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A universality hypothesis of Staumer, Ferer, and Wortis, concerning a relation between the scale
factors of the correlation length and of the magnetic 6eld, is proven to order c' with a=4—d.
Agreement of explicit estimates of the universal quantities with high-T data is discussed.

}t(g, t, H) = (ago'q& = Z e'~'"(so'sly),
R

where t = (T —T,)/T„H is the magnetic field in
units of kzT/m, with m the magnetic moment per
spin, while ag (a =1,2, . . . , n) is the oth component
of the Fourier transform of the "spin" vector SI,
namely,

a =Re'~'xsamI (2)

where the summation runs over a d-dimensional
cubic lattice with lattice spacing a.

As the critical point is approached (t-o, H-o),
the correlation length 4 (related to the second mo-
ment of the correlation function) diverges, and we

expect }((g, t, H) to approach a scaling form. ' In

the critical region, the singular part of the free
energy per site may be written in the scaling form

Many attempts have been made in recent years ta
confirm the hypothesis of universality for critical
phenomena, both by extrapolation of high-tempera-
ture-series expansions and by experimental work.
Although the universality of the critical exponents
is fairly well established, tests of the universality
of the scaling functions are still under way, both as
regards the scaling function for the equation of
state' and those for the two-point correlation
function. 5'6

These two scaling functions are combined when

one studies the two-point correlation function near
T, in a nonzero magnetic field. In Fourier-trans-
formed variables we consider

At/M~~d = —1 atH=O . (5)

This uniquely defines the scale factors C and A.
Similarly, for H =0 and T & T„ the correlation
length may be written

$~(t)=f)a(At) ", t«1.
We can now write '

}((g, t, H) = C(At)~ D[$, q, CH/(At) d]

for t, aq, H «1. The constant f, will be deter-
mined from the normalization condition

D(z, O) = D(O, O) [1 —z'+ O(z')],

(6)

(8)

for small x. With the normalizations (5}and (8),
the scaling function D(x, y) is also expected to be
universal. Note that our definition of the scale
factors is absolute, whereas that of Refs. 9 and
10 is relative to a reference system. '0 With this
definition, we are able to calculate the (nonuniver-
sal) coefficients A, C, and f„but not the relative
factors g, n, and l.

In a recent paper'~ Stauffer, Ferer, and Wortis
advanced a hypothesis concerning the universality
of the scaling-factor combination

pdf d/C

where p'a d is the particle density per unit volume.
They considered the singular part of the free ener-
gy for a region of volume $"„and postulated that
this free energy is universal [see Eqs. (3) and (6)].
Actually, Stauffer et al. list values of the combi-
nation

(3) X= t @cd~ $ /kz, (lo)

and the resulting equation of state becomes

CH/M =h(At/M'td) (4)

In (3}and (4), M is the magnetization (in units of
the saturation magnetization), A and C are scale
factors, and o., I3, 5, and 4 are the usual critical
exponents. The scaling functions f(y) and h(z) are
universal, once a proper normalization is adopted.
We choose'

where CH.O is the singular part of the specific heat
per unit volume. One easily checks that X =XnA, C/
A~, where A, t is the singular part of the specif-
ic heat per site. To obtain X from their values,
we note that A = I/x, and C = 1/h(0), where xo and
h(0) are as defined in Refs. 3 and 4 [they are re-
lated to the original function H/M = h(t/M' )].
Extracting values of A and of C from these referen-
ces, and that of A, from Ref. 10, we find for d = 3

CH/M = 1 at t=0, X(n = 1) =0. 48, X(n = 3) = 1.25 (series)
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and

X(n=1)=0.35—1.5, X(n=s)=0. 85-1.7

where the subscript c means "connected. "
The small-y behavior of D(0, y) follows from the

large-z behavior of h(z), '~' namely,

where

K„'=2' ' &)'~' I'(-,' d) = sv'[1 ——,
' z(ln4w

+ i —C,)]+O(z'), (14)

while C~ is Euler's constant. Substituting the &

expansion of Ka& from (14) into (13) and putting & =1
yields

X(n = 1) = 0.58, X(n = 3) = 1.73.

The final values are somewhat different if one uses
K, in (13). One must also note that the convergence
of & expansions is still generally questionable.
Thus the values (15) may be taken as rough esti-
mates. As such, their agreement with the values
from series (11) and from experiments (12) is
quite satisfactory. Moreover, it is also possible
that the g' terms in (13) will be nonuniversal,
leading to a nonuniversality of X. '4 Until these
questions are settled, more precise experiments
[the large spread of values in (12) is a result of the
spread of values for different materials, plus the
experimental errors'0] and series (the scatter of
values of aC„pfor n =3 is quite large) may be quite
helpful.

To derive the result (13) we first note that the
constant C is directly related to the four-spin cor-
relation function,

(experiment) . (12)

The introduction of the e-expansion technique"'
has improved our understanding of c"itical phenom-
ena and led to explicit expressions, to orders &

and e' (e =4 —d), for the critical exponents and for
the scaling function h(x). "a In recent work" the
scaling function of the correlation function in zero
magnetic field, D(x, o), has also been calculated
to order &2. In the present paper we combine these
two studies with an additional calculation, to order
q, of the four-spin correlation function, in order
to derive an & expansion fox" X. To order &', the
result is found to be cutoff independent, and there-
fore universal. However, it is not clear if this
will remain true in order q .

Explicitly we find

1 C &d Qn+ 42
X(n) p'f K (n+ 8) (n + 8)'

3 ln(16/27)

h(z) = z"(h, + h, z-" +. . . ) as z -~,
which leads to

(17)

and

D(o, o) =—1
h,

(is)

r=
(

=C 'h, (At)",1

X o, t, o)

(16) now becomes

(ao)

(opopapop), = —6ha h, C (Cr/h, )

sh h &I /a&~C «n) & r)r(r/-2)-4po-~&-a)
2 1 7

(»)
where the known & expansions for the exponents ""
have been used.

An alternative derivation of (21) follows Wilson's
calculation'2 of the "renormalized coupling con-
stant uR. We start with the reduced Hamiltonian

2R= —J[r, +q ]o&) o I

up f f r f ~ ~ (0'a 0'&)r)(a'a ~ ' or a ar ar ~ ) r (22)
c

where o~ is a new spin variable, rescaled by a
factor (adhzTp'/cd)'~a = (dp')'~a (J is the nearest-
neighbor exchange, c the coordination number),
and where f& means (2)&) "fdaq with a sharp cutoff
at Iq I

= A =v (we set the lattice constant a equal to
unity). This cutoff may also be replaced by other
forms (e.g. , the one used by Wilson in Ref. 12),
and the final results remain unchanged. The pa-
rameter r, is linear in the temperature T. Using
a perturbation expansion in up and in (r, —r) one
finds

(oj&0popop)0: un'r: 24upr [1+ 2 (n + 8) Kr)up

x [ln(r/Aa) + 1]+O(u 0)] . (23)

A careful comparison of the exponents of r in
(23) and in (21), including the leading-order q

terms in both cases, gives

On +42
Kaup= g )

1+z lnA+( )a +O(g ) (24)

Comparison of the coefficients then yields

8 —6h2
8 a D(O, y)
3 y0 1

Defining r as the inverse susceptibility at H =0,
that is,

~ X 3 ~2k(0000) =a~a =C( t) saD(
H-"0, @=0 yW

(is)

C6/2«1 I 6/2
y

«1 1 + ~' K,(n+8) " (n+S)' 2

+O(z') . (25)
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To this order we thus find that the amplitude C is
cutoff independent [note that h, and h~ are universal;
see (29)]. Moreover, the result (25) is also inde-
pendent of the form of the cutoff used.

To calculate X we now need t', . From (20}, (22),
and (24} one easily finds'3

X(g, t, 0) =(oe o~&}=,+O(a')
r+q (26)

(the order-e terms cancel through the definition of
r; see Refs. 12 and 13) and hence, using (8),

gr 1/2 + O(~ 2) oh 1/2 C1/2

(At)" +O(e )

which, together with (6}, yields

f =h' C' +0( ')

(2'/)

(26}

Again, f, is cutoff independent to this order( How-

ever, to order & f, does depend on the cutoff.
The constants h, and h~ are derived from Ref. 8,

which gives

h& = 1+ ln —+ O(E), .
3& 4

2 n+6

hp= 1+—1 — +O(e~) .9 ln3
2 n+8

A combination of (25), (28}, (29) and the spin re-
scaling factor finally leads to the result (13).

The origin of the universality of X to order &
~

thus lies in the cutoff independence of both C and

f, to orders e' and e. To the next orders in e both
scale factors have cutoff-dependent contributions.
Although the order-& terms in the combination
ftC ' ' "' have been explicitly calculated in Ref.
13, an order-z' calculation of the coefficient in
(21) is not available for the sharp cutoff. [This
involves a knowledge of u, to order &' and a knowl-
edge of the coefficient of r" 2' ~" in (21) to order
c'. ] Thus one cannot yet reach a definite conclu-
sion regarding the universality of X to order &'.
Even if universality turns out to be broken, one
might expect that the deviations from (15) will not
be too large.
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