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In the background of the failure of the simple crystal field theory to explain the spin-orbit splitting

and the Zeeman effect of the ground ( T, ) and the excited ('T, ) levels of Mgo:Co'+, the dynamical

Jahn-Teller effects —or, in. other words, the vibronic interaction: me shown to explain consistently and

satisfactorily all the experimental observables. The theory is worked out in the approximation of the

cluster model. Because of the difference in the relative imporance of the Jahn-Teller energy (EIr) and

the spinwrbit coupling strength for the two levels, a numerical solution of the problem is necessary for

'T&~, and for 'T,
~ one can use Ham's theory directly. Besides showing the importance of the vibronic

interactions, this analysis brings out two features: First, the effective frequency (coE) of the Eg mode of
vibration of the cluster interacting with the electron orbital is same for the ground and the excited

states; second, the effect due to covalency is less important than assumed earlier. The analysis is

extended to compare the results on KMgF, :Co'+. Conclusions that are arrived at regarding the values

of co~ and E~ and covalency effects are physically justified for Mgo as well as for KMgF, .

I. INTRODUCTION

A considerable amount of experimental work has
been done on the triplet orbital level of paramag-
netic ions in octahedral crystals which confirms
the importance of the dynamical Jahn-Teller (JT)
effects as developed by Ham in such systems. ' "
In the present work we are interested in studying
the importance of the vibronic interactions in both
the ground and the excited orbital levels, T~~ and

Tm~ respectively, of MgO: Co '. The study is
made within the limitations of the molecular-clus-
ter model, where a localized mode of vibrations
with a definite frequency is assumed to be effective
in the orbit-lattice interactions of the impurity
ion. In fact, the studies of the dynamical JT ef-
fects which have been undertaken so far amount
principally to a quantitative assessment of the JT
energy (Err) and the effective frequency (sr) of the
particular mode of vibration of the molecular clus-
ter which interacts with the orbital motions of the
impurity electron. In actual calculations attempts
have been made to interpret the experimental re-
sults, considering at most two effective frequen-
cies of vibration' of the molecular cluster instead
of one particular frequency. Only recently, when
the fruitfulness and success of the cluster model
are generally accepted, is interest taken in ex-
plaining the effective frequencies of vibration of
the molecular cluster in terms of the vibrational
modes of the lattice. ' The present study of the
vibronic interactions in the ground and excited or-
bitals of Co ' in the same lattice permits us to see
if the effective frequency of the localized mode of
vibration of the cluster changes for the two orbital
states, which might arise from changes in the

force constants induced by the second-order term
of the orbit-lattice interaction. This is interesting
because for the ground orbital triplet T,~ the vi-
bronic interaction is expected to be small, '~ where-
as optical results and their qualitative analysis by
Ralph and Townsend indicate rather strong vibron-
ic effects for the excited orbital triplet Tz~.

In Sec. II we shall first show that the static
crystal field model with an effective spin-orbit in-
teraction parameter cannot explain consistently
the experimental results of the g value and the
shift in the g value of the lowest doublet I' s, using
uniaxial strain, ' the magnetic susceptibility,
and the optical-absorption results of MgO: Co '.
In Sec. III the vibronic interactions are incorpo-
rated for both the T,~ and the T2, orbitals, and

the different experimental results are shown to be
accounted for satisfactorily, with physically justi-
fied values of Iso~ and E~. In this analysis, or-
bital coupling is considered with the E~ mode of
vibration only. The reasons why we neglect the

coupling with the T2 mode of vibration are also
discussed in Sec. III. It should be noted that the
order of magnitude of the splittingof the groundor-
bital triplet T&~ due. to spin-orbit interaction is same
as the energy corresponding to the peak of the pho-
non distribution function in pure and Ni '-doped
MgO crystals, and, as the effective frequency of
vibration of the cluster is expected to be close to
this value, we have considered the vibronic and
spin-orbit interactions in the ground orbital triplet
T,~ numerically, taking proper account of the sec-

ond-order effects of the excited orbital Ta as
well. It is found that the variables k, k' (which
take into account the covalency effects in the
ground and excited orbitals, respectively), S(o~,
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and E» can be varied only within limited range of
values in order that the experimentally knowng
value, spin-lattice coupling parameter F», and
energy separation between the ground doublet I'6
and the quadruplet 1"8 of the orbital T„can be
simultaneously explained. E~ is found to be small
but not negligible for T,g. For the excited orbital

Tz~ the spin-orbit splitting is small compared to
the effective phonon energy and E~, so we can use
Ham s theory directly, taking the spin-orbit inter-
action as a perturbation due to the excited vibronic
states ITa, nan, ) on the ground vibronic states
IT&~00). The second-order contribution to the
spin-orbit splitting due to the presence of near-
lying electronic orbital states is also taken into
account. The results indicate that @co~ is nearly
the same for the ground and excited triplet (-400
cm '), though Ezz differs very much for the two
orbitals, being ™100 cm ' for the ground and -420
cm ' for the excited triplet. It is interesting to
note that the fitting with experimental values can-
not be achieved if the pure covalency parameters k and
k' are taken to be unity. Best fits are obtained
when k and k' lie in the range 0.96-0.98.

The splittings and the shifts of the spin-orbit
states of the excited orbital T2 of KMgF3:Co
have recently been studied by Sturge and Guggen-
heim as functions of applied stress and the Zee-
man field. %e have explained his results quite
satisfactorily, using the same model of calculation
as for the T3 orbital of MgO: Co ' and have ob-
tained k -0.97, k'-0. 95, he~-200 cm ', and E~
-175 cm '. The significance of the results of our
analysis for both MgQ: Coa' and KMgF, :Coa' is
discussed in Sec. IV.

In Appendix A, we have shown that the orbital
Ea„wi hhclies in between the ground (T„)and ex-

cited (Ta,) orbitals and is very close to Tz„has
very little effect in changing the spin-orbit split-
tings of either T, or T2 in the second order.
In Appendix 8 we have given the derivations and
magnitudes of V~ and V~, which are the coupling
parameters of the electron orbital with the E, and

T2, modes of vibration of the cluster, both for the
T„and T+, orbitals, on the basis of the point-
charge model for the ligand ions.
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ground orbital triplet is given by

g(T&) = $(T,~)~ cos8+ $(T&)~sin8

where

t
—{(15B+6Dq)—[(15B +6Dq) +64(Dq) ] }e=tan '

8Dq

The values of Dq and B are taken' to be 930 and

840 cm ', respectively. The result of this mix-
ing is to change the effective angular momentum
1 of the ground orbital triplet by a factor a = (cos 8
—-', sin 8). A slight change 's in the values of Dq
and B alters this factor insignificantly. The
ground orbital triplet T,~ splits into spin-orbit lev-
els I'6, I'8,„ I'82, and I'z, with I'~ lying lowest.
The g value' for this doublet is found to be 4. 278.
No direct measurement of the energy separations
between these levels is available. Measurements
of the spin-lattice relaxation time do not show

any Orbach-type mechanism to be active, so that
the positions of the excited spin-orbit levels can-
not be obtained from such measurements. The
separation between the first excited level I'8, and
the ground level I'6 has been estimated indirectly
from the magnetic susceptibility of the system and
is found to be 306 cm . The I'8 z and I'~ levels
are degenerate in the first order. They split due
to second-order spin-orbit interactions.

The excited orbital triplet T3, which lies about

II. LIMITATIONS OF STATIC CRYSTAL FIELD THEORY TO
EXPLAIN AVAILABLE SPECTROSCOPIC DATA ON MgO: Co~+

The Co ' ion is of 3d configuration and has a
lowest term F (Fig. 1). In octahedral symmetry
this term splits into the ground orbital triplet T«
and the excited orbitals T2, a triplet, and A2,
a singlet. The P term, which is 12500 cm '
above the ground term F, results in a T&~ level
in octahedral symmetry, and, consequently, there
is mixing between the two T„triplets. The

(2) (4)
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~e~r =- & ~.;. &4&
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FIG. 1. Low-lying energy levels of Co ' in MgO crys-
tal in static crystal field model(g&

&
= -180 cm ').
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6800 crn"' above the ground orbital T«, , also
splits into spin-orbitlevels I@ I'81, I'82, and 17.
The levels I'6 and I'8, are degenerate in the first-
order spin-orbit interaction, but they split in the
second order, with I'e lying lowest. These spin-
orbit levels of the excited orbital Tz have been
identified from near-infrared fluorescence and
absorption spectra of Co ' in MgO. ' Ralph and
Townsend's results are better resolved, and we

get E(I',) —E(I' ) = 16 cm and E(I' ) —E(I' ) = 53
cm '. Corresponding values given by Pappalardo,
Wood, and Lineares are 16.8 and 56. 6 crn '. The

g value is not available for any of these levels.
The energies of the spin-orbit levels can be cal-

culated due to the following effective spin-orbit
Hamiltonian considered up to the second order:

S+ )I. [(1 ~ S)

FIG. 2. Schematic diagram of the splitting of the or-
bitals T1 and 4T2 of Co ' in MgO crystal in dynamic
crystal field model. In case (a) a numerical analysis is
necessary, whereas in case (b) a perturbation procedure
is valid. The spin-orbit splittings 360, 47, and 248 cm 1

are the theoretical values obtained with no orbital quench-
ing, corresponding to the semiexperimental value of 305
cm 1 and the experimental values of 16 and 53 cm ', re-
spectively.

where

+(f ~ 5) (H ~ 1) —4(f,S,H, +l, S,H„+lgS, H,),
(5)

y = —
~ ak for T1&

=-,'k' for 4T~ (6)

y'=akk'

The g value for the lowest spin-orbit doublet F6
is then given by

2 10 15y'~ free iofL f
3 3 2 SE 1g

y 2 free ion fOr 415 r'~
3 2 aE 2lr

~ is positive when we consider T,~ and negative

«=+I«I f»'T~
=-I«I f»'T„~ (4)

k and k' take account of the reductions due to co-
valency in the orbital angular momentum of T&
and T2~ respectively. &f, &

for the Co 'ion is
—180 cm '. AE is the separation between the or-
bitals T1 and T+. The expression of the energies
of the different spin-orbitlevels is given in Table I.

It should be noted that the second-order part in
X in EIl. (2) is derived taking only T& and 4T~
orbitals into consideration. The effect of other
orbitals-even that due to E which lies very near
4

gt

Tz;is neglected, because the contributions are
small, as discussed in Appendix A.

We can similarly write the effective Zeeman
interaction up to the second order,

1
Kz,~= psH('Yl+2S)+ — '

(H ~ 1) (1 5)

TABLE I. Spin-orbit states of the orbitals T2 and T« from the static crystal
field theory.

Spin-orbit states Energy

4T~: r,
I'7

4T

—g X~g —g(X'/~)

$~g —
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—
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TABLE II. Spin-orbit energy level separations. for T& and T2 from static crystal field calculations. The free-ionic
~~lues with B=840 cm and 8@=930cm are quoted within brackets.

g
for I'6 doublet Covalency factor
of the orbital for T&g for T2g

Tf 0') 9')

E{+8 f) —E{I'6)for Tfg
{cm ~)

{Ref. 20)
semiexpt. calc.

{ref. 4)
expt. calc.

E{r,g)-E{I'6) for T2g
{cm )

{Ref. 4)
expt. calc.

E{r82)-E{F6)for T~
{cm-')

4.278
{4.420)'

1.00
0.98
0.96
0.94

0.92
0.90
0. 89

0.06
0.19
0.33
0.47

0.61
0.77
0.93

378.0
367.0
357.0

306.0 347.0
{357.0)'

336.0
325.7
320.5

16.0
{47.0)'

2.5
7.8

13.0
18.3

23.6
28.6
31.2

53.0
{248.0)

14.7
46.2
78.9

112.8

148.0
184.7
203.6

Free-ionic values.

when we consider Tz, . The g value is a fairly
precisely known experimental parameter, so that
we can use the above expressions to get an idea of
the relative magnitudes of k and O'. From the na-
ture of the d-electron configuration in the Tfg and

T3 orbitals, namely, (ts, e~) and (t& e~), respec-
tively, the covalency effects are expected to be
stronger in the excited orbital. We therefore take
k & k as a condition to be satisfied. Then, with
the same set of values of k and k' for which we get
the calculated value of g for the doublet F6 of the
orbital T,g equal to its experimental value 4.278,
we calculate the energy separations between the
spin-orbit levels, which are tabulated in Table 1I.
The failure of the static crystal field theory is evi-

dent from the discrepancies between the calculated
and experimental values. One can explain approxi-
mately the ground orbital splitting assuming suffi-
cient quenching of the orbital angular momentum
of the excited level, but even then the T@, level
splitting is very far from the experimental values.

In Sec. IG we see how these discrepancies are
removed when we incorporate the vibronic inter-
actions for both the T,~ and T3 orbitals (Fig. 2).

III. EFFECTS OF VIBRONIC INTERACTIONS

In the approximation of the molecular-cluster
model we can write the total vibronic Hamiltonipn
for an orbital triplet in an octahedral symmetry as

&«, =EOS+[(1/2P) (Pe+P,)&+k P&oe(Qa+QN)S+ 1's(QPe+Q~g~))

+ [(1/2p) (Pg +P„+Pg) e+ 2 P&r(Q'c+Q'. +Qf)s+'(IT(Qfy'f+QqTn+Q, 'I )] (g)

Q& and Q, are the symmetry-adapted displacements
corresponding to the Eg mode of vibration of the
cluster having frequency &~. P~ and P, are the
corresponding momentum conjugates. Similarly,
$, q, f represent the three components of the T,
mode of vibration having frequency ~, which is
the only other mode of vibration of the cluster
interacting with the orbital triplet. p. is the ef-
fective mass, which in this case is the mass of the
ligand oxygen atom. V~ and V~ are the coupling
parameters of the electron orbital with the Eg and

Tz modes of vibration, respectively. Eo is the
electronic energy of the orbital triplet. , 8+ 8„
V-;, .v'„, and &~ are the matrices defined by Ham'
in the electronic manifold of states.

For the ground orbital T& of Mgo: Co~', direct

measurement of the spin-lattice coupling constants
of the effective dynamical spin Hamiltonian has
been made, from which we can estimate the orbit
lattice coupling parameters for T«. For the
ground spin-orbit doublet 1 6 of the orbital triplet
T&, we can write the effective dynamical Hamil-
tonian as

K4yg —ps Z II, 5go Sg

where 5g, =F,
& e&. F&&, which is a fourth-rank

tensor, gives the rnagnetoelastic constants and ez
is the strain tensor. Xz arises due to the sec-
ond-order effect of X~~~ and Xz, i.e. ,
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e„„e,~ and e,„are strain components corre-
sponding to T2 -type distortion. R is the distance
of the nearest 0 ion from the Co ' ion. We thus
get

3v 3 E(I',) —E(I',)
4 (y —2)R 11

3 E(1 4) —E(I'4)
(y-2)R 44

(12)

Using the experimental values of E» and E«, we
obtain (Vzi/IVr[-6, showing that the electron
orbital T,~ is coupled to the E~ mode more strong-
ly. This is supported by calculating V~ and V~ on
an effective-point-charge model for the ligand
charges, which gives Vz/Vr-8 (Appendix B).

For the excited orbital T2„however, we do not
have any direct estimation of V~ and V~ and the
estimation of Vz/Vr- 1.2, made on the basis of
an effective-point-charge model for the ligands,
seems too small to be correct. On physical argu-
ments, one should expect V~ to be relatively much
bigger than Vr in the case of the orbital Tz (t~ e')
compared to that in the case of the orbital T„
(ta, ez), because of the predominance of the e -type
electron in the excited triplet. That the point-
charge calculations do not tally with the physical
reasoning is probably evidence of the limitations
of the point-charge model and of the uncertainty
in the radial integrals (r ) and &r ) for the excited
orbital states. Recent stress experiments on the
excited orbital T2 in KMgF3.'Co ' also confirm
that the E, mode is far more strongly coupled to
the electron orbital than the T2 mode. In our sub-
sequent calculations for both T& and T2„we shall
consider uniquely the E~-mode coupling.

A. Ground orbital triplet 47

It is useful to have an approximate idea of the
magnitude of Ezr from Eqs. (12). Taking the ex-
perimental value' of E,z, R = 3.97 a.u. , k = 1, and
the separation between the I'8 and 1 61evels to be
305 cm ', we get ) V~)-7800x10 ergcm '. Since
Ezr ——Vz/2p, &oz, we get E~- 110 cm 1 for tdz- 400
cm ', which corresponds to the peak in the phonon

where

X,t,tt, = Vz R (8 4 e 4+ 8,e,) + V r R( ate '„I+ y„4:~'

+r, e ) (1o)

Xz = ttzH(yl+28), y= ——,'ak

e~ and e, are the symmetry-adapted strain com-
ponents corresponding to E~-type distortion, given
by

e4=(1/M3) (2e„-e„,-e~), e, =e„,—e . (11)

distribution curve in MgO and MgO: Ni ' crystals.
We therefore conclude that the JT stabilization en-
ergy is small for T&„but it is not negligible and
the vibronic interactions should be considered in
the calculations of spin-orbit states and the g value.

The vibronic spin-orbit states are calculated by
considering the effect of the following Hamiltonian
on the orbital level:

+so+ %at tice ++ol (13)

where the Hamiltonians are defined by Eqs. (2)
and (8), respectively. We have already discussed
in Sec. I why we cannot use the perturbation ap-
proach in this case, because the spin-orbit split-
ting of T,~ is of the same order of magnitude as
the vibrational energy of the molecular cluster
in MgO: Co ', though E~ is not large. We there-
fore diagonalize the total Hamiltonian in Eq. (13),
using symmetrized combinations of vibrational
spin-orbit states (I')(n, n, & as basis functions,
and obtain linear combinations of such functions
giving the symmetrized vibronic eigenstates of
the system. The purpose of starting with symme-
trized combinations of

~

I' &(n4n, & as basis func-
tions is to reduce the dimensions of the energy de-
terminants that are to be solved. The maximum
.values of the vibrational quantum numbers ne and
n, are limited from the consideration of the con-
vergence of the eigenvalues. In this particular
case n =ne+n, = 3 is found to be adequate.

Construction of symmetrized vibrational spin-orbit basis functions

1/2

q, ln, &= [(tt, +1)'
t n, +I&

2p'GP E

+ (n, )'~'
~
n, —I &)

(14)

We therefore have to find the symmetrized com-
binations of the product Q~Q", following the method
of the proj ection operator:

qn(pi ) ~P pt J (R) qnqn
R

The pure spin-orbit states arising from the or-
bital T& belong to I"6, I'7, and I'8 representations
and, since we are considering only the E~ mode of
vibration, the vibrational states (n4n, & would al-
ways belong to the I'„ I'2, and 1, representations
of the O„group The g.round vibrational state ( 00)
is a, I', state and any excited state I n4n, & can be
constructed from this one by operating on it with

Qe and Q„n~ and n, times, respectively, where

1/2
q4~nz&= [(n4+1)'

~
n, 1+&

2p, cog

+(n.)"'/ n, —»7,
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TABLE III. Symmetrized displacement operators and the corresponding symmetrized vibrational states
for Mgo: t o+ cluster for vibrational quantum number up to 3.

8 Sg+ Sg Hepresentation

&e

Symmetrized operator Q" (I'~~„) Symmetrized vibrational function

~ 00)

@e 1 10)

I &e

p2

1~2 1 "2—Qg+ —Q

1 "2 1 "2——Qg+ —Q

~QgQ,

I 01)

—) 20) +—) 02)
1 1

~2
1 1——

i 20) +—) 02)
~2 ~2

I 11)

I 2e

1I'Se

—kQs+ SQaQ,
'

WsgQ, —kQ',

kQy+ kQeQ',

n@e@e+~@a

-~ ~ 30)+~3 1 12)

y&3121& —$ [ 03&

~i30&+/[12&

$121&+~103&

Thus we get the symmetry-adapted displacement
operators of the molecular cluster belonging to the
ith component of the 0.th representation, r being
the index of repetition of this representation. h

is the dimension of the representation, g is the
order, and 8 is the element of the point group.
Operating on the ground state } 00) by Q"(r',), we

get the symmetrized vibrational states correspond-
ing to different quantum numbers n and n, . These
symmetrized operators and the corresponding
symmetrized vibrational states are given in Table
III for n up to 3. The symmetrized vibrational
spin-orbit basis functions are then constructed by
taking the direct products of the so states of rep-
resentations I'6, I'~, I'8 „and I'8 z with these sym-

&rsn~n' I
36 o+3crni„ I

I' n n, &
= [&r. I 36..I rs&

8+ns) ~~8] 6r r 6', ng 6n n'

an
(16)

metrized vibrational functions which belong to the
representations I'„ I'2, and I'3. The representa-
tions of the final basis functions and the number of
times they occur for different values of ne+n, are
given in Table IV. The total matrix of the Hamil-
tonian in Eq. (13) thus breaks up into three irre-
ducible matrices: two ten-dimensional ones for I &-

and I'7-type basis functions and one 20-dimension-
al for I'8-type basis functions. Typical nonzero
matrix elements of the Hamiltonian in Eq. (13)
are worked out from the following:

(r gnen'
I
36.i I

r ngn, ) = (ff~eE ~)"'{[(n, +1)"'6„;,„„,+ (n,)'" 6„;„,,] (r, I g, I r. &

(17)

It should be noted that I' and I'~ refer to the
electronic spin-orbit states and K„includes both
the first- and second-order so interactions as de-
fined by Eq. (3). On diagonalizing numerically
the matrices of the Hamiltonian X in Eq. (13), we

obtain finally the vibronic eigenvectors and corre-
sponding eigenvalues. The ground vibronic state
is of r~ type and is 98%%u~ ( I'SOO ), and the first ex-
cited state is I'8 type and is 90%%u, [ I"800), admixing
more with the other I'8-type vibrational spin-orbit
functions. The g value within the ground doublet

I'z is also calculated numerically, taking the first-
and second-order Zeeman interactions defined in
Eq. (6).

The variables in these numerical calculations
are Err, @&os, k (the covalency parameter of the
ground orbital T„), and k' (the covalency param-
eter of the excited orbital T2,). It is necessary to
note here that when we are calculating the second-
order spin-orbit effect on the ground T& the factor
k' represents effectively the total orbital quenching
of T, due to both covalency and vibronic effects.
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k&k is therefore a justified condition to be satis-
fied in these calculations. There is another factor
which is helpful in these calculations. It is the semi-
experimental proportionality scale between S~~
and EJr, which we can work out from Eq. (12),
using Tucker's' experimental value of Fyy For
E(1 8) -E(1 8), we have used 305 cm ', the value
obtained from magnetic-susceptibility data by
Cossee, and thus we have an approximate idea of
the relative magnitude of Iso~ and E~. The final
results are discussed later.

ne+ na

Number of the different representations of the
symmetrized basis functions

I'6, I'z, 2I'8
2I'6, 2I'z, 4I'8
3I'6, 3I'z 6r,
4r6, 4Iz Srs

TABLE IV. Representations of the symmetrized vi-
brational spin-orbit basis functions for different values
of ng+n6.

B. Excited orbital triplet 4
T2g

The vibronic interaction is much more important
for the orbital Tz as is shown by the optical-ab-
sorption and fluorescence spectra4 of Mgo: Co '.
According to Ralph and Townsend, E~ for Tz
is approximately 1.3 times larger than I~~. Also
from the analysis of the spectra, they indicate the
presence of three localized phonon frequencies,
viz. , 170, 230, and 400 cm '. As the E~-mode
coupling with the electron orbital is expected to

involve optical phonons only, which we discuss in
Sec. IV, one can suppose E~ to be of the order of
500 cm ' from these experiments. The effective
spin-orbit splitting of T„ is, on the other hand, of
the order of 90 cm '. Hence in the case of this
excited orbital we apply Ham's original theory
directly, by taking the spin-orbit interaction acting
as perturbation on the ground vibronic states

) T&00). The spin-orbit interaction 3C„, taken up
to the second order, can then be written as

X„=~,«exp(-3Err/21&us) 1, ~ S+[&,(f,„S,+l~S,+f„S,)+ &2(l~l,„S„S„+l~f~S,S„+l~l„S,S,

+ l~g l~S,S„+l~ lggS„Sg+ l~, l g„S,S~)] . (18)

l~= 1 is the effective orbital angular momentum of
the vibronic triplet ) Tz' 00). The first-order term
involves the effect within this triplet and the sec-
ond-order terms take into account any effect on

I T&00) due to the excited vibronic levels
)Tq~n~n, ) and due to the ground electronic triplet
T, . Thus we have

4 )«)
(19)

taken into account for the orbital T2~. Q is asso-
ciated with E~-type operator and hence this part of

Q remains unchanged from the corresponding fac-
tor in Eq. (2). But &z is associated with Tz;type
angular momentum operator, so that the additional
quenching factor exp(- 3Err/2K&os) is incorporated
in the corresponding term in ~2.

As 6E is very large compared to R~E and E~ is
small for the ground orbital T,~, we have neglected
the vibronic character of this orbital in the calcu-
lation of the second-order term in K„[Eq. (18)].
Thus we arrive at the following vibronic spin-or-
bit energy levels:

15 ~' —3E
4 / hE } 2@co~

The first terms in Q and &2 are due' to the excited
vibronic states ) Ta, n~n, ) and the second terms
denote the effect of the ground T,~ on the vibronic
states ) Ta,00). These last terms in Q and &2 are
written directly from Eq. (2). The only difference
is the replacement of the effective angular momen-
tum 5 by 1„ i. e. , the vibronic quenching is being

I

E(1'6) = —A. + —Xq y ~ A.~

E(f')= —'PX 5A —jX [(—A 2X —+X)

y Xq A2+ X (-2X +2 X2)]~~ ]
E(1' )= ——X X

(20)

where we have written & for &,«exp(- 3E~/2h&us).
For the low-lying doublet I'6, we can evaluate the

g value, using the following Zeeman Hamiltonian:

K, = psH yexp~ 1,+28 +Q, mls(f~, H„S,+l,'„H„S„+f„H,S,)+gz ps [(l l +l l,„)(S„H,+S„H,)
( 2Sco~
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+ (l~l~+l, lg„) (S,H, +S,H„)+(lg„l~,+lggl~) (S~H, +S,H„))), (21)

where T,~ though the difference in k' may be relatively
more important. We now discuss the results for
both the ground and excited orbitals.

15y'X
2 (~Et

3Ezr

—BEn
4 i ~ I

p g~E

For the doublet I 6, we get

—3E~g= —~p exp —2- 2g2
2@coE

(23)

Here again we have four variables: h~~, E~, k,
and k'. When we were considering the vibronic
effects of T&~ the parameter k represented the
pure covalency effects for this orbital and, by pa-
rameter k', we took account of the total reduction
of the orbital angular momentum of the excited
level T2„ i.e. , k' included both the covalency and

vibronic effects. Now, when we are studying the
vibronic effects of the orbital T&~ the reverse is
the case. k' now signifies the pure covalency pa-
rameter for T& and k should in principle incorpo-
rate the quenching due to covalency as well as vi-
bronic effects. But we can assume that k should
not vary too much in the two cases, because the
quenching due to vibronic reduction is small for

C. Results

Using Eq. (12) and the experimental value of E„
we get (I&os) E~ = 0. 86'li(k+ 1.42)2 x108 cm ' for
the orbital T~, taking E(r8) —E(I'~) to be 300 cm ~.

In our calculations, for any particular value of ~~
we vary E~ within a range of 10%%u(; of the value giv-
en by this relationship. For each value of E~ we
vary the covalency parameter k of the orbital T„
from 1 to 0.90. For each set of ~~, E~, and k,
the reduction parameter k' of the excited level T~,
is then fixed by fitting the calculated value of g
within the vibronic doublet I"6 with the experimen-
tal value of 4. 278. For these sets of (d~, E~, k,
and k' the energies of the low-lying vibronic levels
are verified and only those sets which give a near
fit with the semiexperimental value of 305 cm '
are given in Table V. Thus, depending on the
available experimental results on the ground or-
bital triplet of MgO: Co ', we infer that I~~ is in
the range of 400 cm ', E~ is of the order of 90-
100 cm ', and the pure covalency effect for 4T,
is as low as 2-4%%u&. The reasons why we consider
S(dE-400 cm to be more feasible compared to
Ico~-450 cm ' will be clear as we look into the re-
sults for the excited triplet T~,.

The phonon-assisted transitions in the fluores-
cence and absorption spectra of the excited orbit-
al Tz could be a.ccounted for by two phonon

TABLE V. Set of values of F~z, Ezz, k, and k which give simultaneous best fit of the numerically calculated values

of g of the lowest doublet I 6 and the separation between the lowest I'6 and I'8 levels of the orbit p& with 4.278 and 3()6

cm, respectively.

Energy of
E~ mode of
vibrations
Sv& cm

350

400

450

Jahn- Teller
stabilization

energy
S~ cm-'

120

130

90

100

70

80

Pure covalency
parameter for

the orbital
4T1, k

1.00
0.92

1.00
0.92

0.98
0.96

0.98
0. 96

0.94
0.92

0.94
0.92

Reduction in the
orbital angular

momentum of T&~

(cov. +other
effects: k')

0.29
0.87

0, 26
0.85

0.35
0.49

0.36
0.50

0.60
0.75

0.62
0.77

g value of
the lowest
doublet I'6

4.278 y 001

Energy of
the lowest
v1bronxc

level
E(Z'&) cm

—674. 5
—632. 5

—671.1
—628. 9

—653.1
—642, 3

—656.6
—645.9

-626.1
-615.2

—630.0
—619.2

Energy of
the next
vibronic

level
E(r,) cm-'

—398.6
—375.8

—390.6
—367.7

—341.0
337 ~ 3

—349.3
—345.5

—311.9
—310.2

-320.2
—318.4

z(r, ) -E(r,)
(cm-')

275.9
256.7

280. 5
261.2

312.1
305.0

307.3
300.4

314.2
305.0

309.8
300.8
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TABLE VI. Set of values of K~z, Ezz, k, and k' which give the best fit of the theoretical values of E(I'8 f)—E(I'6) and E(I'8 2) —Eg'6) of the orbital T2~ with the experimental values of 16 and 53 cm, respectively.

Energy of
E~ mode of
vibration
Km@ cm

400

Jahn- Teller
stabilization

energy
Egg cm

400

410

420

Pure covalency
parameter for
the orbital T2~

(k')

0.90

0.92

0.96

0.98

gecuctions in the
orbital angular

momentum of T«
(k)

0.98
0, 96

0.98
0.96
0.94

0.98
0.96
0.94

0.98
0.96

0.94

E(I'8 f) E(r,)
(cm~)

16.4
15.9

16.5
16.0
15.5

16.7
16.2
15.7

16.7
16.3

15.8

E(I'8 2) -E(I'6)
(cm-')

53.7
53.5

53.0
52. 8
52.6

53.4
53.2
53.0

52. 7
52. 4

52. 3

modes of energy 170 and 230 cm ' or three modes
of energy 170, 230, and 400 cm '. We find that
with @co~= 170 or 230 cm, the. calculated values
of the energy separations E(I', ,) —E(I',) and E(1', a)
—E(I'8) of the triplet Tz are quite far from the
corresponding experimental values for any reason-
able set of covalency parameters k and k'. But
for @g~=400 cm ', the agreement; between the
calculated and experimental results is surprising-
ly good for reasonable values of E~, k, and k', as
is evident from Table VI, where the best-fit re-
sults are quoted. In the absence of any other ex-
perimental parameter, such as g value or E(I;)
—E(I'6), this is as much as we can deduce. It may
be noted that the calculated g value of the doublet
I'6 comes out to be of the order of 2. 116. On com-
paring the results for the orbitals T„and T& we
find that @co~ is nearly the same, whereas E~
varies by a factor of 4. 5. Also, pure covalency
parameters are not significantly different from the
free-ionic value of unity. In Sec. IV we discuss
the implications of these results, and we also dis-
cuss the case of KMgF&. Co in the background of
our results.

IV. DISCUSSION

First, regarding the effective frequency of the
E mode of vibration of the molecular cluster, the
preceding analysis gives a value -400 cm ' for
both the ground and excited orbitals. In the E,-
type motion of the M', complex, the ligand ions
move in opposite directions, the central ion re-
maining undisplaced, and this corresponds to the
optical vibrations at the Brillouin zone boundary
(k = v/a) in a Mgo crystal. a~ The inelastic-neu-
tron-scattering experiments on MgO crystal done

by Peckharn ' show that the I O phonons at the zone

edge have frequencies near about 410 cm ~, and
consequently the distribution function for the pho-
nons shows a sharp peak at this frequency. There
ought to be some modifications in the lattice mo-
tions due to the substitution of Co '. But the re-
sults of the sidebands of the fluorescence and ab-
sorption spectra for MgO: Co indicate the pres-
ence of phonons at about 400 cm '. Similar re-
sults were obtained for MgO: Ni . So the value
of @co~ for E, type of vibration we obtain is con-
sistent with these results. Also, the difference in
the contribution to the force constant of the E~-type
vibration from the two orbitals 4T, and 4T+ is ex-
pected to be small, so that nearly the same value
of S~~ is obtained for both the ground and excited
triplets.

Second, as regards the magnitude of E~, we
get (Err)r&/(E~r)r -4. 5 from our analysis. As
k(d~ is nearly the same for the two orbitals, we
get (Vs)r -2. 2 (Va)r . No experiment under
stress has been done on the excited orbital, so that
we have no direct knowledge of (Vs)r, as we have
of (Vs)r, But from the calculations on the point-
charge model (Appendix B) we ha, ve

(Vs )ra, &75 (r ')
(V ), 216R ( r') —275(r')

Using the free-ionic values of (r ) and (r ) for
Co and R=3.97 a.u. for MgO: Co', we get
(Va)r -1.1(Vs)r, . This is less than we obtain

from our calculations. If we remember that a
small expansion of the 3d function in a crystalline
medium would cause the ratio (r ): (r ) to be
smaller than the free-ionic value, the ratio (Va)r~/
(Va)r should be larger, and a very small change
can easily account for this difference.

Third, the pure covalency effects of the ground
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and excited orbitals seem to be very close to the
free-ionic value of unity. Earlier, when the
covalency parameters were deduced without tak-
ing account of the vibronic interactions, the
quenching of the orbital angular momentum or
spin-orbit interaction was ascribed to covalency
effects. We find that the covalency effects are
rather small. It should be noted that our estimates
k and k' may change slightly if we take account of
the orbital E~ in the second-order term of the vi-
bronic calculations for T& level. We show in Ap-
pendix A that the contribution from the E, level
is expected to be small. Nevertheless, its in-
clusion would have reduced k slightly.

Case of KMgF3 ' C02+

Recently Sturge and Guggenheim' have done op-
tical experiments under stress on KMgF, : Co '
and have given the vibronic spin-orbit energy lev-
els and the g values within the manifold of the ex-
cited orbital T~. It is worthwhile to apply Ham's
model of calculations in the way we have done for
the 'T~ level of MgO: Co ' to this case. We thus
find that, with k, k' varying in the range 0. 94-
0. 96, good fit with experimental results is ob-
tained with h~~-180 cm ' and E~~-200 cm '. In-
frared experiments indicate that there are three
branches at LOphonons in KCoF& at k = 0, of ener-
gy corresponding to 165, 290, and 495 cm ', re-
spectively. Since the dispersion of optical phonons
is small, these energies would change by small
amounts only, at the zone boundary (k= w/a}. We
do not know the phonon distribution functions for
KMgF3 or KCo Fs from inelastic-neutron- scatter-
ing experiments and hence we cannot justify the
value h&~- 180 cm ' more definitely, other than
saying that is is a reasonable value. We should
note here that our values of S~ and E» come out
to be different from those given by Sturge and Gug-
genheim, though the madel of calculation is essen-
tially the same. The main point of difference is
in the parameters [Eqs. (19)] of the second-order
spin-orbit Hamiltonian. It should be noted that
our &, and X2 are, respectively, k+ p and k in
Sturge and Guggenheim's notation. In the limit of
no vibronic interaction, X, and X2, which in our
case include the effect of spin-quartet terms only,
are of opposite signs. In Appendix A we have
shown that the orbital E~ cannot have a very sig-
nificant effect on T&; The question is whether

the orbital T~ can have such an effect on the spin-
orbit splitting of 'T~ as to change &, and X, dras-
tically.

Secondly, we have included a vibronic correction
factor in these parameters in the presence of vi-
bronic interaction, which explains the factor

exp(- 3E~r/2@@s}in the second term in Xz . Supposing
that the values of k and p given in Ref. 3 are jus-
tified in the static limit as due to the effects of all
excited orbitals of spin multiplicity 2 which we
have neglected, should they not change appreciably
when vibronic effects in T2, as well as in these
other orbitals, are taken into account?

We shall now discuss the possible sources of
error in our calculations. First, in calculating
the vibronic interactions within the ground orbital
T~ we have diagonalized K„+X„,taking vibra-

tional quanta n =n~+n, up to 3. Working with sym-
metrized vibrational spin-orbit states, the three
matrices that need to be solved are of dimensions
10, 10, and 20, respectively. This is equivalent
to the solution of a 120&& 120 matrix, with unsym-
metrized functians as bases. Testing for conver-
gence, we find that, for n=2, the ground-level
energy E(I'~) and also the g value within this dou-
blet change insignificantly, though for the first
excited level I'~ the change in energy is 2. Po. The
convergence can be improved by taking n = 4, but
this we have not done, in view of the fact that the
position of this level is not known precisely. Sec-
ond, in considering the vibronic effects of the ex-
cited orbital T2, we have taken into account the
second-order effect on I Tt QQ) due to the higher
vibronic levels [ T~ n~n, ) and the ground electron-
ic orbital l T~) operating through spin-orbit cou-
pling.

The orbital E~, which is quite close to 4T&, is
not taken into account, but the error due to this
should be small, as discussed in Appendix A. The
terms T~, Ta„etc. , which lie about 8000 cm
above Ta„should have some second-order effect
on the spin-orbit splitting of T. But the magni-
tude of orbital quenching due to vibronic effects is
expected to be important for these excited orbitals
and, since these are not known, we have neglected
all such terms in our calculations. The results
of our analysis indicate that, for the case of
MgQ: Co, this simplified model of the second-
order spin-orbit Hamiltonian is good.

It should be noted that for both the ground and
excited orbitals of MgQ: Co ' four independent pa-
rameters are involved, viz. , S&~, E», k, and
k', whereas only three experimental observables
are known in each case. For the fundamental,
these are the g value, F», and the position of the
first spin-orbit level, and for the excited orbital
level these are the positions of the first two spin-
orbit levels and K&os (from the phonon sidebands).
Further experiments such as infrared and optical
absorption under stress and in the presence of the
Zeeman field are expected to resolve the sma11
uncertainties in the basic parameters of this mod-
el. In general, the analysis confirms that the mo-
lecular-cluster model works well for MgQ: Co '.
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APPENDIX A: EFFECT OF 2Eg TERM CLOSE TO 4 T2 ON
SPINARBIT SPLITTINGS IN T2g AND T(g TERMS

From Ralph and Townsend we find that the E~
term lies 103 cm 'below the Ts, term. One can
use arguments similar to those used by Pappalardo
et al. ' to show that the effect of E, on Tz. is neg-
ligibly small. For MgO: Co ', we have used B
= 840 cm ', C = 3700 cm ', and ) Dq ) = 930 cm ',
and we get the lowest E~ term as

I Ee) = —0. 0182
I t~( E)e ) —0. 1295

I t~( A, )ee)

+ 0. 0305
I
t~('E )e ') + 0. 9910

I ts, e )

The spin-orbit Hamiltonian does not connect
I Ee(tseee)) and I Ta, (ts, ee}) and, since the state
I Ee) is of the 99% (ts ee) type, we should expect
the total effect of E~ on the so splittings in T2 to
be negligibly small. As regards the ground orbit-
al Tu, it is composed of (ts, e,') and (ts e,) con-
figurations, and neither of them is connected to

I Ee (ts e,) ) by spin-orbit interaction. The vi-
bronic interaction would further reduce the effect
of these excited orbital states on the ground orbit-
al.

APPENDIX B' CALCULATION OF COUPLING
PARAMETERS VE AND V~ ON EFFECTIVE POINT&HARGE

MODEL FOR LIGAND IONS

For a d electron one can write the orbit-lattice
interaction as

X., =A, , r' ZY, (r,) Q(rt)+A. .s
r' Q Y,(r,) q(r, )

+As, s
rs QYs(I e)Q(r's)+As, re 2 Ye(r~e)Q(r~e),

(»)
where, under the approximation of an effective-
point-charge (I Ze I }model of the ligands, we have

t3v '~s ze' (sv)" s ze'
As, s= 6

I 5 Re' Ae, s= 5
3 Re

3s "'Zes, (Sw)"s Ze'
A2. s= —4

5 R~
' A4, s 2

3 Re ~

R is the ligand-ion distance. In terms of the total
angular momentum L,

I'15 "'
o As, s(r ) QLs(rs)Q(rs)

siss '"
+412 PAe, s&r ) ~L (r')@(r')

4 (2m f

15»'
+ — u A, (r ) QL (F')Q(r')

Sm

3 (35 "'+-
I

— t A, ,&r') ZL,(r', )q(r', ),4 ~4m

where

Ls(I' s) =
(6 g gs [3Lg —L (L + 1)]

Ls(r's) = ~ (L'.+L')

L (Fi)= [2(35L,+ 25L, —30L,L(L+ 1)

+3L —6L —7(L,+L )]

Le(rs) =—,~s [(L,+L ) (7Lg —L(L+ 1) —5)

+ (7L, —L(L+ 1) —5) (L,+L )]

Ls(I"s)= . [(I,—L )Le+Le(L, L)]—
L (F )= ~ [(L,+L )L,+L,(L, —L )]

L (F') = ~.(L'. —L-') (B4)

I,,(r,')=-
(

„,((L(L+I)+5-7L„')[(L.-L, )L,

+I,(L, —L )]+ [(I,—L ) L, +L,(L, —L )]

x(L(L+ 1)+ 5 —7L,)),

x (L, + L )]+[(L,+ L ) L,+ L,(L.+ L )]

x(L(L+ 1)+ 5 —7L„))

L (F )= —
4(14 [(L(I + 1)+ 5 —7L,) (L, —L )

+ (L, —L ) (L (L + 1)+ 5 —7L g) ]

Taking the matrix elements of this Hamiltonian
between the orbital triplet T~, we get

M ItL2Ze' (,)
25 Ze'

4)
7 (5 R 6 R

1 i3Ze z Ze 4"= 7'S a '*' ' a' '"')7',5 R

Similarly for the excited orbital 4Ta„we get

1
Le(rs) 4 14 1/2 {(L(L+1)+ 5 —7L,) [(L,+ L ) L,+L,
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25MS Ze'
R'

1 Ze 2 5 Ze"=-v ' a«"'&-3 a '"')

With (r ) = 1.251 a. u. and (r ) = 3. 655 a. u. for
Co ions and R=3. 97 a. u. in MgO: Co ', we ob-
tain Ve/Vr - —6. 6 and l. 2 for the orbitals T~
a.nd T~, respectively.
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