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The influence of the hexagonal crystal field on the magnetic susceptibility and electrical resistivity of
the Kondo system Y-Ce is studied in the framework of the s-f exchange model. The
second-order-perturbation-theory magnetic susceptibility is computed exactly in the whole range of
temperatures and the results of the calculation are compared with the available experimental data.
From the theoretical behavior of the magnetic susceptibility the general conclusion that no “Kondo
sidebands” are present in the susceptibility-vs-7 curve is inferred. The third-order-perturbation-theory
resistivity is computed exactly within the “usual” f, = 1/2 approximation and a Kondo temperature of

1.4 K is estimated.

I. INTRODUCTION

It is now well established that dilute Y-Ce alloys
exhibit anomalous low-temperature properties'™
analogous to the Kondo effect of dilute alloys of no-
ble metals with transition-metal impurities. Re-
cently, Sugawara and Yoshida® carried out a de-
tailed experimental study of the magnetic suscep-
tibility and electrical resistivity of dilute Y-Ce al-
loys using single crystals. These results were in-
terpreted in terms of the crystal-field splitting of
the 2F;, state of the cerium ion and the Kondo ef-
fect. However, owing to the lack of an adequate
theory for the crystal-field effects in dilute Kondo
systems, their phenomenological treatment was
necessarily insufficient to give a reliable account
for the whole matter. On the other hand, a con-
siderable amount of theoretical work has been re-
cently accomplished by several authors*~® in order
to elucidate the role of the crystal field in explain-
ing some properties of alloys and compounds with
cerium impurities. This subject was first dis-
cussed by Maranzana® and by Maranzana and Bi-
anchessi,® who, taking crystal-field splitting into
account, showed the presence of sidebands in the
resistivity versus temperature curve of a Kondo
system.

More recently, a complete analysis of the crys-
tal-field effects on the resistivity of cerium alloys
and compounds has been made by Cornut and Coq-
blin, ® using the Schrieffer-Wolff transformation in
the framework of the Anderson model, and by the
present authors using the usual s-f-exchange Ham-
iltonian.”"8

As far as the crystal-field effects on the magnet-
ic susceptibility of a Kondo system are concerned,
a theoretical treatment was given in a recent paper
by the present authors.® The case of a cerium ion
in a cubic crystal field was examined and the the-
oretical results were compared with the experi-
mental data on the La-Ce system. Owing to the
difficulty of the algebraic calculation, only diver-

S

gent In(ks 7) terms were taken into account and the
other terms were neglected under the assumption
that they are of some relevance only at relatively
high temperatures, where the entire (second-or-
der) exchange contribution was reasonably esti-
mated to be negligible with respect to the zero-or-
der one.

However, in this way, the possible existence of
anomalous features, e.g., Kondo sidebands, in the
magnetic susceptibility curve was completely ig-
nored. This being the present state of the matter,
an exact calculation of the crystal-field effects on
the magnetic susceptibility of the Y-Ce dilute alloy
would account for the experimental data® and, at
the same time, provide useful information on the
general theoretical behavior of the magnetic sus-
ceptibility in rare-earth Kondo systems.

In the Y-Ce alloy, the hexagonal crystal field
splits the 2F;,, ground state of the cerium ion into
three doublets which are eigenstates of J, (the com
ponent of the angular momentum parallel to the ¢
axis of the crystal). Due to this favorable feature,
the algebraic calculation of the magnetic suscepti-
bility in the direction parallel to the ¢ axis is more
tractable than the calculation for a cubic crystal
field. Here we present the theoretical calculation
of the magnetic susceptibility (in the z direction)
for the Y-Ce system.

The crystal-field effects are taken into account
with no approximation in the whole range of tem-
peratures. Moreover, we evaluate the exchange
resistivity for the Y-Ce dilute alloy; for simplicity
the usual f,=3 approximation will be used. The ex-
change resistivity evaluated in this manner is ac-
curate in the whole range of temperatures except
for T close to the values of the crystal-field split-
ting.®

The theoretical results on the magnetic suscep-
tibility are then compared with the available ex-
perimental data,® and the exchange-resistivity ex-
pression is used to estimate the Kondo temperature
Tx. Finally we wish to point out that, even if this
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work is mainly devoted to the Y-Ce system, the
theoretical results we obtain are clearly suitable to
the general case of a cerium impurity in an hex-
agonal crystal field.

The calculation of the magnetic susceptibility is
carried out in Sec. II. Section III reports on the
results for the exchange resistivity. Section IV is
devoted to a comparison with experiments and con-
cluding remarks.

II. CALCULATION OF THE MAGNETIC SUSCEPTIBILITY
As reported in Ref. 9, the magnetic susceptibili-
ty (in the z direction), assuming the g value of the

conduction electrons is zero, is calculated with the
formula'®

xi=(gnal [} dx (M, e™My,) |

Here the Hamiltonian H is given by

2.1)

H= H(Q+Hcf+Hsf N

where Hy, is the free-electron Hamiltonian, Hy; is
the exchange interaction, which is conventionally
written as Hy = -T'J- §, and H,, is the hexagonal-
crystal-field Hamiltonian which is diagonal with
respect to the eigenstates of J, (see Ref. 3 for fur-
ther details).

In Eq. (2.1), B=1/kgT and

(0)=Tr(0e™H)/Tr(e™¥) . 2.2)

By expanding the ordered exponentials in Eq. (2.1)
up to second order in I'" and by rearranging various
terms, the lowest-order term which we obtain is

x©=(gual fy A (Judo (2.3)

where (), denotes a thermal average in absence of
the s-f interaction.

The next nonvanishing terms which are second
order in I" are

xP=(gual [] an [ duy [ au,

X Hog ay ) Iy Hog 1)) ) (2.4)
xéz’=(gu5)zfoedxf:du1fo“1duz

X (Hgpluay) Hyg W) I o ) (2.5)
x$'= = (gual [T J duy [ du,

X{ Hggluey) Hop U)o , (2.6)

where H ,(u)=e"foH ,e™"#0 and Hy=Hy, + H,. Owing

to the commutativity between H,, and J, the term x32’

of Ref. 9 does not contribute to x.

We would note that the calculation of x, (the mag-
netic susceptibility perpendicular to the ¢ axis of
the crystal) should require the substitution of J, by

J

X2 = (gupP T2l +eP414e7P02)1 Zz’f»(l ~fe) [-9 (
,
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2 FIG. 1. Energy-level

diagram for the 2F5/2 state
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of Ce ions in Y, calculated
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on the basis of the point-
charge model.

J. (Jy) in Eq. (2.1). Even if, in this case, an exact
calculation could be still possible in principle,

a much larger amount of algebraical work would be
required owing to the noncommutativity between

H. and J, (J,). Now we want to evaluate these var-
ious contributions for the Y-Ce system.

Since the spin-orbit coupling is strong in cerium,
the ground state F;,, and the next excited state
2F7 /2 are very distant in energy (about 2200 cm™),
For this reason one can assume J 2= const. at or-
dinary temperature, and limit oneself to the sub-
space with J=3.

In an hexagonal crystal field the six degenerate
states of cerium are split into three doublets with
Je=%3;+3; £3. A point-charge calculation gives
for the energy-level diagram the result reported
on Fig. 1 where, following the theoretical treat-
ment by Kasuya, ! A, and A, are easily evaluated
in terms of the effective charge number Z’ of the
Y ions as® (in degrees Kelvin)

A,=106(3Z') and A,=247(3 2') .

However, these values are not completely reliable
since they are based upon a point-charge calcula-
tion. An exact calculation should also take cova-
lency effects into account and, consequently, could
alter this level scheme in a substantial way. For
this reason, in the following we shall take A, and
A, as disposable parameters. On the other hand,
we assume the J, == 3 doublet to be the ground
state, as this is confirmed by the experimental re-
sults.?

The zero-order term x‘® simply gives the crys-
tal-field contribution as obtained by Sugawara and
Yoshida®:

w_¢ 3
T 35

1+9e™41, 257842

1+ePA1 482 7 @.7

where C=(gug)?J(J +1)/3kp is the Curie constant
for one cerium ion per volume unit, g= 1?—, and
J=3. Now we introduce e’**= (1 —f,)/f,, where f,

is the Fermi function. From Eq. (2.4) we obtain
after some algebraic calculations in which the posi-
tion of the dummy variables have been rearranged:

B 2

B
(€r—€w P * (Ek_ek/)s> —8((%‘5# -4,
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—2__. =841 B
+(€k_€k"'A1)3> Be ((fk"ik"*'AOz +(€)¢"'

2 _5e-BA1 B
€p +4,) (€n—€p +A, = A,F

2 -84,
-5 2
* (ek-ek'+A1—Aa)3) ¢ ((ek

B 2
—€k'+Az‘A1)2+(Ek—ﬁk'+Az—A1)3):| ' @8

In a similar way we obtain from Egs. (2.5) and (2. 6),

X& +x 2 = (gupPT21+e™ 1 4e™%2)28 25 fi(1 - fy0) <(10e"“‘1 — 182 _ 30 0rea2)) B
R,k

16 -8A1 3 -BAg B
+16(e™* + 3e )E——_—k—€k'_A1

1
oo e
(€p —€pr — AP

—10(3e#22 4 2™ 41782)) B

€p— €y +A2~A1

—20e78%2(1 + €701 4 gP02) L

+16(2e-B(A1+Aa)_”e-BA1) B

-16(1 +e'“‘ +e'“2) (E—€+T)
R~ SR’ 1

+20e™21(1 42721 4 ¢ B22)

€p—€pe

— B 116(1+ePAle™l2)
(€r—€p +44)
-84
e ! +10(ze~B(A1+A2) _e-BAl) B
2 € —€pr +41 -4y

1
(€k_€k' +A1—A2)2

(€p—€pr +8, — AP

The evaluation of x?’ depends on the three func-
tions

s(a)= B Slho)

Rk’ (€p —€pr + AP’

» Soll =fr+)

Be' €p— €+l

(2.10)
S,(a)=

ssz(O)-f da’s,(a’), @.11)

Soll =fr)
S(4)= Zh;’ (€r — €+ +4)

1 88,(a")
2 T8(a")

(2.12)

A=A

By assuming the charge carriers to reside in a
band extending from - D to D with a constant den-
sity of states n(Er), where the Fermi level Ey has
been chosen as the zero of energy, we obtain

S,(a)= ~-n?(Ep)J;(4)

2%, T(2D - A
==n (EF)[Il(kAT) lnl BTI?(-T&_)-‘_)]’

(2.13)
where

J' 3 8fp
o€, aik'
has been previously computed. 12 The functions

S,(A) and S,(A) are then easily evaluated as

n (EF)
B

—€p +A

dey
ZkBT dEk €y

S;(8) = S,(0)= —== J,(4)

B
A 2kgT(2D - A)
——(1+1 ‘_———(D—A)z )

) ) (2.9)
[
2D 9D-A
ED | 2R=S ] 2.14)
L2 2(E A
S,(8)= 372 (EF) Bd4(A) = z (:F) B [Is (m)

3D-aA

__3b-4 (2.15)
MR, ST A)]
where

La)= J da'I(a'), Ia)= “;‘f)

and a=A4a/kgT

As far as the term S,(0) is concerned, a simple
calculation gives S,(0)= —#n?(E;) DIn4. However,
as is easily seen from Eq. (2.9), this constant
term does not give any contribution to x#’, there-
fore it will be ignored in the following.

The functions I,, I,, I; are plotted in Fig. 2 for
positive values of the argument a. For negative

25

-0.5

0

FIG. 2. Functions Ij(a), I (a), and I3(e), where «

:’A/kBT.
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values of the argument, it is easily seen that

Ii(- a@)=I,(a), I,(- a)= -L(a), I;(- a)= -I(a). For
completeness here we report the values of the func-
tions J,, J,, J; for the zero value of the argument.
We have

J1(0)=-0.432+1n | 4k5T/D |=1n| 2.62k3T/D |,
J,(0)=0,
J
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J4(0)=3k5 T/2D .

J4(0) is usually negligible since k57 < D at ordinary
temperature. Interms of the J,, J,, J; functions
we obtain after some straightforward calculations

x@=< [(2n(Ep) TR o (T),

=7 (2.16)

where

@ (T)= (1 +eP21427%2)1{9[J,(0) - J5(0)] +8[J; (- A,) —J5(— A )] +8eP21[J (A ) =J4(A )]+ 51 [J, (A, - 4,)

—J3(A; = 4,)]+5e™42[J (A, - a,) =J3(4, - A}

and

C
X& 4y @ = 7 [27(Er) TR @, (T),

where

(2.17)

(2.18)

@ T) =& (1 +e™2147%2)2{( 214 3¢ P%2)[8,(- &) = 5J,(A, — A,)] +e™41(2e™%2 — 1)[8J,(4,) +5J,(A, - A,)
—5d,(8, —A))]+2(1 +e P21 1e02)[- 4T (- A ) +4e™21J,(A ) - 521 (A - A,)+ 5™ 2d (4, - A )]} .

It is easily seen from Egs. (2.16)—(2.19) that the
correct limit is obtained in the absence of the crys-
tal field as ¢,(7) goes to In(2.62 k5 7/D) (apart
from a term of order k5 7/D which is usually ne-
glected), and ¢,(T) goes to zero.

In the opposite limit at low temperatures (84,
BA, =~ »), we obtain

¢1(T)+<P2(T)

=%[91In(2.62 k3 7/D)-81n(24,/D)], T-0;

so that the logarithmic divergent term is clearly
predominant in the low-temperature region.

III. CALCULATION OF THE RESISTIVITY

Now we present the calculation of the resistivity
for a cerium ion in an hexagonal crystal field inside
the third-order approximation. Numerical calcula-
tions on this subject have been already carried out
by Maranzana and Bianchessi® and by van Daal ef
al."® in the framework of the s-f exchange coupling
and by Cornut and Cogblin® in the framework of the
Anderson model. Since in the present paper we
are mainly interested in obtaining an analytical ex-
pression for the Kondo temperature Ty, we will
evaluate the exchange resistivity using the usual
fa=3 approximation. We do this since this restric-
tion does not alter in a substantial way the conclu-
sions of the work and, at the same time, allows for
a great simplification of the calculations.

The results, which we will obtain, can be con-
sidered as reliable in the whole range of tempera-
tures except for T close to the values of the crys-
tal-field splitting.® The relaxation time 7, is given
up to third order in I'" by

(2.19)

1/7,=1/7 +1/72, (8.1)

where 1/73 and 1/72’ are the reciprocal relaxa-
tion times proportional to I'? and T % respectively.
Expressions of 1/73" and 1/72’ have been reported
by several authors.®™® Inside the f,=3 approxima-
tion the term 1/73) is independent of the electron
wave vector k, so that the correct expression of

the magnetic resistivity is given by

D af, 1
()
Y Po[ - a€k T'gz) k] 2
where po= (m/ne?)(1/7") is the spin-disorder re-

sistivity. The evaluation of the resistivity p de-
pends on the calculation of the typical integral

o2 (-4

D
1
X — d€y .
J._ka’ €k"—€k+A i

When D is sufficiently large compared to A and
kg T, as it is in the present case, the integral can
be easily evaluated as

F(A)= F(- A)=In(2ks T/D)+1,(A/kpT) ,

(3.2)

(3.3)

(3.4)

where the I,(A/kgT) function has been previously
reported. Then, after some algebraical calcula-
tions, we obtain

p=po(T)[1+4n(Ee) T (T)] , (3.5)

where the spin-disordered resistivity is given by

21 m
polT)= = == n(EF)T2J(J+1)
7 ne2 R(T)

X(1+e®t yePi2)t —— |

35 (3.6)
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where )
R(T)=19 +9e™51 925¢ 42 . 64(1 +eBA1) 1
+40(eBA1 +eBA2)" A (3.7)

J

In presence of the crystal-field splitting ¥(7) re-
places the Kondo divergent term Inkyz7/D. We ob-
tain

W(T)=[R(T)] ™ {[27 + 32(1 +€®41)! + 20(€®21 + €°22) ] F(0) + [24e ™21+ 32(1 +€°41)! — 8] F(A,)

+[25e™2 120(e°%1 +¢P42) — 15¢ P F(a, - A,)} . 3.8)

It is easily seen that the correct limits are ob-
tained for A,, A,~0. The Kondo temperature 7y is
obtained, as usual, by writing that the third-order
term of p is two times the second-order term p,.
So T is given by the equation

2n(Ep)TW¥(Ty)=1 . (3.9)

IV. COMPARISON WITH EXPERIMENTS AND CONCLUDING
REMARKS

The observed solute susceptibility per g of alloy
per at.% Ce has been reported by Sugawara and
Yoshida.® Here we try to compare these experi-
mental data with the theoretical evaluated suscep-
tibility which is given by the Eqs. (2.7), (2.16),
and (2.18). Of the four disposable parameters
A, A,, D, | n(Ep)T |, which appear in the expres-
sion of the magnetic susceptibility, the half-band-
width D does not greatly affect the physical results.
We assume D to be in a range typical of the rare-
earth alloys®™®: D=600-1000 K. As far as the
other parameters are concerned we note that, as a
general trend, the value of | n(Ez)T" | influences
the magnitude of the susceptibility mainly in the
low-temperature region (75 20 K). On the other
hand, the influence of the crystal-field splittings
A, and A, is appreciable at relatively higher tem-
peratures.

Allowing for a variation of A; and 4, in a broad
range of temperatures (from 30 to 300 K) and as-
suming | n(EF) T | in the region of typical values
(from 0.05 to 0.10), we first obtain a rough fit to
the experimental high-temperature values (7 > 50
K) for A;=80-90 K and A,=230-250 K. The best
fit to the experimental data, in the whole tempera-
ture range, is then obtained for the following val-
ues of the parameters: D=800K, A,=87K, 4,
=240 K, | n(EF)T' | =0.065. We note that the level
sequence which we obtain agrees with the point-
charge calculation. Also we obtain for the A,/A,
ratio a value 2.76 which is in a reasonable agree-
ment with the point-charge value 2. 33, even if
slightly larger. The other hypothetical level dia-
gram, with A, >A,, never allows for a good fit to
the experimental data. The experimental points
and theoretical curve for the reciprocal magnetic
susceptibility (in the direction parallel to the ¢ axis
of the crystal) are given in Fig. 3.

In order to provide useful information on the
general theoretical behavior of the magnetic sus-

I

ceptibility, Fig. 4 reports on the various terms
contributing to the susceptibility.

The zero-order contribution x‘° appears to be
largely dominant everywhere but in the very-low-
temperature range. The second-order contribu-
tions x 2’ and x &), are opposite in sign among them
and go rapidly to zero as soon as a temperature of
few degrees Kelvin is reached.

Even if these features are probably strongly de-
pendent on the magnitude of the n(Ez)I" parameter,
it is likely to be generally true that no “Kondo side-
bands” are present in the magnetic-susceptibility -
vs-T curve.

As far as the exchange resistivity is concerned,
we see from Eq. (3.5) it to be isotropic in the whole
range of temperatures. This result agrees with the
experimental behavior since the observed high-tem-
perature anisotropy of the total Y-Ce resistivity
can be attributed to the anisotropy of the phonon re-
sistivity.

Owing to the approximation used in the resistivity
calculation, we do not try a comparison with the
available experimental data. On the other hand to
make a comparison with experiments one must be
able to extract the “experimental” magnetic con-
tribution from the total-resistivity data. Even if,
as in the case of Y-Ce alloys, the phonon contribu-
tion by the host is known, it must be noted that de-
viations from Matthiessen’s rule can make this a
difficult task.!*!® For these reasons we limit our-

4r Y- Ce A
2
§ 3
~
2
]

2
o
°
g 1

O 1 i L i

0 50 100 150 200 250
TCK)

FIG. 3. Temperature variation of the reciprocal so-
lute susceptibility for the direction parallel (Hll¢) to the
c axis of the crystal. The experimental points are taken
from Ref. 3. The continuous curve gives the predictions
of the theory.
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FIG. 4. Contributions to the magnetic susceptibility
vs T for the following choice of the parameters: 4
=87 K, 4,=240 K, n(Ep)T =0.065, and D=800 K. (a)
Zero-order contribution x‘°), (b) second-order contribu-
tion x +x¥, (c) second-order contribution Xy, and (d)
total second-order contribution.

selves to simply give an estimate of the Kondo tem-
perature Tk, or the temperature where perturbation

DE GENNARO 9

theory breaks down.

Inserting the previously determined values of the
parameters A,, A,, n(Eg)T, D in Eq. (3.9) we ob-
tain Tx=1.4 K. This value of 7Ty appears to be
somewhat smaller than previously reported values,
which were found in the range 4-40 K.® However,
previous values cannot be considered as completely
reliable since they were obtained on a phenomeno-
logical basis. As previously noted, ® the introduc-
tion of the crystal-field splitting considerably in-
creases the range of 'validity of the perturbative
approach.

In conclusion, our calculation éxamines the role
played by the crystal field both for resistivity and
susceptibility of Y-Ce alloys, explains susceptibili-
ty measurements on Y-Ce alloys, and provides
useful information on the general theoretical be-
havior of the magnetic susceptibility in rare-earth
Kondo systems. Further theoretical work is re-
quired in order to examine the influence of the
crystal field on other properties of the Kondo sys-
tems.

*Work supported in part by the National Research Council.

'T. Sugawara and S. Yoshida, J. Phys. Soc. Jap. 24, 1399
(1968).

’H. Nagasawa, S. Yoshida, and T. Sugawara, Phys. Lett. A
26, 561 (1968).

3T. Sugawara and S. Yoshida, J. Low Temp. Phys. 4, 657
(1971).

‘F. E. Maranzana, Phys. Rev. Lett. 25, 239 (1970).

F. E. Maranzana and P. Bianchessi, Phys. Status Solidi B
43, 601 (1971).

°B. Cornut and B. Coqblin, Phys. Rev. B 5, 4541 (1972).

E. Borchi and S. De Gennaro, Phys. Lett. A 43, 234 (1973).

%S. De Gennaro and E. Borchi, Phys. Status Solidi B 58, 219
1973).

%S. De Gennaro and E. Borchi, Phys. Rev. Lett. 30, 377
(1973).

195, Kondo, in Solid State Physics, edited by F. Seitz, D.
Turnbull, and H. Ehrenreich (Academic, New York, 1969),
Vol. 23.

I'T. Kasuya, in Magnetism, edited by G. T. Rado and H. Suhl
(Academic, New York, 1966), Vol. II B, p. 271.

2M. T. Béal-Monod and R. A. Weiner, Phys. Rev. 170, 552
(1968).

BH. J. van Daal, F. E. Maranzana, and K. H. J. Buschow, J.
Phys. (Paris) Suppl. 32, 424 (1971).

“A. D. Caplin and C. Rizzuto, J. Phys. C 3, L117 (1970).

SC. Rizzuto (unpublished).



