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We have extended calculations of the zero-temperature excitation spectrum of the one~ensional
Hubbard model to the case where the number of electrons is less than the number of sites in the
chain. The results are computed as a function of the ratio U/t, where U represents the on-site
Coulomb repulsion and t is the transfer integral, assumed to be nonzero only for nearest neighbors.
Exact calculations are made for the energy and momentum of excitations having single-particle
character. Unlike the situation for the half-filled band, we find no gap in the excitation spectrum. We
have also considered excitations of the spin-wave type. These are shown to vary linearly with
momentum for small momentum. The group velocity for small momentum is found to be inversely

proportional to the magnetic susceptibility.

I. INTRODUCTION

There has been much interest recently in sys-
tems which for some purposes may be considered
one dimensional. For example, the system
Cu(NH~)4SO4 H20 exhibits magnetic properties
which are reasonably described by the linear-chain
Heisenberg Hamiltonian. ' Our concern in this
work is with the Hubbard model for a linear chain,
i.e. , a model for interacting itinerant electrons.
This model has been used to analyze results of
studies of the salt N-methylphenazinium-tetra-
cyanoquinodimethan (NMP-TCNQ). Here the half-
filled band is the appropriate model. Other TCNQ
salts may be described as more or less than half-
filled bands; e. g. , in quinolinium-TCN@ there
presumably exists one electron per two TCNQ
molecules and thus a quarter-filled band. It is to
these types of materials that we hope the results
of this work will prove applicable.

The Hubbard Hamiltonian can be written as

H= -Z t(yC„C~, + US~n„n(, , (1.1)

where t, z is the hopping integral, assumed to be
nonzero only for {z,j) nearest neighbors. We con-
sider a one-dimensional crystal of N, lattice sites
with a total of N» 2K, electrons. Since the nurn-
bers M of spin-down electrons and M' of spin-up
electrons are good quantum numbers, we can clas-
sify states of the system by, say, the nuxnbers N
and M. At zero temperature the model Hamil-
tonian is characterized by the parameters u = U/t,
the ratio of the Coulomb interaction energy and the
nearest-neighbor hopping integral, and the electron
density N/N, .

Lieb and Wu gave an exact solution for the low-
est energy state of the Hubbard model for fixed
M/N, . For the half-filled-band case [(N/N, ) =1]
they derived an analytic expression for the ground-
state energy as a function of u. Shiba considered

II. EQUATIONS DETERMINING DISTRIBUTION

FUNCTIONS p(k) AND e(A)

For the Hamiltonian of Eq. (1.1) it was shown

by Lieb and Vfu that the energy and momentum of
a system of N electrons, M of which have down

spin, is given by
N

E= —2tg cosk&,
y=i

(2. 1a)

N

p=Zk, . (2. 1b)

The momenta" k& are determined by the equation

the ground-state energy for arbitrary electron
density and gave numerical results for various
values of u. In addition, he calculated the lowest
energy as a function of magnetization and was
thereby able to obtain numerical results for the
magnetic susceptibility for arbitrary electron
density.

For the half -filled band the spectrum of the low-
est excitations was considered by Ovchinnikov.
He found S= 1 excitations of spin-wave character
having a double periodicity similar to that of the
antiferromagnetic chain. He also investigated the
spectruxn of "quasi-ionic" states, i.e. , states of
(Na 1) electrons with total momentum q. For the
case of the half-filled band there is a gap in the
spectrum of the quasi-ionic states.

In this work we investigate some of the low-lying
excited states of the system for arbitrary electron
density. We find excitations of spin-wave charac-
ter whose group velocity at long wavelengths is
inversely proportional to the magnetic suscepti-
bility. For the spectrum of quasi-ionic states we
find no gap in the spectrum for N/N, & 1. The re-
sults are derived for arbitrary N/N, &1 and u. We
give numerical results for the quarter-filled band:

N/N, = ~ .
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8(x) = —2 tan '(2));/u) . (2. 4)

ln these equations I& and J are integers (or half-
odd integers) which we consider as the quantum
numbers describing the state of the system.

From Eqs. (2.2)-(2.4) we see that the momen-
turn p can be conveniently written as

p = — I~+ J~ (2. 6)

We are interested in solutions to Eqs. (2. 2)
and (2. 3) for real k's and A' s. It was shown by
Ovchinnikov for the half -filled band that there
exist singlet (S = 0) excitations of the system for
which some of the k's and A's are complex. We

hope to return to a study of this case in a future
work.

We begin by writing the equations

x.(a,., -a, )()+cosa, „—Z, „. , q)
1 8u

N, g.g g +16 sink) —Ag

= 2v(Iy, g Iq }, - (2. Sa)

N, k&= 2vI&+Z 8(2sink& —2AN), j =1, .. . , N
81 (2

where the ~'s are a set of numbers related to the
k's by

N M

—Z 8(2A, —2 sink, ) = 2' -Z 8(A, —A, ),
ysi 8&

o = 1, . . ., M (2. 3)

N B—Qg(A)))- o(A)g(A)dA,
Na 8-1 -B

(2. sb)

where p(k) and o(A} obey the normalization condi-
tions (in the limit N, M, N, -~, N/N„M/N fixed)

f; p(k) dk=N!N. , (2.ea)

f o(A)dA=M/N, . (2.9b)

For a large system the meaning of p(k) and o(A)
is that N, p(k) dk is the number of k's in (k, k+dk);
N, o(A) dA is the number of A's in (A, A+dA) On. e
immediate result of Eqs. (2. 8) for a large system
is, from Eq. (2.1),

E/N, = —2t foodk coskp(k) .
In the following sections we proceed to deter-

mine the equations satisfied by p(k) and o(A) for
particular choices of I&, J . We repeat results
found previously for the ground state, since we
will need some of the results for the later investi-
gations. Generally speaking, we will find that the
distribution functions determining the energy of
various excited states can be written in the form

p(k) = p, (k)+ (1/N. )p, (k),
o(A) = oo(A)+ (1/N, )~g(A),

where po(k) and oo(A) are the ground-state distri-
bution functions. Since we are interested in the
excitation energy, i.e. , the difference in energies
of the excited state and the ground state, we see
that the excitation energy is determined by p&(k)

and eg(A).

1 " 8g
}

N. ~u' +16(sm k, -A.)

4u

N. g, rP+4)A, -A, )')
= 2v(J, .g -&~), (2.6b)

III. GROUND STATE

As shown by Lieb and Wu, we take for the
ground state

Iy,q -I)=1,
J~,) -J =1 .

(3.la)

(3. lb)

1
N (k)

1
(A )

a+1 a ~

(2. 'la)

(2.7b)

By means of these functions the sums in Eq. (6)
may be approximated in the limit of a large sys-
tem by an integral,

N )-Q—Q f(k~)- ' p(k) f(k}dk,
N, ~~

(2.8a)

where we have used a Taylor expansion for the
function 8(x), since ( k&„-k~)-O(1 /N), (A„, -A, )
- O(1/N, ), and we are interested eventually in the
large-N, limit.

We introduce two functions p(k) and o(A) defined
at the points k& and A, respectively, by 2vpo(k)=1+cask dAoo(A)

8u

u +16(sink —A

(3.2a)
~Qo 8u

dk p,(k), A
= 2vo, (A)

ymQ 0 u +16 sink A)--
+ dA' oo(A'), ,), . (3.2b)

4g

g +4 A-A'

We denote the solutions of these equations with a
subscript 0. The distribution functions satisfy
the subsidiary conditions

fo)) pp(k)dk=N/N, , (3.3a)

Substituting these expressions into Eqs. (2.6) and

changing to a continuous distribution of the num-
bers k& and A„we find the following equations for
the distribution functions p(k) and cr(A):
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p()(k) = —+ cosk ( dk'R —(sink —sink')2' qp

(3.4)x p() {k'),
where R()t) is defined as

J"„oe(A)dA = z (N/N, ), (3.3b)

i.e. , M/N= z. These equations have been solved
previously for the half-filled band by Lieb and Wu
and for arbitrary N/N, by Shiba. We write the
solutions here since we will make reference to
them later.

By introducing the Fourier transform (7()(&u) .
= f o'p(A)e '" dA one can show that p()(k) satisfies
the following integral equation:

630-

0.25-

0.20-

I I I I { I I I I [ I I I I
f

I I I I { I I I I l I I I I

ixy /2
R(x)= —

J dy 1
(3. 5)

~a-~ -~a = 1+4,ap . (4. 1)

Substituting these expressions into Eqs. (2.6) and
changing to a continuous distribution for the num-

The solution for o()(A) can then be written in terms
of p()(k) as

(gp 2m
s, (k)= — dk(S(k)ssck —(k —s) I)) . (I I)

~-qp Q

For the half -filled band (N/N, = 1; Q = v) Lieb and
Wu' found an analytic expression for p()(k). For
N/N, 6k 1 one can solve for pp(k) numerically and
then use this result in Eq. (3. 5) to find o()(A).

From Eqs. (3.4)-(3.6) we can gain some insight
into the nature of the solutions for p()(k) and o()(A).
From Eq. (3.4) we see that p()(k) is an even func-
tion of k; in addition, using the fact that 8 is an
even function of its argument we see that p()(k) has
a maximum at k = 0. Physically this is what we
expect by looking at the expression for the ground-
state energy:

E()= —2tN, J p(){k)coskdk . {3.7)
-Qp

From this we see that the energy is minimized if
p()(k) is largest for small k.

In Fig. 1 we show numerical results for p()(k) for
various values of u = U/t for the quarter-filled
band. From this figure we see the effect of in-
creasing u on the ground-state distribution. The
resulting effect on the ground-state energy can be
seen in the work of Shiba.

From Eq. (3.6) we see that ot)(A) is an even
function of A, it has a maximum at A = 0 and de-
creases exponentially for large A.

IV. SPIN-WA VE STATE

This is the state which Lieb and Wu' classify as
the 'hole in the A distribution" state. We choose
the integers I& as in the ground state and take

O. I5,
—

0
I I I I I I ~ I I I I I I I I I I ~ I

—
I.0 -0,5 0 0,5 l.0

bers k& and A, we find for the distribution func-
tion p(k) and o(A) the equations

2vp(k) = 1+cosk dA o(A)
u +16 sink-&)

(4. 2a)

dk p(k) a 6( . A)z
= 2v(r(A)

Bu

u +16(sink —A)

dA' (A'), —6{A —A ),~a g +4(A —A'

(4. 2b)
where Ap is the value of A for which &= +p. The
limit of the k integration, Q, is in general differ-
ent from that in the ground state for a given N/N, .
If we denote the corresponding limiting momentum
in the ground state by Qp then Q will be related to
Q() by the condition that the ratio N/N, is fixed.
Also note that in Eqs. (4. 2) the distribution func-
tions depend explicitly on Ap. In general, we
Would expect the limits of the A integration in Eqs.
(4. 2) to be different from those in the ground state.
One can show, using manipulations of the form
employed by Shiba, that for purposes of calculat-
ing the excitation energy this limit may be taken
to be as in the ground state.

Introduce the distribution functions pt (k) and

ot(A) by

p(k)= pp(k)+ {I/N, )pt(k),

o(A) = o()(A)+ {I/N. )ot(A),

(4. 3a)

(4.3b)

FIG. 1. Ground-state distribution function po(k) for
the quarter-filled band. Individual curves are labeled
with the values of u=Ujt. The cutoff momentum is de-
termined by the normalization condition, f~ p()(k)dk =N/N, .
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2op|(k) = cask dA oi(A)
u + 16 sink —A jo '

Q 8u
dk p (k) A)p

= 2p5(A -Ap

(4.4a)

where po(k) and op(A) are the ground-state distri-
bution functions for fixed Q. The distribution
functions th(k) and o|(A) then satisfy the equations

c(Ap) = —2t f', ta(k, A()) cosk dk+ Ep(Q) —Ep(Qp) ~

(4. 12)
We have explicitly indicated the dependence on Ap

in Eq. (4.12}.
To relate Q to Qp we use the condition that the

density of electrons is fixed; i.e. , the distribution
function p(k) must satisfy the normalization condi-
tion

+2po|(A)+ dA'oq(A ) p 4 A Asp . (4.4b}
4u

~a u +4 A-A'

An integral equation for p|{k) can be obtained by
introducing the Fourier transform o&(p)) = J dA

xo, (A)e '" . This leads to the equation

or

p(k) dk = —=J N No(Qo)

Q N, N,

No(Q) 1
(k k

No(Qo)

(4. 13)

(4. 14)

ta(k) = 2n . 4
cosk sech —(sink —A, ) + —cosk

u u

Q

x dk'R —(s sk —smk'))(S(k') . (4. k)
m Q u

Equation (4. 14) gives us the relation between Q
and Qp, To O(l/N, ) we find

It is useful to note that the inhomogeneous term in
the integral equation is the solution for ta(k) for
the half -filled band.

An integral equation for o|(A) can be found by
substituting Eq. (4.4a) into Eq. (4.4b):

2voq(A) = —2v5(A —Ap) —f"„dA'Sq(A, A')o|(A'),

(4. 6)
where the kernel Sq(A, A') is given by

4u Q da
Sq(A, A') = p,A A„p — —cosk

u +4(~ -A ) -Q 2m

8u
u'+ 16(sink —A}

8u

u +16(sink —A'} (4.7)

og (A) = 5(A Ap) + 8 q(A) Ap) (4. 8)

where the resolvent kernel is defined by the equa-
tions

2vs (A A&) S (A A&) f" dA" sq(A, A"}Sq(A",A')

= Sq(A, A'}—f" dA" Sq (A, A "}Sq(A",A') .
(4. 9)

The energy of the spin-wave state is given by

Z= —2tN, fq p(k) coskdk, (4. 10)

or, in terms of tn(k), by

E=Eo(Q) —2t f tn(k) coskdk,

where Eo(Q) is the ground-state energy for fixed
Q. The excitation energy & is then the difference
between this energy and the ground-state energy
for a fixed density N/N, :

(4. 11)

We can write the formal solution for o&(A) in terms
of the resolvent kernel Sq(A, A') as

(4. 15)
In order to calculate the excitation energy cor-

rectly we must include all terms of O{1). We can
neglect higher-order terms for a large system.
Thus for a very large system we find for the ex-
citation energy

e(Ap) = —2t f ' dk pq(k, A, ) cosk

—p fqo dktn(k, Ap), (4. 16)

where we have defined p. as

s o{Qo) i'
EN, e@O yr. 8@0 )

(4. IV)

It is understood that in Eq. (4. 16) ~(k) is now to
be found as a solution to Eq. (4. 5) with Q = Qp.

To complete the calculation of the dispersion
relation for the spin-wave state we must find how

the momentum is related to the parameter Ap.
From Eqs. (2. 5) and (4. 1) it follows that the mo-
mentum p is given by

p/2v= f"o(A)dA . (4. 18)
~0

Following the analogous treatment by des Cloizeaux
and Pearson, we simplify this equation by replac-
ing o(A) by op(A). The omitted terms are of order
1/N, and can be neglected. So, combining Eqs.
(4. 18) and (3.6), we find

p 1 Qo 2w
dk po(k) tan ' exp ——(Ap —sink) ~2' $ -Qp u

' )
(4. 18)

Equations (4. 16) and (4. 19) determine the para-
metric dependence of f on the momentum p.

%'e can obtain some general properties of the
spin-wave dispersion relations by examining the
behavior of e(Ap) and p(Ap) as a function of Ap.
From Eq. (4. 5) we see that ta (-k, —Ap) = ta {kk Ap).
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This implies through Eq. (4. 16) that e is an even
function of A(). One can also show from Eq. (19),
using the fact that po(k) = po(- k), that [p —~ v(N/N, )]
is an odd function of Ao. This implies that as a
function of momentum & is symmetric about p = &m

&& (N/N, ). Further, one can show that as Ao- ~
both p and & approach zero. We will show further
in Sec. IV A that in the region of small momentum
the excitation energy c varies linearly with mo-
mentum.

The procedure followed to calculate the disper-
sion relation is to solve Eq. (4. 5) for ln(k) numer-
ically. The value of p, is also determined numer-
ically in the manner demonstrated by Shiba. ' Then
the excitation energy and the momentum [using
numerical results for po(k)] are calculated as a
function of Ap. These results for various values
of U/f are shown in Fig. 2 for N/N, = &.

A. Spin-wave velocity

We would like to examine the dispersion relation
for small values of the momentum. From Eq.
(4. 19) we see that small momentum corresponds
to large values of the parameter Ap. Thus for
large ~p

~rg~p Qp +r /if) Ninap/2v (1/w)d fc dk po(k)e
(4. 20)

One can show that 1/2v f ~» p, (k}e""""'"= Ic '(u}
where the function Ioo'(u) were introduced by Shiba
in the calculation of the magnetic susceptibility.
Thus for small momentum

p/2& 2 (-2r/k()AOI {0)(+) (4. aS)

From Eq. (4. 5) we see that for large Ao, pq(k)
has the asymptotic form

la(k)=(-2/u) coske' ""' oy(k), (4. 22)

where )))(k) has been introduced by Shiba' and, as
shown there, satisfies the equation

Qp

(()(k)=e 'l"'" + dk'cosk'
Qp

&& —R —(sink —sink')
~

())(k') . (4. 23)
4 4
Q Q )

The functions Ioo'(u) are written in terms of g(k) as

(.) 'P dkIq"'(g) = —cos"kP(k) .
p -Qp 2'' (4. 24)

Therefore for large Ap f(Ap) has the form

(h) '—'»"().—" i"'()) "'")*
(4. aS)

Thus, if we define the velocity v, as lim~ 0 [t(p)/p)],
we have

Comparing this result with the work of Shiba we
see that e, is inversely proportional to the mag-
netic suceptibility:

2«X
v, =—

i& E&va
(4. 27)

p|(k) ———cosk sech —A
1 271

Q u p]

Then for large g

c(AO) —sech —Ao
i

cos kdk
2t 2m

Q EC j Qp

p, p

+— dk cosk
2t -Qp

(4. aS)

(4. 29)

For large u the momentum p assumes the simple
form

k(hs)= —sic sech —hs) .2e
N, Q

Therefore in the large-u limit

(4. 30)

4t dk ~ ~ dks(k)= s —ccs i + —ccsk)O' -Q 2m 2t Q 2m

xsin —,p (4. 31)

where p=N/N, is the electron density. For u
we have Qo- v(N/N, ) and p/2t- —c os(sN /N). So
to first order in |)/U we have for the dispersion
relation

(4. 32)

0.2

2t

0.2 03
~/2 w

This relationship was pointed out by Takahashi
for the case of the half-filled band. We see that
the relationship is valid for arbitrary electron
density.

B. Atomic limit of spin-wave frequency

As U/t- ~ we may approximate the distribution
function ln(k} by

e'&ig'l ) ~ I"'( )
~o'(s) (4. 26) FIG. 2. Spin-wave energy for the quarter-filled band.

Individual curves are labeled with the value of g = U/t.
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For this state, which is classified by Lich and
Wu as the hole in the k distribution" state we
choose the integers J as in the ground state and
take

l~ ~ -~&=1+ d~ ~ . (5.1)

With these expressions for the integers J and I&,
and proceeding to a continuous distribution for the
numbers k& and A, we find the equations

2zp(k) = S(k -kp)+1+ cosk dA o(A)
N, ~(O

8u
u'+16(sink -A}' '

fQ Bu
dk p(k} z 16 ~ „- A}z

= 2zo(A)

(S.2a)

+ d~'o ~'
g 4A A, , 5.2b

where kp is the value of k for which j= n and I kp I- Qp will be determined from the ground-state
distribution.

We again introduce distribution functions p) (k)
and oq(A) defined by Eqs. (4. 3) and find that these
distribution functions satisfy the equations

k )S(k)= —ksk(k —ks)snnskf dna(n)
«EO

au

u +16(sink —A} (S.3a)

J
Q 8u

dt tn(k) . (, A. =2so, (A)

+ dA'o, (A') . «A, ~. (5. 3b)
4u

We isolate the d-function term in the equation
for the distribution function by writing

p)(k)= —5(k-kp)+~(k) . (s.4)

Then the equations determining the distribution
functions are given by

2zpf (k) = cosk dA 0'g(A) z 16 . A)z k

8N

u +16(sink-A
(s. sa)

dktn(k) z . Ap =2z(n( )

4N' --" '
&( '}

z+4(A A'}'

au

u +16(sinkp -A} (s. sb)

Note that for p= 1 this agrees with result of des
Cloizeaux and Pearson for the Heisenberg anti-
ferromagnetic chain if we identify J=4t /U.

V. HOLE STATE

We construct an integral equation for ta(k) by
introducing the Fourier transform of oq(A)k as we
did in Sec. IV. %e find

p,'(k)= ——coskR -(sink —sinkp) + —cosk
Q u Q

x dk'n —(sink —sink')) S((k') . (k. 6)
«Q u

The energy of the hole state relative to the
ground state is found to be

e= 2t cosk() —2t f tn(k) coskdk+Ep(Q) -&p(Qp) k

(s.7)
where again Qp is the limiting momentum for the
ground-state distribution for a fixed electron den-
sity N/N, and Ep(Q) is the ground-state energy for
fixed Q.

Q is determined in terms of Qp by the require-
ment that the distribution functions p(k) describe
the same electron density as the ground-state dis-
tribution function. Using this requirement and

keeping all terms in z of first order we find for
the excitation energy the result

e(kp) = 2t coskp —2t f p ~(k) coskdk

+ p(1 —fop dk pf (k)), (5. 8)

where p is as defined in Eq. (4.17). Again it is
understood that the distribution function p((k) in
Eq. (5.8) is a solution to Eq. (5.6) with Q = Qp

there.
The momentum is related to the parameter kp

by the equation

o Qp

p(k) dk = pp(k) dk,
277 kp p

(s.8)

1N k
dk pp(k)

2n 2 N, Rm q

x k —(smk —sink))
4

where E(z) is defined in terms of R(z) as

(S.10)

F(r) = f"dz'R(x') . (s. is)
From Eqs. (5.8) and (5. 10) we can examine

some general features of the dispersion relation.
From Eq. (5.6) we see that p', (- k, —kp) = p', (k, kp}.
This implies through Eq. (5.8} that e is an even
function of kp. From Eq. (5.10), using the fact that
F(x) is an odd function of its argument, we find that
P —m(N/N, ) is an odd function of kp. This implies

where we may, with sufficient accuracy in the
limit of a large system, treat the approximation
in Eq. (5.9) as an equality.

After some manipulation we can write an expres-
sion for p in terms of pp(k) as
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that as a function of momentum E. is symmetric
about p = vN/&,

One can also show that —[»(k Qp)+»(-k Qp)]
satisfies the same equation as [1/pp(Qp)]spp(k)/~Qp.
This implies that we can write

/cosQp —f o dk coskp((k, Qp))

f;o dk»(k, Q, )

VI. PARTICLE STATE

Here we have in mind removing an electron from
the highest occupied momentum in the ground state
Qp and placing it in a momentum state kp & Qp. We
choose the integers J as in the ground state. The
numbers I& are chosen as follows:

I&+~ —I& = 1, j = 1, . . . , N —2

Ig -I„q»1 .
(6. la)

(S.Ib)

So we find from Eqs. (2.6)

2zp(k&) = 1+cosk&Z z
g~ u + 16&slnky —~g)

j=l, . . . , N-2 (6. 2)

—Z z . =2«(A )
1 8u

N, q g u +16(sink~ -Ap)
fat 4

1V z+4(A —A )

Separating from Eq. (6. 3) the term with kN = kp

and proceeding to the limit of a large system, we
find for the distribution function p(k) and o(A) the
equations

2zp(k) = 1+cosk dA o(A) z
8u

ss d)o u +16 sink-A
(S.4a)

fQ

dk p(k) „z, 6(,. A)z
= 2«(A)

4u 1
u +4(A —A') Na

8u

u +16(sink A)' '—
It must be recognized that in Eqs. (6.4) p(k) is

the distribution function for N -1 electrons; i.e. ,
it satisfies the normalization condition

From this relation and Eq. (5.6) it is evident that

e(kp) =0 .
00 ~kQp

One can also show by integrating Eq. (3.2a) that

p vanishes in the same limit.
The dispersion curves are found as a function of

&/t by solving Eq. (6) for pf(k) numerically and
using numerical results for pp(k).

dk p(k) =l N-1
-Q a

(e. 5)

~ ~

(7f (~ ')4u 8u

u +4(A -A') u +16(sinkp -A)
(6.Gb)

We find an integral equation for p~(k) alone by
again introducing the Fourier transform of o&(A):

4 4 ~ . 4
»(k) = —cosktt —(sink —sinkp) + —cosk

u u u

x dk'R( —(s' 6 —s k'))S, (k') . (6.6)
I,u

Notice the similarity between the equation and Eq.
(5. 6). The differences are that here I kpl ~Qp and
the inhomogeneous term has the opposite sign.

The energy of the particle state relative to that
of the ground state is given by

e = —2tcoskp —2t f cosk»(k)dk+&p(Q) —&p(Qp) ~

(e. s)
If we relate Q to Qp by the condition that the den-
sity of electrons is fixed, we find

e(kp) = —2t coskp —2t f p dk cosk»(k, kp)
~Qp

—p(1+ f p dkpg(kk kp)) . (s.9)

By manipulations similar to those mentioned in .

Sec. V we can show that

IcosQp+ f P dkcoskp&(k, Qp))

)I . (6. 10)p, = —2t 0

1+f", dkp, (k, Qp)

From this relation it is evident that e(kp)-0 as
kp- Qp.

The momentum of the particle state is related to
the parameter kp by the equation

Ikp

pp(k)dk, kp~ Qp . (6.11)

We can rewrite this in terms of the function F [Eq.
(5. 11)] as

-1N k 4—~ ~+ dk)S(k)E —(s' ks —s( k)) .
2m 2 N, 2m Q u

(6. 12)
From Eqs. (6, 9) and (6. 12) we can examine the
general properties of f as a function of momentum.
Since»(k, kp) = »(-k, —kp) we see that e(kp) is an

We introduce the distribution functions p, (k) and

o&(A) defined by Eq. (4. 3). These distribution
functions satisfy the equations

2z»{k)= cask dA ag(A) z
(

. A), ,
8u

u +16(sink —A)
(s. ea)

dk pg(k) z 16 . A)z =2«~(A)
8u

u +16 sink -~
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even function of ko. Likewise, we see from (6.12)
that p+&(N/N, ) is an odd function of ko. This im-
plies that as a function of momentum e (p) is sym-
metric about a vN/N,

The dispersion curves are found as a function of
U//f by solving numerically Eq. (6.7) for ~(k) and

using numerical results for po(k).

VII. PARTICLE-HOLE EXCITATIONS

We can combine the results of Secs. V and VI
to calculate the energy and momentum of those
states which arise by removing one electron from
a momentum level ko occupied in the ground state
and placing it in a momentum level po not occupied
in the ground state. The energy and momentum of
this state, denoted by e(kg pp) and p(ko pg), respec-
tively, will depend parametrically on the quantities
ko and po, the momenta of the hole" and the elec-

I

tron, " respectively. The energy c(ko pp) is de-
fined as

c(ko, po) = [E(N+ 1,po) -Eo(N)]

-[E,(N) -E(N- l, k, )] . (7.1)

In Eq. (7.1) Eq(N) is the ground-state energy for
N particles, E(N+1, pa) is the energy of that state
which arises by adding one electron with momen-
tum po to the ground state of N electrons, and
E(N-1, ko) is the energy of that state which arises
by removing an electron with momentum ko from
the ground state of N electrons. As ko (or po)

Qp& [Eo(N) —E(N I& ka)] ([E(N+ I& po) Eo(N)])- p, .{p,). The parameters p. and p, were intro-
duced by Lieb and Wu. The explicit expression
for e(ko, po) is

a(ko, po) = 2t cosko —2t cospo —p f [p„(k,ko)+ p~(k, po)]dk —2f f [p„(k,ko)+ p~(k, po)] coskdk, (7. 2)

Using the formalism of Lieb and Wu we have
been able to write down the integral equations de-
termining the dispersion relation for excitations
having either single-particle or spin-wave char-

2t
10

2.0-

2t
1.0

04

0/2 w

06 0

FIG. 3. Electron-hole spectrum for the quarter-filled
band. (a) U/t=2. (b) U/t=4 (c) U/1=8* (d) U/t=~.

where p„(k, ko) and p~(k, po) satisfy Kqs. (5.6) and

(6.7), respectively. The quantity p, is defined in

Eq. (4. 17).
We have calculated the energy e(ko, po) and mo-

mentum p(ko, po) by using numerical results for the
distribution functions p„and p~. We then find a
band of states for the "particle-hole" excitations.
We show in Fig. 3 results for the quarter-filled
band for various values of U/f.

VIII. SUMMARY AND CONCLUSIONS

aeter. We have restricted attention in this investi-
gation to a class of states in which the parameters
k& and A, of Eqs. (2. 2) and (2. 3) are real. This
is an extension of the work of Ovchinnikov to the
situation in which the number of electrons is less
than the number of sites in the chain. The results
are found as numerical solutions to a set of cou-
pled integral equations. Analytic results are given
for some limiting cases.
For the case of the single-particle excitations we

have been able to demonstrate that there is no gap
in the spectrum for N/N, & 1, unlike the result for
the half-filled band (N/N, = 1). Thus, according to
the criterion of Lieb and Wu, the system has the
properties of a conductor regardless of the magni-
tude of U/f. As a consequence one wouM expect a
linear term {-yT) in the specific heat from ther-
mal excitation of these modes. We have graphical-
ly displayed the shape of the single-particle band
for N/N, & 1, and the numerical results indicate
that the shape is relatively insensitive to the mag-
nitude of U/f, at least if U//t~ 1.

Several interesting features emerge from the in-
vestigation of the excitations of the spin-wave type.
We find that the period of the spin-wave excitation
energy is incommensurate with the periodicity of
the lattice unless NJN equals an integer. For
smaH momentum the energy varies linearly with
momentum. This is the type of behavior one asso-
ciates with antiferromagnetic systems. There-
fore one expects a linear contribution {-e„T) to
the low-temperature specific heat from thermal ex-
citation of these modes. This contribution may be
difficult to isolate experimentally from the contri-
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hution expected from the single-particle excita-
tions. It has also been shown that the slope of the
spin-wave dispersion curve for small momentum
is a measure of the inverse of the static magnetic
susceptibility. This relationship, first noted for
the half-filled band by Takahashi, is seen to be
valid for arbitrary electron density.

In attempting to apply the results of these calcu-
lations to the interpretation of the experimental
results one is beset by at least two difficulties.
First, one has only partial knowledge of the spec-
trum of low-lying states. Assuredly there are
other modes, not enumerated, which need to be
considered. In fact, Ovchinnikov showed that for

the half-filled band there exist spin-wave bound
states which certainly contribute to the low-tem-
perature thermodynamic properties of the system.
Second, as emphasized in Ref. 2, there is the un-
certainty of the contribution of each mode to the
thermodynamic properties; i.e. , we don't know
the spectral weight function.
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