
to individual 1.33+0.10 2.2+ 0.6
runs
Exponential® 1.33+ 0.06 2,8+0.7
fit (to tail)
Best values 1.33+0.10 31

S denotes the magnitude of the spin; a is the lattice
parameter,

bFit based on Eq. (3.14).

°Fit based on Eq. (3.18).
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identical results. Form (a) appears to fit slightly
better, and the values of the diffusion constants
quoted were based on that model. The compari-
sons between the experimental data and the fits
are shown in Figs. 9 and 10 for the spin and energy
cases, respectively. For the infinite temperature
case we fitted each individual run (that is, for each
different array) as well as the averaged data from
the six arrays, obtaining essentially identical val-
ues. The results are given in Table I. In this ta-
ble we write Dg and Dg in conventional units of
JSa?, where S is the magnitude of the spin and a is
the lattice parameter.

As a further check we also fitted the long-time
region to a simple exponential of the form

Clg, )= Be®® (3.18)

For this case there are two unknown parameters,
since the zero-time intercept is not fixed. There
is also the problem of determining when the dif -
fusive region has been reached. For these reasons
the simple form (3.18) is not expected to give re-
sults as accurate as the interpolation model pro-
cedure. In order to deal with the problem of de-
termining the onset of the diffusive region we
adopted the following method. We first fitted the
long-time region 8 =t =10 and then gradually ex-
tended the portiontobe included in the fit to shorter
and shorter times until it was clear that a simple expo-
nential no longer described the shape. For most cases
this cutoff was at T=4. The diffusion constants ob-
tained from this procedure are also listed in Table
I. It is seen that they are in good agreement with
those obtained from the interpolation fits.

The values quoted in Table I are averages for
the various g values investigated. The error
quoted is chosen large enough to include all the
values of D obtained at the different wave vectors,
and is typically a factor of 2 larger than the stan-
dard deviation of an individual least-squares fit.

TABLE II. Spin-diffusion constants at finite tempera-
tures.
Dg/|J|1Sa%?
Temperature Interpolation
Exchange (kpT/1J 1) model fit®
Ferromagnetic 1.0 1.50+ 0.15
7>0)
0.5 1.58 0.20
Antiferromagnetic 1.0 1.61+0.15
(J<0)
0.5 2.19+ 0,20

25 denotes the magnitude of the spin; a is the lattice
parameter.
PFit based on Eq. (3.14).
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]

(o] 1.0 2.0
J/kgT
FIG. 11. Temperature dependence of the spin-diffu-

sion constant for ferromagnetic coupling (F), and anti-
ferromagnetic coupling (AFM).

The row of “best values” in the table represents
what we feel are the most realistic numbers ob-
tainable from the present experiments.

Identical procedures were used to fit the finite-
temperature data (Figs. 7 and 8)., These results
are given in Table II and Fig. 11.%

IV. DISCUSSION

In Secs. III and IV we outlined the numerical
analysis of the dynamics of the classical Heisen-
berg chains. By making use of various fitting pro-
cedures we inferred values for the spin- and ener-
gy -diffusion constants. In this section we discuss
our results and compare the values for Dg and Dg
with the predictions of various theories.

Prior to considering the long-wavelength behav-
ior we comment briefly on the spin and energy self-
correlation functions, Figs. 3, 5, and 6. As men-
tioned, these functions are more accurately de-
termined than either (S(-g¢,0)S(g, t)) or (E(~g,0)
XE(q, ). This is evident in Fig. 3, where the val-
ues at t=0, 0.333417, and 0.164405 are very close
to the theoretical values 3 and 4. As functions of
time both (S(0)S()) and (E(0)E(#)) decay rapidly,
with the spin function showing somewhat more
structure.. However, even at #/ =10 neither func-
tion has the asymptotic form C¢*/? characterizing
diffusive decay. This is not surprising in view of
our results (see below) that the diffusive behavior
in (S(-¢,0)S(g, ) and (E(-q,0)E(q, t)) is limited to
q=m/10 and J¢>4. At finite temperatures the self-
correlation functions decay less rapidly. The sig-
nificantly slower decay in the energy function is
attributed to the fact that at finite temperatures
(E)#0. As a consequence we expect that (E(0)E(#)
~(E)? as t-=. With our definition of E, Eq. (2.6),
and Fisher’s!® results for (E), we obtain the values



9 COMPUTER STUDIES OF SPIN AND ENERGY TRANSPORT IN...

(E)?*=0.098 and 0.214 for k3 T=1.01J] and 0.5J1,
respectively.

As noted in Sec. I the hydrodynamic equations
are expected to characterize only the low-frequen-
cy-long-wavelength response of the system. In
addition to yielding values for the transport coeffi-
cients, our studies also provide information about
the boundaries of the hydrodynamic region. At
infinite temperature we found that diffusive behav-
ior was limited to wave vectors, ¢ =<7/10. For
larger values of g, the correlation functions could
not be fitted to a simple exponential form at long
times. It should be noted that the range of ¢ over
which diffusive behavior was observed corre-
sponded quite closely to the range in which the sec-
ond moment is proportional to qz. At finite tem-
peratures it is expected that the diffusive regime
is further restricted by the condition ¢ =, where
x is the inverse correlation length. Unfortunately
we were not able to carry out sufficiently accurate
analyses at low enough temperatures to verify this
prediction.

It was also pointed out that the time dependence
of the correlation functions was accurately repro-
duced by the first three terms in the moment ex-
pansion for 0=7=1. On the other hand, the sim-
ple exponential form, ¢ , was appropriate only
for 7>4. From this we conclude that the time to
reach local thermal equilibrium is on the order of
2-4 precession times. As a consequence the fre-
quency boundary of the hydrodynamic region at in-
finite temperature is approximately ;J.

Our discussion of the magnitude of Dg and Dg be-
gins with the formal expressions for the spin and
energy diffusion constants, which take the form of
time integrals over appropriate current-current
correlation functions.!'*?# We have

Ds g=lim3R3 & [ &'t ({js 2(0),js s (OP at ,
w=0 4.1)
where {4, B} = 3(AB+BA). The symbol Rg denotes
the product k5 TXy, where Xr is the isothermal
susceptibility in units of g2u%. Ry is equal to
ks T°Cy, where Cy is the specific heat. The sym-
bols js and jr denote the spin and energy currents,
respectively, and are determined by the continuity
equations

8S(g, 1)

o +igjs =0 , (4.2)

8E(g,t) . .
——aqt"——i—ijg=0.

(4.3)
For one-dimensional Heisenberg magnets with
nearest-neighbor interactions js and jz take the
form

js=J 2SS =S™) (2 component) , (4.4)
n
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jr=d 208 Fxs) | 4.5)
n
In the case of classical systems (or quantum

systems at infinite temperatures) the ratio (js z(0)
Xjs,e(00)/Rs g is equal to limq..o«wz)s'g/qz), where
(wz)s',.; is the second moment, as defined in Sec.
II. This has the consequence that (4.1) can be re-
written in the form

Dy 5=lim (@,Lg) [ $s2@ie s,
a0 0

4.6
q (js,2(0)js,£(0) 4.6)

from which it is evident that the parameter A4, in-
troduced in Sec. III is a measure of the decay rate
of the current-current correlation function.

Following the approach of Ref. 12 we first at-
tempted to infer the diffusion constant by calculat-
ing the current-current correlation functions. Re-
sults from a single run are shown in Fig. 12. The
rapid falloff in the correlation is apparent. How-
ever, the structure in the slowly decaying tail was
not reproducible from run to run. In light of this,
it was felt that a numerical evaluation of the inte-
gral in (4.1) would lead to large errors in the esti-
mates of the diffusion constants. As a consequence
this approach was abandoned in favor of a direct
analysis of the spin and energy correlation func-
tions.®

From Table I it is seen that Dg is approximately
a factor of 2 larger than Ds. Since (%5 is equal
to (w®z at infinite temperature we conclude that
the correlations in the thermal current decay
more slowly than the correlations in the spin cur-

0.08

0.06

CURRENT CORRELATION FUNCTIONS

0.04

0.02 L

ob— L 11 1 Ty
o 1 2 3 4 5 6 7

TIME, tJ

FIG. 12. Spin and thermal (or energy) current auto-
correlation functions at infinite temperature.
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rent. Because jg is a constant of the motion for
the spin-z chain with nearest-neighbor interac-
tions, 2 we are led to conjecture that the differ-
ence in the decay rates of the energy and spin cur-
rent-current correlation functions becomes more
pronounced as one passes from classical spins to
quantum spins with small values of S.

The data in Table II show that the spin-diffusion
constants are nearly temperature independent in
the interval «© >kgT>|J|, but begin to vary at low-
er temperatures. These results are to be com-
pared with the ratios of the second moments,

lim, .o{w®s (T)/{w?s(*). For ferromagnets, this
ratio is 0.49 and 0. 24 for kT =J and 0.5J, re-
spectively. In the case of antiferromagnets, the
corresponding values are 1. 80 and 2. 68 for kg T
=|J| and 0.5!J|. Inlight of Eq. (4.6), we con-
clude that the spin-current correlation function in
the ferromagnetic chain decays more slowly at fi-
nite temperatures than in the infinite-temperature
limit. In the antiferromagnetic chain, there is an
apparent speeding up of the decay for kg T=0.5|J|
since the increase in Dg is less than expected from
the temperature dependence of the second moment
alone. In the large region between J/ksT=0 and 1
the diffusion constant seems to be temperature in-
dependent or slowly varying. However, since we
have determined so few points we cannot exclude
the possibility of some other behavior in that re-
gion. Indeed, Reiter has suggested® that to first
order in J/kgT the slopes of the diffusion constants
ought to be of opposite sign for the ferromagnet and
antiferromagnet in the high-temperature region.
The accuracy of our values and the scarcity of
points in the high-temperature region do not per-
mit us to comment on this prediction.

Because of the large fluctuations from run to
run, it was not possible to obtain consistent values
of Dg for kpT less than 0.5/J|. As a consequence,
we were unable to test a recent theoretical predic-
tion that the spin-diffusion constant of the classical
antiferromagnetic chain diverges as T as 7T~ 0,
while Dg for the ferromagnetic chain remains finite
in the same limit.?

Theoretical calculations of Dg and Dy generally
have followed one of two approaches. The first of
these involves a short-time expansion of {js ,e(0)
Xjs (). We have

{js . 2(0)js @) _ _l<w4) E ,2 4
<]'S,E(O)jS,E(0)>_1 2——5-5-“) S,Et +0tY, (4.7

where it is understood that the ratio (w%s, z/(w%s &
is to be evaluated in the ¢ =0 limit. Keeping only
the first two terms in the expansion, and making
the usual approximation, 1 —da*%=¢™ >, leads to
the result®
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o-(3) " (42) ()"
With the values for the moments given previously
it is found

Ds=0.73JS4% ,

Dg=1.03J54

(4.8)

(4.9)
(4.10)

in the high-temperature limit.

It is apparent that keeping only the first two
terms in the short-time expansion leads to spin-
and energy-diffusion constants that are smaller
than the measured values by factors of 2 and 3,
respectively. The source of the error is in the
time dependence of (js £(0)js,z(t)). The postulated
form,

(s, 8Os 5= exp (- 3 {202 17)
S,E Js E 2(0) >S,E ’
underestimates the rate of decay.

In the case of spin diffusion, attempts have been
made to go beyond the simple Gaussian approxima-
tion.?"®® For the classical chain the low-order
corrections are about 30%, with the consequence
that Ds is estimated to be on the order of 0.9JSa%.
This result is to be compared with our measured
value (1.33+0.1)JSa®. It should be noted that the
shortcomings of small-time expansion for Heisen-
berg magnets at infinite temperature appears to be
limited to one dimension. In higher dimensions the
corrections to the Gaussian approximation are
small, "% and in the case of three dimensions the
discrepancy between Dg, calculated from (4.8),
(with moments appropriate to finite spin and tem-
perature) and the room-temperature value for the
spin-diffusion constant in RbMnF; is less than 5%. 2
Because of the greater complexity of the moment
calculations, short time expansions of the thermal -
current correlation functions have not gone beyond
the first two terms. However, it is doubtful that
the disagreement between 1 and 3 would be re-
moved by including only a few of the higher mo-
ments.

In the other approach to the calculation of the
spin-diffusion constants the local-spin operators
appearing in the definition of js and jg are expanded
in terms of their Fourier components S(g). The
multispin-current correlation functions are then
factorized into products of two-spin functions
(S(-¢,0)S(q, t), a procedure often referred to as
the independent-mode approximation. Since
(S(-g,0)S(g, 1) depends on Dg for small ¢ the cal-
culation of the spin-diffusion constant by this meth-
od becomes self-consistent.®® Early calculations of
Dg and Dg following this approach, which used
primitive two-spin functions, led to the result
Dg =0.58JSa? and Dy =0, 23JSa%, in one dimension
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at infinite temperature.® In their paper, McLean
and Blume reported a calculation of Dg in the in-
dependent-mode approximation using what appear
to be the most accurate of the currently available
theoretically determined two-spin functions. '

At infinite temperature they obtain the value Dg
=1.38JS4%, in excellent agreement with our re-
sults. However, in view of the uncertainties as-
sociated with the factorization, it is not clear at
this time whether the agreement is fortuitous. For
this reason it is important to carry out similar
calculations in a formalism which incorporates the
interaction between the modes.* In line with this
it would seem to be worthwile to repeat the cal-
culation of Dy in the independent-mode approxi-
mation using realistic two-spin functions. In this
case the factorization reduces a six-spin function
to a product of three two-spin functions and hence
is a particularly sensitive test of the decoupling.
In the Appendix we consider the independent-mode
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FIG. 13. Comparison of the spin and energy current
density correlation functions, and the corresponding func-
tions calculated using the independent-mode approxima-
tion,
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approximation in the slightly different context of the
determination of the self-correlation functions of
the spin and energy current densities. There it is
shown that the approximation is accurate out to

one precession time. Beyond that point it begins

to break down, with the greatest discrepancy as-
sociated with the energy functions.

In summary, the goal of the study reported in
this paper was to probe the dynamics of the classi-
cal Heisenberg chain in the hydrodynamic region.
By fitting appropriate correlation functions, values
were inferred for the spin- and energy-diffusion
constants. Strictly speaking, our values for Dg and
Dg were obtained from a study of the decay of
(S(-¢,0S(q, t)) and {(E(-g, 0)E(g,t)) for a chain of
4000 spins. The calculations were carried out
over the interval 0=7 =10 and for wave vectors
between 7/8 and 7/16. As a consequence it is pos-
sible, although we believe not likely, that our val-
ues for the diffusion constant are not truly repre-
sentative of the hydrodynamic region. To settle
this question would necessitate calculations of sig-
nificantly larger arrays with smaller wave vectors
and extending over longer time intervals. Such
calculations appear to be beyond the capability of
present day computers, but may become feasible in
the future.
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APPENDIX

In this Appendix we assess the independent-mode
approximation as applied to the evaluation of the
self-correlation function of the spin and energy
current densities. These functions, denoted by
gs and gg are expressed as

gs () =(SHS™ —STH(HSTS ™ ST (0) , (A1)
ge®) =@ . ST x§m) (8. E"xEm)(0) .
(A2)
From Eqgs. (4.4)-(4.6) it is seen that the g5 g(¢)
are the dominant terms in (js, £(0)js, £(¢)) for small

times. In the independent-mode approximation
gs and gp are given by

gs=2f(fo=12), (A3)
gE=6(fo"fz)[f(2)+fofg"2fﬂ, (A4)
where the f, denote the correlation functions

) = (S5(0)S%,,(2)) .

We have evaluated (Al)-(A4) at infinite temper-
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ature using computer-generated f,. The results
are shown in Fig. 13. It is apparent that the ap-
proximation is reasonably accurate out to about
one precession time. Beyond that point the factor-
ization begins to break down, with the energy func-
tions showing the greatest descrepancy. The
agreement between the approximate and exact
curves at £=0 is a direct consequence of the con-
dition of infinite temperature and the fact that both
current densities involve combinations of terms,

|

each of which is of the form (S%)*(s})™(S5)" with
0=Il,m,n=1. It should be kept in mind that our
findings are not necessarily representative of the
accuracy of the independent-mode approximation

as applied to the (total) spin- and energy-current
correlation functions at finite or even at infinite
temperature. These functions incorporate cor-
relations between densities at different points which
may not be as accurately reproduced in factored
form.
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