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The equihbrium properties of a magnetic impurity in a metal are discussed in the long-time

approximation introduced by Nozieres and de Dominicis for the x-ray threshold problem. It is shown

that the free energy satisfies an exact homogeneity condition, from which it is possible to display

exphcitly the structure of the singularities of perturbation theory in the exchange coupling J as the

magnetic 6eld 0 0 and the temperature T 0. The nature of the Kondo problem is made clear and

it is shown that, for antiferroxmqp. etic coupling, when 0 = 0 and T = 0, physical properties are

expected to be nonanalytic functions of J. To resolve those problems, the partition function is 6rst

shown to be exactly the same as that of a spin-1/2 interacting with a certain txxmn 6eld. The

ground-state properties are then studied by finding a new division of the spin-boson Hamiltonian into

two parts, such that perturbation theory is 6nite term by term. For antiferromagnetic coupling, the

moment vanishes at T = 0 and for weak ferromagnetic coupling, the free moment is only slightly

renormalixed. The partition function is also shown to be equivalent to that of an unusual

one~ensional Ising model. For T +0, the free energy is intensive. For T = 0, the free energy is

extensive and the interaction follows an inverse-square law at large distances but is in6nitely strong for

neighboring spins. The method of solving the spin-beson problem is worked out explicitly for the Ising

model and in this way extended to 6nite temperatures.

I. INTRODUCTION

This paper is concerned with equilibrium prop-
erties of magnetic impurities in metals at lom

temperatures. For lom concentrations, it is suf-
ficient to study the properties Of a single impurity,
and the discussion will be based upon the Kondo

Hamiltonian, ' although the conclusions may also
be applied to the Anderson model, '

by changing
the interpretation of constants. It is mell known

that the characteristic difficulty of this Hamilto-
nian sterna from the fact that, for derivatives of
the free energy, perturbation theory in the cou-

pling between the impurity and the electrons di-
verges term by term as the magnetic field H and

the temperature T tend to zero. The problem is
to find a divergence-free theory from which the
limiting behavior may be obtained. Many elegant
partial-summation schemes have been applied to
this problem, ' but they omit some singularities
and the results are suspect at low temperatures.
Our approach is to work with a scheme which aims
to include all singularities, so that their structure
may be studied in a general way. %e shall show

that this scheme is equivalent to the use of a sim-
plified Hamiltonian for which it is possible to con-
struct a new form of perturbation theory with

every term finite.
The starting point will be the series for the par-

tition function g derived from the Kondo Hamil-
tonian by Yuval and Anderson and from the Ander-
son model by Hamann. The fundamental assump-

tion in both approaches is the "long-time approxi-
mation" used in the x-ray-threshold problem by

~ %

Nozieres and de Dorninicis, and its significance
is discussed. in Sec. II. Our first result concerns
the structure of this perturbation series, which is
an expansion in powers of the transverse coupling
constant J~. In Sec. II me derive an exact homo-
geneity property of the partition function which
enables us to display the singularities in every
order. It is found that the perturbation theory is
finite for ferromagnetic coupling and a moment
exists in the ground state. For antiferromagnetic
coupling the free energy, as mell as its deriva-
tives, becomes infinite term by term in sufficient-
ly high-order perturbation theory as H-0 and
T 0.

In order to proceed further, it is shown in Sec.
IV that a spin--,' interacting with a certain boson
field has a partition function exactly equal to that
derived by Yuval and Anderson and Hamann.
Thus, its HarniltonianX~ is a complete summary
of the content of the long-time approximation in
the Kondo problem, and it allows us to study
ground-state properties directly, without having
to take the tricky limit T-0. In effect, X~ is a
simpler representation of a magnetic impurity in
a metal, and it allows us to imagine different ap-
proximation schemes which avoid the singulari-
ties.

The solution of the spin-boson problem is con-
sidered in Sec. V. It is argued t;hat the singulari-
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ties are consequences of using the wrong starting
point for perturbation theory. An alternative di-
vision of the Hamiltonian into two parts is pro-
posed. For antiferromagnetic coupling, the opti-
rnurn choice removes all divergences and gives the
expected nonanalytic character of physical quan-
tities. Every order of perturbation theory is an
analytic function of H and the rnornent is zero
when H = 0. For weak ferromagnetic coupling the
optimum choice gives ordinary perturbation theory
and a moment which is not very different from the
free value. As the transverse coupling is in-
creased, a point is reached at which the moment
jumps to zero, and the new division of the Hamil-
tonian is required. This "phase diagram" is dif-
ferent from the one obtained by Anderson, Yuval,
and Hamann by an approximate scaling argument,
and we believe that the difference is related to the
use of the long-time approximation, which is es-
sential to the spin-boson equivalence but not the
scaling method. This will be discussed further in
Sec. VII.

In evaluating corrections to the new unperturbed
Hamiltonian, it is found that the series for the
susceptibility or the moment (whichever is finite)
are finite term by term but are not rapidly con-
vergent. The method is thus capable of determin-
ing the "phase diagram" but requires a partial
summation of perturbation theory to evaluate ex-
perimentally determined quantities.

In the course of deriving the relationship be-
tween X~ and the long-time approximation for the
Kondo partition function S, it is shown that Z is
also the partition function of a certain one-dimen-
sional Ising model. This has previously been
pointed out by Yuval and Anderson and was of
interest because the coupling followed an inverse-
square law at large distances, and was a case
which had not been solved. 3 In Sec. VI this prob-
lem is studied in some detail. First it is shown
to have the peculiarity that for T+0, the free en-
ergy is intensive. It can be turned into an exten-
sive problem at T = 0, but only in a limit which is
of crucial importance for the relationship to the
Kondo problem. This limit shows t:hat there is an
infinitely strong near-neighbor coupling which
dominates the problem. Thus we conclude that

mr= r+ " (ata, -a'a )a, + ' (ata a +a'a.o.)

+H gg+ Sfg y (2. l)

where T is the electron kinetic-energy operator
measured relative to the chemical potential,
annihilates electrons of mornenturn k and spin up
(a=+) or down (a= —), and a~=/pa~~, with the
sum being taken over a band of width 2/r ()f is
taken to be unity). The impurity is assumed to
have a spin=-, and its Pauli matrix vector is cr,

with o,=cr„+io„. The S&, are the Pauli matrices
for the z component of the electrons' spin, and

N0 is the number of electrons of each spin in the
s wave. %ith this choice of signs, J))& 0 corre-
sponds to antiferromagnetic coupling and the sign
of J, is irrelevant, since it may be changed by a
proper rotation. Usually one sets J„=JJ J but
the distinction is made here because the two cou-
plings play rather different roles, and this is not
clearly seen in the special case of isotropic cou-
pling. Furthermore, Yuval and Anderson ex-
ploited the fact that, when J~=0, $Czis exactly
soluble, since it then describes an independent-
electron problem, with the potential depending on
the value of o„which becomes a e number. If
the part of K~which is proportional to J& is treated
as a perturbation, it induces transitions between
o, =+1 and og= —1, thereby switching from one
potential to the other. This is reminiscent of the
transition produced by an x ray when it knocks an
electron from a low-lying atomic level of a solid,
and Yuval and Anderson exploited this analogy to
derive a power series for the partition function Z:

the equivalence of the Kondo problem and the ordi-
nary inverse-square Ising model suggested by
Anderson and Yuval requires a further assump-
tion, which is discussed in detail in Sec. VI. Fi-
nally, we show how the approximation of Sec. V
may be derived directly from the Ising model and,
at the same time, extended to finite temperatures.
This work has been described briefly in two ear-
lier publications. '

Il. SERIES FOR PARTITION FUNCTION

The Kondo Hamiltonian X~is given by

g J af5 /aft 3—=2 r dt dtt t dtt edp —r ( —() d(tt —tt)+B Lpt ( —() '
I

(B —2!), (2. 2)
~0 m 2~ 0 0 0 f"-1

T for t, p —t large.sinr Tt (2. 3)
(2. 4)

Here H is the magnetic field, T the temperature,
P= T (Boltzmann's constant has been set equal to

l), p is the density of states, and

~ = —8~/s - 8~'/v',
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where ~ is the one-particle phase shift calculated
from X~with J~=0, H=0, J;, &0, 0,=1. For weak
coupling we have

6- 2Ji)p (2. 6)

The partition function for J~ = 0, H = 0 is denoted
by 2ZO. In Eq. (2. 2) the integrands were evaluated
for long times by using the approximation intro-
duced by Nozieres and de Dominicis for the x-
ray-threshold problem. This gave the specific
form of Eq. (2. 3) and was also responsible for
the simple form of the exponent in Eq. (2. 2),
which is a sum of "pair potentials. The form of
P(f) for short times depends upon details of the
band structure and, when any of the t& —

t& are
small, the exponent in Eq. (2. 2) becomes quite
complicated. All of this is buried in a cutoff to
such that

e'"'=0, t&to or P —t&t, . (2. 6)

It is assumed that the same cutoff may be used in
every term of every order of perturbation theory.
Since p, v, and to are expected to have the same
order of magnitude, Yuval and Anderson used the
same symbol 7' for all of them. We have chosen
to distinguish among them, so that the sensitivity
to density of states, bandwidth, and cutoff may be
studied separately.

Hamann derived Eq. (2. 2) from the Anderson
Hamiltonian, also making use of the long-time
approximation. We shall interpret our results in
terms of $C~, but our conclusions can be applied
equally to the Anderson Hamiltonian by reinter-
preting the constants J~ and &.

The important a,ssumption in deriving Eq. (2. 2)
is the long-time approximation. Its qualitative
basis is that, for weak coupling, only low-energy
excitations are important in the series for Z, and
they correspond to the long-time behavior of the
integr ands. Quantitatively, it is necessary to
show that no singularities of importance have been
omitted. In general, the approximation is accu-
rate when to-0 and it should be good for those
quantities which are insensitive to to, although,
even then, it may prove necessary to include in

P(f) terms which tend to a constant as f- ~, since
they effectively renormalize J~. These are points
which will be considered in the course of the dis-

cussionn

First, however, we shall take Eqs. (2. 2) and
(2. 6) for granted and derive some exact conse-
quences which will enable us to discuss the singu-
larities of the perturbation theory.

III. HOMOGENEITY AND SINGULARITIES OF
PERTURBATION THEORY

In this section we shall show that Z/Zp given
by Eq. (2. 2), is a homogeneous function of degree

and a has to be a homogeneous function of degree
(1 —me). Thus we can rewrite

a (H, to') = n (1, 1/Hto)H" (3 2)

which diverges as H-O, when mE &1, unless f2:

(1, ~) = 0. This latter requirement is not satisfied
in general, since it is equivalent to saying that
integrals become zero when the lower cutoff to is
set equal to zero. Thus we may conclude that,
for & & 0, perturbation theory for the ground state
in zero field is infinite in every order above 2/c.
A similar argument for M, S, and C, which are
of degree zero, would give coefficients proportion-
al to H "' and hence, for & & 0, every order is
singular. These are infrared divergences and an
understanding of their significance is the essence
of the Kondo problem.

The coefficient a (H, to') may also be rewritten

a (H, to ) =s„(Hto, 1) to

and this diverges as to- 0 when me & 1, unless a
is zero for H = 0, which would mean that the term
is missing from perturbation series in zero field.
A corresponding argument shows that M, 8, and
C have these ultraviolet divergences in every or-
der, when c &0 (ferromagnetic coupling). These
are not real divergences, since to is kept finite,
but, where they exist, it is clear that integrals
are sensitive to high-energy excitations and that
the long-time approximation is inadequate.

The above discussion may be repeated for H=0,
TWO by simply substituting T for H. This dis-

zero in the variables H, T, fo, and (Z~) '. This
result allows us to analyze the structure of per-
turbation theory, to show directly that the series
for the ground-state energy and its derivatives
are asymptotic, and to anticipate the form of the
ground-state energy and susceptibility.

The homogeneity may be obtained quite simply
from Eqs. (2. 2), (2. 3), and (2. 6). If T, to', and
H are multiplied by a constant &, and integration
variables are changed from t& to x&= 4&, then the
only changes in Eq. (2. 2) are that (J,p/z)2 is
multiplied by & and that the integration variables
are renamed. The latter change is irrelevant and
the former may be compensated for by multiplying
J~ by X'~ . It follows at once that the impurity
free energy E= —T ln(Z/Zo) is a homogeneous
function of degree one and that the magnetization
M=8F/8H, entropy 8 =8E/8T, and specific heat
C = T (8S/8T) are all homogeneous functions of
degree zero, in the same variables.

First consider the consequences of this result
for T=O. If the ground-state energy E~ is ex-
panded as a series in J~, it must take the form

E = Z a (H, fo ) J~" (3. 1)
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plays the singularities in the zero-field free en-
ergy as zero temperature is approached.

It is clear that, for ma & I, a (Hfo, I) has to di-
verge as Hto tends to zero, in order to produce
the singularity shown in Eq. (3.2). In the same
way, a (1, I/Hto) must diverge for me & 1. The
general argument does not exclude the possibility
that these coefficients diverge for all mc and so
produce stronger divergences than the simple pow-
ers shown in Eqs. (3.2) and (3.3). However, a
number of calculations indicate that this does not
happen g in particular, low-order perturbation
theory for all a, perturbation theory to all orders
for & = 1, 2, and the results of Sec. V support this
assertion. In other words, E» has only infrared
divergences when ma & 1 and only ultraviolet di-
vergences when ma & 1. For M, 8, and C, the
dividing line occurs at a = 0, and there are no in-
frared singularities for ferromagnetic coupling.

The divergences in the ground-state energy have
not previously been discussed, because it is tra-
ditional to expand in powers of e as well as J,.
Equation (3. 2) shows that such an expansion would
be finite term by term as H-0, since the singu-
larities are of the form H(lnH)". Treating c ex-
actly makes it clear that for & & 0 E» cannot be ex-
panded in powers of J~ and that there should be a
nonanalytic contribution of order P„where p is
the smallest power for which a divergence occurs.
Thus we expect a nonwmlyticity J, ', and this is
exactly what we shall find in Sec. V.

For z & 0, to=0, homogeneity implies that the
magnetization series is

(3.4)

The reason for the Kondo problem is now clear-
M is a function of JJH' and perturbation theory
in J, is quite inappropriate for determining the be-
havior in zero field. The method described in
Sec. V effectively "inverts" this series to a func-
tion of H/JP'. Equation (3.4) also shows that the
value of M in the H-0 limit is independent of J,
and, if it were possible to solve the problem for
a particular value of J~, with E arbitrary, then
M(H = 0) would be known for all J, . It is tempting,
for example, to consideg large J~, but this is not
strong coupling in the usual sense and care is
needed in taking the limits to 0 and J~-~.

These considerations are well illustrated by
second-order perturbation theory for the free en-
ergy which may be derived from Eqs. (2. 2) and
(2. 3):

The susceptibility may be obtained by diff erentiat-
ing E twice with respect to H, setting to=0, and
writing x=Tt to give, for & &0,

(Tv)' 0 (sinwx) ' (3. 6)

For ferromagnetic coupling (e & 0) the second-or-
der term tends to zero as T -0 and X is not very
different from a Curie law. Treating a exactly
has removed the Kondo divergences. For anti-
ferromagnetic coupling the second-order term
diverges as T- 0 and is of order unity when T
=T,= (Jp)-'/Iv, where I ' is v ' times the inte-
gral in Eq. (3. 6). For Jp=0. 2, for example, this
temperature is about 10% of the Kondo tempera-
ture Tr and, for T = Tr, Eq. (3.6) is a good ap-
proximation to the numerical values obtained by
Schotte and Schotte. For very much smaller Jp,
higher-order terms in the series are expected to
build up and modify the scale.

Setting T = 0 in Eq. (3.5) gives the second-order
ground-state energy:

E H I dg RHc (3. I)

which explicitly shows the infrared divergence for
& & 1 and the ultraviolet divergence for z & 1. When
«0 the magnetization in zero field is, for t=7,

(3 6)

It may be verified that the terms of order J," have
a coefficient proportional to e ~ " for small &, so
that, for weak isotopic coupling, they are of or-
der J, and can be summed' to give M=1+-,' Jp.

It is clearly essential to have a method of solu-
tion which does not depend on perturbation theory
in J~, when H-0 and T-O. In Sec. IV it will be
shown that there is a Hamiltonian for which Eq.
(2. 2) gives the exact partition function. This will
enable us directly to introduce a nonperturbative
approximation for the ground state while still re-
taining the simplicity of the long-time approxima-
tion.

IV. SPIN-BOSON RFPRESENTATION OF PARTITION
FUNCTION

In this section it will be shown that a spin in-
teracting with a certain boson field has the series
(2. 2) as its exact partition function. The Hamil-
tonian X~ of such a system therefore is a com-
plete statement of the long-time approximation
as applied to the series. The Hamiltonian is

Xs=Z(u~bP„+Q V~(b~~+b~) a,
k k

ho -Hg (4 1)

where bk creates a one-dimensional boson of mo-
mentum k and

(3. 5)

F= —Tln coshPH —T(J,p/2~)~; dt(P f)—
" to

~~

«Tv ~' coshH(P —2f)
X

sinmTt coshPH
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(0» = )t/p

V» p = (1 ——,
' » ) k/2' (k & p/v),

V'„p'= O (» p/v) .
It will be shown that if Z~= Tr e ~~ and Z~o is
the value of Zs when f» = 0 = H, then Z s/Z so is
equal to the right-hand side of Eq. (2. 2) with $(f)
given by Eq. (2. 3) for large t T.he coefficient 6
is J'~ multiplied by a constant to be determined
later. For small I, P(t) will be different from
Eq. (2. 6), but that was in any event just one of
several possible ways of cutting off. A derivation
of this equivalence has been given by Blume,
Emery, and Luther' and the argument will be
repeated here for completeness. In the course of
the derivation, it will be shown that Z/Zo is also
the partition function of a peculiar one-dimension-
al Ising model, whose properties may also be
discussed together with those of the Kondo prob-
lem. This will be considered in some detail in
Sec. VI.

A physical feeling for K~ may be obtained by
considering the Tomonaga model, ' which treats
longitudinal spin-density operators as bosons. If
this model is applied to X„, it may be canonically
transformed, ' into Eq. (4. 1), except that the
boson operators have a polarization index o. As
shown in Ref. 8, n may be omitted if a factor ~2
is included in V~. However, we emphasize that
we do not rely in any way upon the assumed valid-
ity of the Tomonaga model; it is merely used to

give a physical picture. Our procedure is to give
a formal evaluation of Ze/Zeo and to relate it di-
rectly to Eq. (2. 2).

To evaluate Z~, we first introduce a discrete
ordering label' n such that

Z~ —lcm ZN,
N~~

where

(4 2)

Zg= TrTexp — —Zk„M„M„, ~ ~ M, ,
P

(4. 5)

M„=exp — —(V~, —ha, )
P (4. 6)

In Eq. (4. 5) the spin operators have been ordered
explicitly and T has only to ensure that the rela-
tive orders of K„and V„are correct. Thus the
ordering labels have been omitted from O„and cr,
in Eq. (4.6).

Since we shall ultimately let N-~, it is suffi-
cient to work to leading order in N in the expo-
nent and to rewrite

pZ„=Tr T exp — — Z (E„+V~,„—do,„-Ho, „)
n~&

(4. 4)
and T is an ordering symbol which requires oper-
ators with larger n to stand to the left. We have
written E=P»&u»b»b» and V=/» V»(b, +5»). When
N-~, Eq. (4. 4) becomes the more familiar time-
ordered product. Now Z„may be rewritten

P

1+—o„exp- —V„o, =exp ~ln +
Ph

(4 7)

The sign of 6 is unimportant and it has been as-
sumed to be positive. Apart from the factor
exp [-,'In(pd, /Ã)], the right-hand side of Eq. (4. 7) is
just the unsymmetrized form of the transfer rna-
trix' for a one-dimensional Ising model with tem-
perature set equal to unity. There is a site-de-
pendent magnetic field (- PVQN) and a near-neigh-
bor interaction —,

' In(Ph/N). Therefore Eq. (4. 5)
may be rewritten as an Ising partition function:

Zg = Tl Texp E~

x Z exp ——Z V„p„+Z —(1 —i»„i»~,)ln—P "1 Pg
(ga„) Nn-~

(4. 6)

where the trace is now to be carried out over the
boson variables, the p. , takes values +1, and peri-
odic boundary conditions are imposed so that
&pr+j. = &a ~

Since V„ is linear in the b~ and b~, it is straight-
forward to carry out the remaining trace over bo-
son variables to obtain

= Z exp ~~ 5 & ~ p~)», ++ 2(l —P»P~x)ln N
+ ~~ &»

Z„P' " P(~ n) -" 1 P~ L)H'

80 ( fl g~ - %~f1 N n*1

(4. 9)
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where Z30= Tr e and

a(t) = —Z V~ (e t'"+ 2n„cosh&a, t) (4. 10)

(4.12)

The right-hand side of Eq. (4. 9) is the Ising-
model partition function. This will be discussed
in detail in Sec. VI and, for the present, we shall
continue with the derivation of Eq. (2. 2).

We wish to rearrange Eq. (4. 9) as a power se-
ries in d. For this purpose, we specify a config-
uration of spins by introducing

is a configuration in which p., =+ 1 and the n„give
the positions at which the spin changes sign. The
periodic boundary conditions require that there is
an even number of sign changes, as assumed in
Eq. (4. 11). The sum over configurations is now

completed by summing over all M and over all
sets n„ for each M. For every M

@s(t)=1 (ta, &t«tm~g, v=0, 1, 2, . . . M)
Z g (1 —p, pnme) = 2M

~ (4. 13)

(ta,„&t ~ tp ~, v = 0, 1, 2, . . . M —1)
(4. 11)

and t„= (Pn„/N), tm„,&
= [P(X+1)/N]. Then,

so that the near-neighbor term in Eq. (4. 9) re-
duces to a factor (Pd/N) and, as N- ~, the rest
of the exponent in Eq. (4.9) becomes

Then,

2N

Z[e„]= d«t'II(t t')4-(t)4 (t')+&+( )I"-'2t+P&
"0 0 P~i

Z pg 2N'= Z Ii Z N
e'""'+(II -&)

Za0 V 0 N- )PI1&n2& ~ &@~
~e t2m tt2

dt2s dt2Af 1 ' 1
g.0 0 0 w0

(4. 14)

(4. 15)

where we have added in the set of configurations in which p, , = —1.
Now, integrating by parts,

~B B 8
dt dt' B(t —t')4s(t)4s(t') = PQ ~- dt dt C(t —t')4'„(t)4'„(t'),

"0 0 a ~a 0 0
(4. 16)

C(t)= —Z + (e "" +2n, coshurg)
1 P -td Itl (4. 17)

(2. 3). For T=O, Eqs. (4. 2), (4. 17), and (4. 19)
glv e

(4. 20)

4'„(t) =

= 2 0 (-1)"6(t t„) . — (4. 18

Now perform the I; and t' integration on the right-
hand side of Eq. (4. 16), and convert the resulting
double sum over the time imbces to an ordered
sum as in Eq. (2. 2). This leads to

8 p(t) = C(t) C(0)

and establishes the identity between Z and Z~,
provided 6 is properly related to O', . Changing
sums to integrals, (1/N0) p„- Jdk, and evaluating
the result for long times, ' it can be shown that
the time dependence of Eq. (4.19) agrees with Eq.

where y is Euler's constant and Ei(-x) is the ex-
ponential integral. Thus, to agree with Eqs. (2. 2)
and (2. 4), it is necessary to take

y(1m/2) ~J.P
2T (4. 21)

The existence of the factor e "' is partly a conse-
quence of the fact that similar terms were dropped
in the original derivation of Eq. (2. 2), in making
the long-time approximation. With this factor, of
course, we have Z=Z~ and we retain it to assess
the possible importance of such terms which are
properly beyond the long-time approximation.

This completes the derivation of the relationship
between X~ and K„in the long-time approximation.
In Sec. V we shall carry out a direct calculation
of the ground-state properties of WC~.
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V. ZERO-TEMPERATURE SOLUTION OF SPIN-BOSON
PROBLEM

In this section we shall consider the solution of
the spin-boson problem introduced in Sec. IV. As
shown in Sec. III, the interesting singularities
occur when H-0 and T-O, so we shall calculate
the ground-state energy. The object will be to
find a division of the Hamiltonian into two parts
which gives a finite and rapidly convergent per-
turbation theory.

A. Zero-Order Solution

If 4 = 0, K~ may be diagonalized by a canonical
transf ormation,

X'=e-'"X e' ~,8 B

where

S=Zf, (b, —b,)

(5. I)

(5. 2)

/ I I
Kg =No+Kg

where

o=~(~»f» 2V»f»)+~~»b»b»

(5. 3)

& =Z(V„—,f,)(b,'+b„),——( g,+e" ) .
(5. 5)

We should like to choose fk so that perturbation
theory in 'K,' converges as rapidly as possible.
Also, for H =0, the ground state of Xo is degener-
ate, since it is independent of the spin part of the
wave function, so,if K,' splits the degeneracy in

and f„=V»/&u». This would be the first step in
carrying out perturbation theory in 6, which would
lead to all of the divergences described in Sec. III.
On the other hand, when V, =O, but h, 0, the Ham-
iltonian is diagonalized (so far as the bosons are
concerned) by f»=0. This suggests that, in gen-
eral, it may be more advantageous to choose f,
somewhere between 0 and V»/&u».

It should be stressed that our objective is to ob-
tain a convergent perturbation theory and not nec-
essarily to obtain a good approximation in lowest
order. The choice of canonical transformation
has been restricted to functions of (b„—b~»)o„
which preserve the invariance of X~ under simul-
taneous change of sign of o, and the bk. It may be
possible to obtain a lower zero-order ground-state
energy by violating this symmetry, but this is un-
acceptable and fails to deal with the problem of
divergences, which requires that the proper re-
lationship between o, =+ 1 and o, = —1 be main-
tained. This is confirmed by the solution of the
Ising model in Sec. VI, since it treats the bosons
exactly.

The transformed Hamiltonian may be written

lowest order) we must take part of 7C,
' into the un-

perturbed Hamiltonian. All of this may be
achieved automatically by choosing a trial state
equal to the boson vacuum ~0) multiplied by an

arbitrary spin state, and minimizing the expecta, -
tion value of 3C~. The trial state is the general
ground state of Ko. Minimization with respect to
the spin state solves first-order degenerate per-
turbation theory, and the higher-order corrections
are then made as small as possible by minimizing
with respect to f„since the trial energy is then
as close as possible to the true energy.

Using Eqs. (5.4) and (5. 5), the vacuum expec-
tation value of K~ is

(Oix', io&=Z( g', -2v„f, )

-Hg, -g„h exp —2 &, 5. 6}

and the variation of the spin state is equivalent to
diagonalizing this (2x 2) matrix. Its lowest eigen-
value is

E =Q ((d»f »
—2V» f») — H + 6 exp —4Zf »

k

(5. V)

Minimization with respect to f» now shows that f„
has the general form

f»= V»/(~»+D) . (5. 8)

When D a0, Eqs. (4. 2) and (5. 8) show that
exp(- 2$» f»») e0, which means that the degeneracy
is split and, for H =0, the spin points in the x di-
rection. This does not imply a broken symmetry
for Xz, because comparison with the Tomonaga
model shows that the ground-state wave function

(g„) of X» is analogous to
t/»

~0„)=exp o,Q (b', -b, ) ~g, ), (5. 8)
k

where )gs) is the ground state of Xs. Taking
(gs) equal to exp(So, ) IO) times an eigenvalue of
o„Eq. (5. 9) shows that (gx(cr, ({ix) is
exp[ —2$»[f» —(2/kNo)' ] f, which is zero be-
cause the sum in the exponent diverges.

When DWO, the ground state of Xo is orthogonal
to the ground state for D = 0, which is the starting
point for ordinary perturbation theory. Their
overlap is proportional to exp[- —,

'
g» (f» —V»/&u») ]

and the sum in the exponent diverges. This is yet
another indication of the singular nature of the
problem.

Minimization of Eq. (5. 7) with respect to f»
also gives an expression for D but, if there are
several solutions, the simplest way to find the one
which gives the lowest energy is to substitute Eq.
(5. 8) into Eq. (5. 7) and to consider the energy as
a function of the single parameter D. If Fo is the
energy at D=O, H=O then Eqs. (4. 2), (5. '7), and
(5. 8) give
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4 j.+De'

1/8
vA 2 D& (148v) ~
Sx +6 ~--D e

(5. 10)

and, for this value of D,

dE/D, = ——,
' e —H (5.19)

On the other hand, for D=O, ~/DO=-H, and this
gives the lowest energy when H exceeds the criti-
cal value H„where

l. Antiferromagnetic coupEing e & 0 H~ =
~ f + O(t ) (5. 20)

First consider H= 0 and assume Dv is small.
To lowest order, Eq. (5. 10) becomes

nE = ,' (2--e)D —d, (Dve)'

which has a minimum at D =Dp, where

or, from Eq. (4. 21),

D, = (Z,P)"'/y,

(5.11)

(5.12)

(5. 13)

where p= pe'""' and 7=v '"'. Thus Dpv is indeed
small for weak coupling and Eq. (5. 11) is a good
approximation to Eq. (5.10). If the factor e ~~

had been omitted from Eq. (4. 21), then Do in Eq.
(5. 13) would have been bigger by a factor e". This
indicates that, to obtain accurate numerical re-
sults, it is necessary to include constant terms in
the evaluation of p(f) for Eq. (2. 2).

Substituting Eq. (5. 12) into Eq. (5.11) gives

~= -4 &Dp (5.14)

which is the nonanalytic function of J, anticipated
in Sec. III.

Since E is stationary with respect to variations
of D, it is not necessary to determine D for H WO

in order to obtain the magnetization M = —(SE/
BH)s p and from (5. 10) it follows at once that M
= 0. Similarly, the susceptibility is given by

(5. 15)

However, we shall see later that this is not an
accurate calculation of X, since there are impor-
tant corrections coming from higher orders.

To consider Hw0, we again work to lowest order
in Dr and so simply restore H to Eq. (5. 11) and
write it in the form

At this field, D jumps discontinuously to zero, and
in this lowest order, M jumps from zero to unity.
However, it will be seen that it is necessary to in-
clude all orders in perturbation theory to deter-
mine the magnetization at finite field. There is
then no reason to believe that M is discontinuous;
rather, it is the optimum starting point for per-
turbation theory which changes. Since H 00, there
are no infrared divergences when D becomes zero.

2. Ferromagnetic coupling

When c & 0, Eq. (5. 11) shows that 8E/8D & 0 as
D- 0+. Since D& 0, there is a local minimum at
D=O, and, for weak coupling, this gives the lowest
energy. This will lead to ordinary perturbation
theory in 6,, as anticipated in Sec. III. For D= 0,
Eq. (5.10) gives M= 1. It is also of interest to
consider mathematically what happens when bp is
not small. In that case, band-structure effects
are important, but the results should be qualita-
tively correct. For this purpose, it is necessary
to use the full equation (5.10) for ~. This has a
second minimum and, for each z, there is a criti-
cal value 6, above which the second minimum gives
a lower energy. The phase diagram is shown in
Fig. 1. The critical line h = d, (c) is AB and above
that line DO and M=0. This is quite similar to
the phase diagram for a second-order phase tran-
sition which becomes first order. ' D changes
continuously across OB but discontinuously across
the line AB. The value of h, (0) may be obtained
analytically, since it is the value of I for which

~/Do= —,'(2 —e)D —(H + —,'D ') i

where

(5.16)

D=D/Do H=H/Do (5. 1V)

D= 1 —4H/e+O(H ) (5.18)

In this form, the homogeneity discussed in Sec.
IG is evident, and it is possible to expand in pow-
ers of E and H. For small H the minimum occurs
when

r
0 II

F~G. i. I hase diagram in [J)i Jj plane using varia-
tional solution of Sec. V. For antiferromagnetic coupling,

J~) & 0. The shaded region corresponds to a finite moment.
The point 8 occurs for J~p =exp- (1+pJ. The transition
from M=0 to M & 0 is continuous across OB but discon-
tinuous across AB. J„, J~ are defined in Eqs. (2. 4) and

{4.~9).
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D = 0 becomes an unstable solution at & = 0. Equa-
tion (5.11) gives 6,(0) = (2ev) '. Although most of
the line AB depends upon the details of the band
structure, 6 (0) does not. From Eq. (4. 21) the
critical value of J~p at 8 is e ' ~'=0. 21, which is
about the value expected experimentally, although
8 is not a physical point since one expects the
coupling to be isotropic. The phase diagram dif-
fers from that obtained by Anderson, Yuval, and
Hamann by an approximate scaling technique.
They found that the dividing line between M = 0 and
M = finite was the isotropic ferromagnetic line.
However, both agree that, for isotroPic coupling,
there is a moment for «0 but not for & ~ 0.

B. Perturbation theory for ground-state energy

%hen D+0, X,' splits the H=O degeneracy of the
ground state of Xo, and this is why the magnetiza-
tion is zero. %'e shall now see that it also re-
moves the infrared divergences in perturbation
theory by putting a gap between the initial-state
and intermediate-state energies. The unperturbed
Hamiltonian is K() —6 (Ole )0)o„, which is solved
exactly by the trial wave function I(()0&, and the
perturbation is K,'+ 6 (0 [e (0 ) o„which has no
diagonal matrix elements in ((()()&. Using Eqs.
(5. 4) and (5. 5), the contribution to the energy from
second-order perturbation theory is

)) = —m~E ((—r)E(v — g, ) (f, —
~~)

—(( —-g) 2 J d(c ()).
(5. 21)

A =H +6 (Dye) (5. 22)

C (f)= (O~e' "'e'
~

0&+(O~e

x.--)0& [(0[, ')0&('(l, l). (5. 23)

Here S(f) is the operator S, time evolved with the
free boson Hamiltonian $~(d, btsbs, so that, using
Eqs. (4. 2), (5. 2), and (5.8),

(0
~

ess(f)e«8$
~

0 )
/T

=exp —2 —6 dk g 1+8
k+Dp

(5. 24)
When D+0, C (I) I, and -C,( )-II for large I,
and the time integrals in Eq. (5. 21) converge for
all & ~ Thus the divergence in E2 which occurs
for D= 0, & & 1, as shown in Sec. ID has been re-
moved. At e = 1, E2= b,z po lnD07' for small I in
agreement with the exact solution, which is known
for small v. Near to & = 2, Es is negligible, and
it may be verified that the variational energy is
correct by comparison with perturbation theory
in V~ or with Wigner-Brillouin perturbation theory
in 6, evaluating all orders for small values of
(e —2). When «& 1, the variational energy is quite
small, and E2 is the dominant term. In fact, one
can set D=0 in evaluating E2 in this range of e,
since there are no infrared divergences and the
correction produced by Do is negligible. However,
D 0 is essential in evaluating any infrared diver-
gent term. In the energy, this means every order

greater than 2/c, and in M, S, and C ail orders
for c & 0. In calculating any property of the sys-
tem, it is essential to evaluate terms in the per-
turbation series to see which order gives a good
approximation. Since the energy requires second
order when «& 1, the variational wave function is
not necessarily a good approximation to the true
wave function„ it is merely a good starting point
for pertubation theory.

C. Magnetic properties at T =0

The second-order contribution to the magnetiza-
tion is given by —8Es/8H and, for D = 0, this
agrees with Eq. (3.9). However, for DWO, C (f)
-f and C,(f)-f for large f and this, together
with the factors e o' ensures that there is no
divergence. This feature persists in higher or-
ders of perturbation theory: Every order is finite
and is an analytic function of H . Thus the zero-
field magnetization vanishes, term by term, and
the zero-order conclusion that the moment vanish-
es is unchanged.

Corrections to the susceptibility, however, are
not small. In zero field, the second-order con-
tribution to X is given by ps = 2(8E,/sff')„„, and
it is easy to see from Eqs. (5.21)-(5.24), by
changing variables of integration, that X2 is of the
form )(),(e) (2/Do), which is gs(e) times the zero-
order susceptibility. A similar result is obtained
in each order of perturbation theory, and these
corrections cannot be neglected unless the g„(e)
are small. In fact, (ts(e) will contain terms pro-
portional to a for small E. They come both from
the variation of D with H) as shown in Eq. (5. 18)
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and the time integrals in Eq. (5.21). Thus, when
E is small, the correction is bigger than the lead-
ing term [given by Eg. (5.15)]. This could have
been anticipated from the discussion of Sec. HI,
since there are additional factors like &' ', which
do not occur in Eq. (5. 15) and must come from
perturbation corrections, so that successive terms
in the perturbation series will become larger and
larger. It should be stressed that, in contrast to
the original perturbation theory, each term of the
series is finite and the problem is to get an ac-
curate value for the coefficient of Do'.

VI. IS1NG MODEL

for
(6. 1)

i.e. for sufficiently long range, we have an in-
verse- square interaction.

However, this is not the usual kind of Ising mod-
el for finite P, since the free energy has to be
finite in the limit N- ~. This follows from the
fact that the exponent in Eq. (4.4) simply becomes
an integral in this limit. As an example, if V~ = 0,
the right-hand side of Eq. (4. 7) is simply
1+ (Pn, /N)o„, which has eigenvalues 1+Ph/¹ In
the usual way the partition function is given by

TrM"= 1+—+ 1 — =e +e . 6 2s~ -s~
N N

In contrast to the usual extensive Ising model,
both eigenvalues of the transfer matrix contribute
in the thermodynamic limit, and the fx ee energy
is independent of ¹ The significance of the near-
neighbor term may be seen in another way. Sup-
pose 4 0, with V~ finite. Since the result must

In this section we wish to discuss the one-di-
mensional Ising model derived in Sec. IV and

given in Eg. (4.9). The solution of the spin-boson
problem described in Sec. V will be formulated
directly for the Ising model. This will enable us
at the same time to illustrate the general nature
of the Ising model and to obtain the finite-temper-
ature version of the variational solution. This
latter could, of course, be derived directly from
X~, but that is unnecessary since it will appear
as a natural by-product of the discussion of the
Ising model.

First, however, we consider two limiting cases
to illustrate the peculiarities of the problem. The
Ising Hamiltonian corresponding to Eq. (4. 9) has
a near-neighbor coupling —,

' ln Pn/N and a long-
range interaction (P /N ) B[P(m —n/N]. From
Eqs. (2. 3), (4. 17), and the fact that B(f)=d C/df,
it is clear that, when 7=0,

$ (}}(m
—

}) (2
—

a)

——Z (1 —p„p~,) Inan,1 (6. 3)

which is an extensive Ising Hamiltonian. If the
free energy per spin is fz(a), then the ground-
state energy shift in the Kondo problem is given by

lim} f, (a) = Itm-N . f~(a)
e-0 P

(6. 4)

Now the essential role of the a-0 limit may be
seen. From Eq. (6. 1) the long-range term is an
inverse-square law only if )m —n )» r/a, i e. , .
at infinitely long range when a 0. Also the near-
neighbor coupling lnah --~ as a-0; i.e. , it is
ferromagnetic and infinitely strong. Clearly then,
the near-neighbor term is likely to dominate the
problem and one is far from a simple inverse-
square interaction. In fact, we shall see that
both terms come into play and the limit has to be
taken with some care. "

We now turn to a derivation of the solution given
in Sec. V, directly from the Ising model, where
these points may be illustrated more explicitly.

We make use of the thermodynamic variation
principle, ' which states that the free energy Ez
of the Ising Hamiltonian 3C~ satisfies

&g-Fro+((&r-&n})}o (6. 5)

where X&0 is a trial Ising Hamiltonian, E~o is the
corresponding free energy, and ((O))o
= Tr6 e ~ ~}for any operator O. (The "tem-
perature" in the one-dimensional problem is set
equal to unity. ) We now consider H= 0, for sim-
plicity, and take

1 PD
Kgo= Z

2
(1 —p„p„g) ln

2N
(6. 6)

that is, it is the Hamiltonian 3Cz with B set equal

be finite, it is necessary to have p,„=+1for all
n or p, „=—1 for all n to make the coefficient of
InPn/N vanish in Eq. (4.9). In either case the
sum involving B becomes foodt Jodf B(f —f') as
N- ~, and again this is independent of ¹ Both of
these results may be obtained directly from X~.

If P- ~, it is possible, with some care, to re-
arrange the Ising model to an extensive form.
Care is necessary because there are two limits,
P-~ and N-~, and, since the ratio P/N occurs,
we have the classical example of limits which
cannot be interchanged. From the derivation it
is necessary to let N-~ first, because for fixed
P the manipulations with the aid of the discrete
ordering label are exact only if N- ~. This order
may be achieved by setting P= a N, taking N-~,
and finally a - 0. The exponent in Eq. (4. 9) be-
comes -Xz(a), where

N

X,(a)= —ao ZB (a(m —n)) p
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&, = 1 a (PD/2X) (6. 6)

are the eigenvalues of the transfer matrix [set V„
= 0 in Eq. (4. 7)]. As explained above, for the non-
extensive case (P finite) it is necessary to keep
both roots. To evaluate Eq. (6. 5), we need the
correlation function

(~/x p- (x/~) '-~
&& p( jig»o=, ~ i~,g, j& i. (6. 9)

].+ (X y'X.,j
We first consider the extensive case, P/N = a and

P and N- ~. From Eqs. (4. 7) and (6. 5)-(6.9),

E= nD n~~ = —ln + ——ZB [o(m —n)]
N 2 N

~ ~

1+-,' na -' -"' nu 2s
x ', — ln . (6. 10)

Then by Eq. (6.4) the ground-state energy in the
Kondo problem is

—D 2h
lim - 1+in ——2 dte 'B(f) (6.11)~.0 nÃ 2 D 0

and minimizing with respect to D

D = 26 exp ( —4 f~ &« 'f B(t) } . (6.12)

Using Eq. (4. 10) with T =0, this is the same equa-
tion for D as obtained by minimizing Eq. (5. 7)

to zero and 6 replaced by ~D. This says that it
is a good starting point (and, for some z, a good
approximation) to keep only the near-neighbor in-
teraction and to ignore the long-range term. The
free energy I'~0 may be obtained by the standard
transfer matrix method

F,o/N= —(1/N)ln [&,"+&."]
where

with H=0, and the ground-state energies are the
same at minimum. From Eq. (6. 12) it can be
seen that it is the large-t behavior of B(t) which
determines how the right-hand side varies for
small D. This supports the use of the long-time
approximation. Furthermore, since B depends
upon V„ it follows that, for D=2h, the right-
hand side of Eq. (6. 11) is just second-order per-
turbation theory in V, and Eq. (6.11) shows that
it is an upper bound for the ground-state energy.
Of course, by varying D it is possible to obtain
a much better bound, in general.

The derivation of Eq. (6. 12) illustrates the es-
sential nature of the limit n 0. Without it, we
should not obtain the same energy as the spin-bo-
son Hamiltonian and, furthermore, the approxi-
mation on the Ising model would not be believable.
This is because we have assumed that the near-
neighbor correlation functions give a good trial
density matrix, which is plausible in the limit
n- 0, since the near-neighbor coupling becomes
infinite [see Eq. (6.3)].

For T w0, it is necessary to let N-~ in Eqs.
(6. 5)-(6.9), keeping P finite. Both eigenvalues
of the transfer matrix must be kept, since the
Ising model is intensive. The free energy I" for
the spin-boson Hamiltonian is EI~~ and, from
Eqs. (6.5)-(6.9),

~E & PD

p K p
~=/ =-—ln cosh—

2

2g 48 e Dt+e &8 t)D

2
ln — dt B(f) gp, (6. 13)

0 1+8

which reduces to Eq. (6.11) as P-~. This is a
finite-temperature form of the variational princi-
ple of Sec. V.

Equation (6.13) may be rewritten

1 Pl%~ D 2h 1 + 2 1 —coth-,' P&u, tanh-,' PD 1+coth-,' P&u, tanh-,' PD (6. 14)

from which the finite-temperature properties may
be calculated. A similar derivation of the connec-
tion between the Kondo problem and a one-dimen-
sional Ising model was given by Anderson and
duval. However, they set n=7 and then, by
choice of J„mere able to remove the near-neigh-
bor term and obtain the particularly interesting
case of an inverse-square interaction. %'e have
shown here that the limit n —0 is required by the
proof, and hence the Kondo problem and the in-
verse-square Ising model are equivalent only if
the existence of a phase transition as well as its
associated singular behavior are independent of
the value of n even when n-0. Arguments based

upon "universality" lead one to believe that, if a
transition occurred, the associated singular be-
havior would be independent of n for finite n. In
other words, on scaling and eliminating the short-
range couplings, one is eventually led to a limit-
ing Hamiltonian which is independent of the de-
tails of the short-range couplings. However, it
is also necessary to show that this limiting pro-
cess can be interchanged with the limit n -0.
Since, when n-0, there is an infinite near-neigh-
bor coupling and also the point m -n = v/n (at
which the inverse-square law begins) tends to in-
finity [see Eq. (6. 1}], then the Hamiltonian is
drastically different from that for finite n and it
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seems unlikely that the required universality
exists in the limit a-0.

VII. CONCLUSIONS

%e have shown how the general nature of the
singularities of Kondo problem may be displayed
explicitly with the aid of the long-time approxi-
mation. By considering the equivalent spin-boson
problem, we have determined the phase diagram,
shown in Fig. 1, which gives the regions in the
(J;, , J~) plane in which the zero-temperature mo-
ment M is finite or zero. In contrast to the usual
perturbation theory, we obtain series which are
finite term by term for M (when M +0) and for X

(when M = 0). However, in both cases, it is neces-
sary to do a partial summation of perturbation
theory in order to obtain an accurate value for
these quantities.

Our phase diagram is not the same as that ob-
tained by Anderson, Yuval, and Hamann. The
difference appears to lie in the use of the long-
time approximation. This is quite essential for
the derivation of the spin-boson Hamiltonian, and

the equivalence of XA; and K~ requires that the
cutoff to-0. On the other hand, the scaling meth-
od of Ref. 5 was based upon Eg. (2. 2) but made
no essential use of the long-time approximation,
since it has been shown to be equivalent to the
renormalization-group equations for 3C & in lowest-
order perturbation theory. '~ Now the homogeneity
relation derived in Sec. III shows that, for H = 0,
T = 0, J,p and to occur in the combination (J,p)
x (fop)' ~, so that if one let fo- 0, keeping p and v'

fixed, the phase diagram for X~ would become
the same as Fig. 1 for small J, . Thus the phase
diagrams are the same in the limit in which 3C„
and X~ are equivalent but appear to be different
for to= ~. It should be emphasized that the com-
parison with the scaling theory refers only to the
phase diagram. No calculation of the suscepti-
bility, specific heat, resistivity, etc. , was made
in Ref. 5.
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