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The EPR spectra of Cr'+ in cubic ZnS, ZnSe, ZnTe, and CdTe, and in hexagonal ZnS and CdS are
reported. For each, h,M = +4, +2, +1 transitions are observed allowing complete analysis of the
S =2 spin H~~i&tonbe. A static tetragonal Jahn-Teller distortion is observed in all cases.
Stress-ali~~ent studies are dcexibed which allow a direct estimate of the Jahn-Teller coupling
cod5cients. From these, the magnitudes of the Jahn-Teller energies are esegnated to be ~500 cm '. A
ligand-field model is developed which satisfactorily accounts for the fine-structure parameters and their
large variation from one crystal to another. In this treatment, ligand contributions to the spin-orbit
interaction with excited d' terms are also included and found to be important. Strain~upling
coefficients, describing the changes in the fine-structure terms under externally applied stress, have been
experimentally determined for CdTe (Cr'+). A simple theory for this @feet is developed which includes
ligand contributions to the spinwrbit interactions but relies on point-ion estimates for the strain matrix
elements. Agreement with experiment is relasoliable for the tetragonal coefficients, but the wrong sign is
predicted for the trigonal ca&cients. The calculated trigonal cod5cients for CdS do, however,

lief lo'ly tf th Ildeparhuwf It I~ y ~ b. A' th p'

H~~i&tonian for Cr'+ in this hexagonal wiirtzite lattice.

I. INTRODUCTION

The EPR spectra of Cr ' in CdS' 9 and ZnSe
have been reported earlier. From analysis of
superhyperfine interactions with neighbors it was
confirmed by these workers~ ~ ~0 ~ that the chro
mium ion enters substitutionally into a cadmium
(or zinc) atom lattice site. The anisotropic spec-
tra were taken as evidence of a static Jahn-Teller
distortion, but the precise nature of the distortion
was given different interpretations. Estle et al.s
interpreted the results to indicate a tetragonal dis-
tortion of the nearest neighbors. Morigakie 4 on
the other hand, postulated a substantial trigonal
component to the distortion associated with motion
of the central Crs' ion. Later far-infrared-absorp-
tion measurements's in ZnSe: Cr ' were interpreted
to indicate a pure tetragonal distortion.

The near-infrared absorption spectrum of Cr~'

has been studied ~ in most of the II-VI lattices
(ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe). The
spectra were found to be very similar in all cases.
This was interpreted by Vallin et al. to indicate
that the ion suffers a static tetragonal Jahn-Teller
distortion in all cases, and they interpreted the
optical spectra accordingly, estimating the Jahn-
Teller energy to be -400-600 cm ' for all II-VI
lattices studied. The other authors, '5 "however,
have interpreted their optical-absorption results
in terms of no Jahn-Teller coupling. A similar
interpretation has been given by Nelkowski and
Grebes in their luminescence study of ZnS: Cr '.

The present study was undertaken to clarify the
role and nature of the Jahn-Teller effect in these
materials. We report here new EPR results for
Cr~' in ZnS, ZnSe, ZnTe, CdS, and CdTe. Pre-

liminary reports of this work have been published
elsewhere s ao

Briefly our results are as follows. We find that
a static Jahn-Teller distortion does indeed occur
in all of the materials studied. The symmetry of
the EPR spectrum reveals unambiguously that the
distortion is a pure tetragonal one. The applica-
tion of uniaxial stress to the crystal is found to
produce substantial preferential alignment of the
defects confirming that the distortion is Jahn-
Teller in origin. These results are described in
Sec. IG along with the analysis of the EPR spectra.
In Sec. IV a simple crystal-field theory for the
electronic structure of the Cr ' ion in a II-VI lat-
tice is outlined including the theory of the Jahn-
Teller effect. It is shown that the stress-align-
ment results can be analyzed to give a direct esti-
mate of the Jahn-Teller coupling coefficients.
This in turn is used to give an independent estimate
of the Jahn-Teller energies. It is concluded that
these estimates are generally consistent with those
determined from the optical studies confirming the
general interpretation of Vallin et al.~4

In Sec. V we consider the theory of the spin
Hamiltonian. Here we derive expressions for the
contribution of spin-orbit and spin-spin interac-
tions to the spin-Hamiltonian parameters and their
dependence upon applied strain. These results are
first evaluated within a simple point-ion approxi-
mation. The treatment is then expanded to include
the effect of admixtures of the ligands into the
wave functions of the central Crs' ion.

In Sec. VI we compare the theory with the ex-
perimental results. We conclude that the simple
point-ion treatment is incapable of explaining the
large variation of fine-structure parameters ob-
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served in the various lattices. We find, however,
that modest admixtures of the ligands are suffi-
cient to provide a satisfactory explanation of the
results. Attempts to match the measured strain-
coupling coefficients (describing the strain depen-
dence of the fine-structure splittings) are also
described.

II. EXPERIMENTAL PROCEDURE

Most of the EPR studies were performed on a
balanced bolometer system operatiag at 20 GHz.
Limited measurements were also performed on a
similar 14-GHz spectrometer whose magnetic-
field range, normally 0-8 kG, was extended to 35
kG with a superconducting solenoid. For most of
the experiments, magnetic-field modulation was
employed with lock-in detection and recording,
giving derivative of absorption spectra. For some
experiments at 20 GHz, absorption spectra were
also recorded directly by using modulation of the
microwave power. m'

The method of applying uniaxial stress to the
crystals has been described previously. ~2 Line-
width studies versus temperature in the range
4.2-14 'K were made by expelling the liquid heli-
um and monitoring the temperature with a copper-
constantan thermocouple as the microwave cavity
warmed up. Studies in the range 14-20 K were
performed by pumping liquid hydrogen, the tem-
perature being given by its vapor pressure.

Most of the samples studied were synthetic crys-
tals into which chromium was introduced by diffu-
sion. For this, a -1-p,m layer of metallic chro-
mium was evaporated onto the sample surfaces
and heated for several hours in quartz tubes sealed
with - —,

' atm of argon. Typical diffusion tempera-
tures were CdTe (600'C), ZnTe (750'C), ZnSe
(800 'C), and Zns (1025 'C). The cubic crystals
of each of these materials were giown in this
laboratory by Woodbury, Swank, Aven, and Prener,
respectively. The hexagonal ZnS crystal was ob-
tained from the Eagle-Pitcher Company. The
chromium-doped CdS sample was supplied to us by
Locker of the Aerospace Research Laboratories
and was originally grown from the vapor.

III. EXPERIMENTAL RESULTS

For all the II-VI materials studied, a complex
anisotropic spectrum is observed at g 4.2 'K that
we identify with Cr~'. The spectrum in each case
can be analyzed with the spin Hamiltonian

3C= Pz g, S,H, + gz g, (S„H„S,H+„)+DS',

+ E(S, —S~)+ 1 [35sg —30S(S+1)sg+ 25sg]

+ 16-a(s,'+ s,'+ s,'),

where ps = eif/2mc is the Bohr magneton, H is the
magnetic field, and $=2. For the cubic materials
(Zns, ZnSe, ZnTe, CdTe), the x, y, z principal
axes are found to coincide with the cubic (1, 2, 3)
axes, with E=O, and the observed spectrum can
be resolved into three identical equally intense
spectra, each given by (1), but with the z axis of
each along a different cubic axis (1, 2, 3). For the
hexagonal materials (Zns, CdS), six identical
spectra are observed. The identification of the
sets of axes in (1) for this case will be deferred
until it is presented in detail.

For all cases observed, the dominant fine-
structure term is D (i.e. , IDI » Ial, IEI, IFI),
and the general dependence of the 2S+ 1 energy
levels on applied magnetic field is therefore simi-
lar to that illustrated in Fig. 1. However, the
form of the EPR spectrum observed depends
strongly upon the size of D.

(i) If ) D I » b vo, where v 0 is the spectrometer
frequency, the observed transitions may be limited
to the "forbidden" M=+2= —2 and M=+1= -1
ones, as shown by the short vertical solid lines in
Fig. 1. If the magnetic field can be made large
enough, however, the allowed M = —1=0 transi-
tion may also be observed, as shown.

(ii) If I DI& hvo, many transitions will be ob-
served. Shown in Fig. 1 by the vertical dashed
lines are the allowed b,M= +1 transitions where hvo
= 2.6 I D I.

The spectral transitions are relatively insensi-
tive to the term in Eq. (1) involving F, which is
small. The term was included in the analysis only
for CdTe and ZnS, where a sufficient number of
transitions were studied to allow its determination.
For the other systems, analysis was performed
assuming F to be zero.

A. CdTe

The spectrum observed at 4.2 'K, v0=20 GHz,
is shown for two different magnetic field orienta-
tions in Figs. 2(a) and 2(b). There are many lines
spread over the full range of available magnetic
field and a very complex angular dependence is ob-
served. As previously mentioned, the spectrum
can be resolved into three separate but identical
spectra, each with its principal axis (z) along a
different cubic axis. This is illustrated by the in-
sets in the figure where the z axes of the three
different orientations are labeled a, b, and e. The
EPR lines associated with each orientation are
correspondingly labeled on the recorded spectra.

With the magnetic field along a cubic axis [Fig.
2(a)], it is either parallel (defect a) or perpendicu-
lar (defects b, c) to the z axis and the energy levels
of Fig. 1 apply directly. In fact, the specific val-
ues of a, F, E, and D used in the calculation of
Fig. 1 are those which are the result of the analy-
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FIG. 1. Energy levels
for Cr+ +=2) vs magnetic
field given by Eq. 0.) for
ID I»la I, I~ I, I&l.

The short solid vertical
lines give the EPR transi-
tions for I D I » k vp The
vertical dashed lines are
the allowed Mf =+1 transi-
tions for hop= 2.6 ID I. (Note
that the ordinate is given
in units of D, so that the
figure applies for either
sign of D. The M values
are indicated for D & 0. The
values in brackets are for
D&0. )

sis for Cr~' in CdTe. In addition, the dashed lines
correspond to the transitions for hvo/I foal = 2.6, the
value appropriate to Cr ' in CdTe. Each spectral
component in Fig. 2(a) is therefore also labeled
to correspond with the transitions in Fig. 1.

The angular dependence of the spectrum for H

in a {100[plane is summarized in Fig. 2, where
the components from each of the differently ori-
ented defects are displayed separately. The ob-
served spectrum involves all three superposed.
From Fig. 3, at /=45', the spectral lines in
Fig. 2(b) can be identified, and they are also la-
beled accordingly.

Analysis was performed by a computer fit to the
data of Fig. 3 and the results are shown by the
solid lines. The spin Hamiltonian parameters de-
duced from this analysis are given in Table I. The
sign of D was determined by the temperature de-
pendence of the intensities of the spectral compo-
nents in the range 1.5-4.2 K. [For instance, the
high-field line in Fig. 2(a) decreases in intensity
as the temperature is lowered, the adjacent line
increases. From Fig. 1 this gives the sign of D
as positive. ] The remaining signs are determined
directly from the analysis.

We interpret the anisotropy in the spectrum to
be evidence for a static Jahn-Teller distortion
around the Cr ' ion. Confirmation of this interpre-
tation comes from the behavior under uniaxial
stress, as shown in Fig. 2(c). We note that the
relative intensities of the spectral components

(t) (&) ). ( (&) (~) qeg —egg —2 ze

Here the strains e&z are defined in terms of the
atomic displacements u& in the usual manner:

(2)

In Fig. 4 we summarize the stress-alignment
results by plotting the ratio of the intensities of

associated with the differently oriented defects
change dramatically versus stress. Careful mea-
surement of the integrated intensities reveals that
the total intensity of the spectrum is constant and
that the changes simply reflect redistribution
among the three defect orientations. This easy
reorientation at low temperatures confirms that
the anisotropy does not result from a defect locked
in the lattice nearby but rather must be an intrinsic
property of the substitutional Cr~ ion which is
otherwise in the full tetrahedral symmetry (T,) of
the cadmium site which it occupies. The absence
of an E term in the spin Hamiltonian, Eq. (1), re-
veals that the distortion must be a pure tetragonal
one, the local symmetry being reduced from T„ to
Dg

Studies with stress along the (100), (110), and
(111)directions reveal that the degree of align-
ment is determined solely by the difference be-
tween the tetragonal components of strain e~ along
the z axis of each defect, ~3 where, for the ith de-
fect,
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FIG. 3. Angular dependence of the CdTe: Cr + spec-
trum for 5 in the (001) plane. The components from each
differently oriented defect are displayed separately.

FIG. 2. EPR absorption spectrum for Cr ' in CdTe at
4.2'K, so=20 GHz: (a) Hll[100]; (b) Hll [110]; (c) Hll[110]
and a compressional stress P of 75 kg/cm2 parallel to
the [001] direction. The lines are labeled to correspond
to the transitions indicated in Fig. 1, the z axis associ-
ated with each line being donated by a, 5, or c (see in-
sets).

the spectra associated with two orientations (c and

a) versus the difference in the tetragonal strain
components for each, (ea- ea), resulting from the
applied stress. For a stress along a cubic 3-axis
(see insert in Fig. 4), the differences in e, are
given by

= —a (SII —Sas)P(011) . (5)

The results for both stress directions are identical
and are plotted in Fig. 4(a) for 4.2 and 1.5 K.
At 1.5 'K, the alignment was still instantaneous on
the time scale of our experiment (r &0.2 sec) and

ea ea = ea ea = a(ess eII) = —a(SII —Sas)P(001),
(4)

where S„and S,s are the elastic moduli (3.83
x10 's and —1.58x10 Is cmsjdyne, respectively
for CdTe)sa and P(001) is the applied pressure along
the 3 axis. For stress along the [011]axis (see
inset in Fig. 4), the differences are

c a b a 3/
ea —ea = ea —e, = a(eSS —eaa)

TABLE I. Spin Hamiltonian parameters for Cr2' in II-VI crystals.

CdTe CdS Zn Te ZnSe

gx
D(cm-')
E(cm-')
a(cm-')
r(cm-')
~(deg)

1.980+ 0. 015
1.980+ 0. 015

+0.260+ 0. 004

+0.05+0.01
—0.05+0. 02

1.934+ 0. 004
1.970+ 0. 004

—1.805 + 0. 005 ~

+ 0. 0225+ 0.0010
+ 0. 150 +0. 001

+2. 85+0. 015

1.97+0.01
1.99+0.01

+ 2. 30 + 0. 02 i

+0.140+0.007 +0. 024 + 0.193+0.007
—0.14+0.07

1.961 + 0. 002 1.94+ 0.02
1.98+0. 02 l. 98+0.02

—2. 48 + 0. 01 —1.86 + 0. 03

This value, determined from the M=0=+1 transition, is actually D —~~F, and the indicated
error strictly refers to the determination of this quantity. I" is assumed zero in the analysis.

"This value, determined from the M = +1=+2 transition observed by ir (Ref. 13), is actually
D+ &E. E is assumed zero in the analysis.

'Reference 10.
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M = —1=0 transition for h parallel to the defect
axis [transition b, in Fig. 1(a)j versus 1/T in this
region. At low temperatures, the absorption line
is somewhat bell shaped, characteristic of an in-
homogeneously broadened line, but in the high-
temperature limit it has a Lorentzian shape,
characteristic of lifetime broadening:

( )
2gpg Tg/h

1+ [2vg gs T,(H Ho)/—h]
(8)

c/a

c) Zn Se

I 54K

24K C

II 'I
~-b

P (OII)

lc)

I I I I I I I I I I I I

0 -O. l &.2 -03 -0.4 -0.5 -0.6 -07 -0.8 -0,9 -I.O -I.I -l.2xIO
C 0

e-e&

the kinetics of the reorientation process could
therefore not be studied.

The EPR lines also shift in position significarrtly
versus stress as can be seen in Fig. 2(c). A

careful study of this effect was performed versus
stress in the (100) and (111)directions and the
results are shown in Figs. 5(a)-5(c). The stress
and the magnetic-field geometry is shown in the
inset of each figure. The broadening of the lines
observed in Fig. 2(c) presumably results from
inhomogeneity in the applied stress.

As the temperature is raised above -8 'K, the
linewidths are observed to broaden abruptly for
all of the spectral components. In Fig. 6, we plot
the log of the peak-to-peak derivative width of the

FIG. 4. Preferential alignment of the Jahr. -Teller dis-
tortion direction vs applied tetragonal strain components
for (a) CdTe, (b) ZnTe, and (c) ZnSe. The ordinate is
the ratio of the intensity of the spectrum associated with
orientation c to that of orientation a (see insets).

Making the simple assumption for analysis pur-
poses that the inhomogeneous and Lorentzian con-
tributions to the width simply add, ~5 we may esti-
mate the characteristic relaxation time Tz versus
temperature into the transition region as well,
and these results are also given in Fig. 6. The
data have been fit to the straight line

(T )-i ziar-

characteristic of a thermally activated process.
In Table II we list the parameters for this fit. It
should be noted, however, that the data are not
accurate enough or over a large enough tempera-
ture range to distinguish between other possible
dependences. For instance, it could also be fit to
a T3 dependence, also shown.

B. Cds

The EPR spectrum of Cr ' has been the subject
of study by a number of workers. ' ' In these
studies, only the M=+2= -2 transition was ob-
served and from this it could be deduced only that
D was negative and ID[ »hvo. To enhance the
lines for study, these workers used a geometry
to give the microwave magnetic field H, II H. None
of the other transitions (Fig. 1) were observed and
a direct measure of D and the other fine-structure
terms in the $=2 Hamiltonian was therefore not
possible.

Figure V shows the spectrum we observe at
20 GHz, 4.2 'K, with the conventional EPR geome-
try, H, IH. In addition to most of the M=+2= —2
transitions, we observe a number of M=+1= —1
transitions and a transition at 14.2 kG which we
identify as the M = 0=+ 1 transition [see the short
solid-line transitions in Fig. 1(a)g. The angular
dependence of the spectrum with H in the (112.0)
plane is shown in Fig. 8. (The small splittings
observed for some of the lines result from a slight
misalignment, -1', of the crystal. )

Cds is hexagonal (wurtzite structure) with two
inequivalent cadmium sites per unit cell.~s Each
site is surrounded by four sulfur atoms on the
corners of a nearly regular tetrahedron. It is
convenient therefore to express the spin Hamil-
tonian in terms of the (1, 2, 3) "cubic" axes asso-
ciated with this tetrahedron. It can be considered
a regular tetrahedron which has been compressed~6
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6.3(10 )

12.6(1O")
5.5(10 )
1.2(10")

CdTe
Cdsa
Zn Te

0.0036
(o. oo85)
0.0063
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FIG. 7. EPR spectrum
(absorption derivative) of
CdS:Cr at 4.2 K, vo=20
GHI', . The magnetic field is
in the (112.0) plane and
makes an angle (g) of 57.6'
from the [000.1) c axis (see
Fig. 8).

I ( & I I

r I 9 I II

~DIETIC RKLO %6)
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Q 6 I1 I

cubic axis (1, 2, 3). Again we interpret this to be
the result of a static Jahn-TeQer distortion as
have previous workers. ' 9 The small values for
E and 8 suggest that, as in cubic CdTe, the dis-
tortion is primarily tetragonal i.n character (view-

)5,

i4—

ing this in terms of the normal distortion modes
of a regular tetrahedron).

The EPR lines broaden as the temperature is
raised. ' A careful study of this has been per-
formed by Wagner et al. from 2 to 24 'K for the
%=+2=-2 transition and part of their results
are shown by the dashed line in Fig. 10. They
found that their data could be fit over the full tem-
perature range to either

or

T = 5x10'(ex& -1) '+1.2x 10~X,' J,(X,),
with X,T= 150 'K and XI T= 3.8 'K. [We note that
over the limited range in T~ studied by us in Fig.
10 the results of Wagner et al. could also be fit
approximately to the simple exponential dependence
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FIG. 8. Angular dependence of the CdS: Cr + spectrum
in the (11K.0) plane. The dashed lines denote LVf =4
transitions not observed in this study, but previously
studied in Refs. 1-7.

Looo.]i

(a)

FIG, 9 Foux' nearest-neighbor sulf Llx' atoms surround-
ing each of the two nonequivalent Cr + substitutional sites
in CdS. Shown are the local "cubic" axes (1,2, 3) and
the principal axes (g, y, s or x', y', s') for one of the
three Jahn- Teller distortion directions for each. One
set of axes transforms into the other by a 180' rotatidn
around the [000.1) c axis.
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FIG. 10. Dependence of T& on temperature deduced
from linewidth studies.

of Eq. (7) that we have used to analyze our results
in the other II-VI materials. The results of such
a fit are therefore also included in Table II for
comparison purposes. ]

The CdS crystals available to us were too small
for studies versus stress. However, deWit et
al. ' have reported that stress produces alignment
of the centers at 1.3 'K, which they interpret to
confirm the interpretation as a Jahn-Teller distor-
tion.

At the spectrometer frequency of 13.688 GHz, and
H It(100), two additional intense lines were observed
at 19.46 and 27.85 kG. We identify these as the
allowed M= 0= —1 transitions indicated in Fig.
1(a) (by the short vertical lines for the case I DI
&hvo). These allow the more accurate direct es-
timate of D indicated in the table. (See, however,
footnote a in Table 1.)

As was observed for CdTe, the application of
uniaxial stress to the crystal produces preferen-
tial alignment among the three Jahn-Teller distor-
tion directions, as evidenced by changes in the in-
tensities of the corresponding spectral lines. The
results for stress along a cube axis are given in
Fig. 4(b) for measurements at 4.2 and 1.5 'K.
[The tetragonal strain components were calculated
from Eg. (4) with the elastic moduli S» and S,z
for ZnTe given by 2.40~10 ' and 0.873&&10 '~, re-
s pe tcively ~]4A. gain, the alignment appeared in-
stantaneous (r &0.2 sec) at 1.5 K.

The M=+1= -1 EPR lines were also observed
to shift in position versus stress. Representative
results for (110) stress are shown in Figs. 11(a)
and 11(b). A detailed study versus stress orienta-
tion was not performed.

The EPR lines broaden abruptly as the tempera-
ture is raised above -8 'K. Analysis similar to
that described for GdTe (Fig. 6) gives the results
in Table II and Fig. 10. Here the measurements
were performed with H ll(100) and the results are
shown for the two M=+1= —1 transitions: (a)
H 1 z and (b) H tl z. These two transitions span
different ranges of T& because the static linewidth
is much greater for (a) than (b). As analyzed, the
two separate transitions give the same activation
energy but their frequency factors differ by a fac-
tor of 2.

C. ZnTe

In the magnetic field range available in our 12-
in. Varian electromagnet (0-15 kG), only the M
=+2= —2 and %=+1=—1 transitions were ob-
served. The angular dependence of these lines
is similar to that for GdS (Figs. 7 and 8), with the
exception that only one set of the three Jahn-Teller
distorted spectra is observed because ZnTe is
cubic. A computer fit to these transitions, ob-
served both at 20 and 14 GHz, gives the spin-
Hamiltonian parameters in Table I. The accuracy
determined in this analysis is as indicated in the
table, with the exception of that for D which is
-+0.15 cm '. The sign of D was determined from
the temperature dependence of the intensities of
the transitions in the range 1.5-4.2 'K.

To confirm the analysis, the magnetic field range
was extended to 35 kG in a superconducting magnet.
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FIG. 11. Shifts in the EPR lines at 20 6Hz for ZnTe:
Cr ' vs (110) compressional stress. The stress and
magnetic-field orientations are indicated in the insets.
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D. ZnSe

The M =+2= —2 EPR transitions have been pre-
viously reported for Cr~ in ZnSe by de%it et al.
and by Estle and Holton and interpreted to indi-
cate ID)» h, vo. In addition, a far-infrared absorp-
tion line at 7.43+ 0.03 cm ~ has been observed by
Vallin et al.~~ and identified as the M= + 2- + 1
transition in zero magnetic field. These results,
coupled with the M=+1= -1 transitions observed
in our experiments, allow the analysis given in
Table I. The sign of D was determined from the
temperature dependence of the intensities of the
transitions. The magnitude of a was too small to
allow a determination of its sign.

Uniaxial stress produces ali.gnment of the de-
fects. The results at 1.5 and 4.2 'K for stress
along a (110) axis are summarized in Fig. 4. Here
the tetragonal strain components were calculated
from Eq. (5) using the elastic moduli Stt, and S&z

for ZnSe given by 2.26 X 10 '~ and 0.85 X 10 '~ cmm/

dyn, respectively. ~4 %e note that the alignment is
essentially independent of temperature.

The lines broaden for temperatures above -12 'K
and the results of a study in the range 14-20.4 'K
are given in Table II and Fig. 10. Here the mea-
surements were performed with H It(100) on the
M=+1=-1 transition Hl z. The analysis was
performed in the manner described for CdTe,
using Eqs. (6) and (I).

E. ZnS

The spectra in cubic and hexagonal~~ ZnS, with
the exception of the doubling of the lines in the
hexagonal material (see discussion for CdS), ap-
peared identical within the accuracy of the mea-
surements. The lines were broader and substan-
tially less intense in ZnS than in the other mate-
rials and slight differences would not have been
detected. The M=+2= -2 and M=+1= -1
transitions were measured at 14 and 20 GHz. The
low-field M=0=+1 transition was observed at
-14.3 kG for v0=20 GHz. In addition, a weak far-
infrared-absorption line has been observed by

Hughes and Vallin at 5.53+ 0.10 cm and identifi. ed
as arising from M=+1=+2 transition. ~e With this
additional transition, F can also be estimated and
the results of the analysis are summarized in
Table I. The sign of D comes from the tempera-
ture dependence of the intensities from 1.5 to
4.2 'K.

The lines broaden as the temperature is raised
above -7 'K, and the results of the analysis are
given in Table II and Fig. 10. In this study,
H tt(110) and the I=+1=—1 transition, for which
the defect z axis makes an angle of 45' with re-
spect to H, was observed.

Uniaxial stress produced only a relatively small
effect on the intensities of the lines, with no ap-

parent difference between 1.5 and 4.2 'K. Quan-
titative studies of the stress-induced alignment
were therefore not possible. The apparent sign of
the alignment was consistent with that found for
the other materials (Fig. 4).

IV. ELECTRONIC STRUCTURE OF Cr~+ IN II-VI LATTICES

A. Theory

1. I'oint-ion crystal-field theory

In the crystal-field approximation one assumes
that the host lattice is static and its effect on the
Cr~' ion can be simulated by an effective crystal-
line electrostatic potential. ~~ In our treatment of
Cr ' we will assume that it is sufficient to con-
sider the d 4 configuration and that the electronic
states we study originate from the free-ion 'D
ground state. By symmetry, the tetrahedral (T~)
crystal field will split the 'D term into an orbital
doublet E and an orbital triplet Tz. A calculati. on
on a point-charge model with only nearest neigh-
bors contributing to the crystal field gives for this
splitting,

20 leql, l (r )
2'7 4vsDR 8'

Equation (8) is given in SI units, with co the vacu-
um dielectric constant, q~ the effective charge of
the ligand ions, e the magnitude of the electron
charge, 8 the nearest-neighbor distance, and
(r") the average of r" taken over the radial part
of the Cr ' wave function. For q~ negative, the
'T~ state is predicted to be lowest in energy, as
shown in Fig. 12.

2. Jahn-Teller coupling

If a crystalline defect has orbital degeneracy in
the ground state then the system is unstable to at
least one asymmetric displacement of the neigh-
boring iona (the Jahn-Teller theorem). ~0 + For a
defect with a T~ orbital ground state in a crystal
field of tetrahedral symmetry the possible asym-
metric distortions have Tz or E symmetry. + Our
experimental results show that the distortions are
of E symmetry, and we will therefore only treat
these tetragonal distortions.

On symmetry grounds these distortions and their
effects on the electronic states can be represented
by the following equivalent operator~~:

z, = v(q, 8, + q, g, ) + (-,'~)(q', + q,') .
In the first term of Eq. (9), the Jahn-Teller term,
Vis the coupling coefficient, Q~ and Q, are nor-
mal coordi. nates of the nuclear displacements, and
S~ and 8, are electronic operators having the fol-
lowing matrix representation with respect to the
orbital T~ functions of the ground state (q „4'„,qz)~~:



2060 J. T. VALLIN AND G. D. WATKINS

5A
A(

5AI(

There are three such stable distortions, cor-
responding to pure tetragonal distortions along
each of the cubic axes. In the discussion to follow
it will be convenient in each case to reserve the
z axis for the distortion axis. Therefore, when it
is necessary to distinguish the differently oriented
distortions, we will label the distortion coordinates

q(k) V/~ q(i) (13)
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V = (9/2v 2 R)(A+ 32B),

where

16 eq~ (r )
63 4~~, a

10 eq~ (r )
1701 4mqo R

(14)

(15)

B. Review of optical results

where (i) labels the particular cubic axis (1, 2, 3)
along which the tetragonal distortion has occurred.

Using the point-ion model for a T„ lattice, and
considering nearest neighbors only, we obtain the
following expression3 for V:

FIG. 12. Energy levels of Cr +(3d ) in a cation site of
a H-VI material, showing the effect of a (100) tetragonal
Jahn- Teller distortion.

(-;o o) o o)
8,= 0 1 0 g 0 v3/2 0

(o o 0 0

BqT = V /2/c . (12)

The local symmetry is reduced to D&~ and the
ground state 4'~ is of symmetry 'B,. 4, and 4 „
remain degenerate, of symmetry E, and are 3E»
higher in energy, as shown in Fig. 12. The tetrag-
onal distortion may also split the 5E state, as
shown.

(10)
The second term represents the elastic energy as-
sociated with the distortion, x being the force con-
stant.

Because the operators 8 and 8, are diagonal in
terms of the electronic states 4 „4'„, and 4~,
these states will also be eigenstates of X~ for ar-
bitrary Q~ and Q, .

For 4'&, Eq. (9) leads to a stable energy mini-
mum in Q space at

Q~= V/K, Q, =O,

which is a pure tetragonal distortion along the z
axis. The energy at this distortion has been
lowered by the Jahn-Teller energy

Optical absorption measurements on several
II-VI compounds doped with chromium have been
reported for the near-infrared region. '~' In all
cases a broad absorption band (half-width -400
cm ~) centered around 5000 cm ~ has been observed.
The interpretation of this band has been that it
originates from transitions between the T~ and E
manifold of states and the large width of the band
indicates that the chromium ion couples strongly
to the neighboring ions.

A zero-phonon line has also been observed in
most cases. Its displacement from the peak of the
broad band, and its relative intensity with respect
to this band have been used by Vallin et al. '4 to
estimate the Jahn-Teller energy and a character-
istic average vibrational phonon energy k&~ as-
sociated with the distortion. In this analysis it
was concluded that consistent results could be ob-
tained only if it was assumed that there was neg-
ligible Jahn-Teller coupling in the excited E state.
In this simple case, the Jahn-Teller energy in the
ground state is equal to the displacement of the
zero-phonon line, and its relative intensity, in

turn, is given by

E g T/h Cd@

providing a direct estimate for S~~.
In Table III we summarize the results of this

analysis. We include also experimental estimates
for the characteristic TA (L) lattice phonon in each
material. This is the lowest-frequency (softest)
critical-point phonon which has local E character
at the metal-ion site, and would therefore be ex-
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TABLE III. Results from optical absorption measure-
ments on chromium-doped II-VI crystals (in cm ).

tive possibility that the anisotropy reflects the
presence of a defect locked in the lattice nearby.

Crystal

ZnS 4650
ZnSe 4425
ZnTe 4460
CdS 4070
CdTe 4230

~Reference 14.

575
550(370)'
535(360)c
615
470

91
69(75)b
67(65)'
68

&50

TA {L)+

72
49
42
35
28

Reference 36. cReference 37

2. Estimate of the Jahn-Teller coupling coefficient V

(16)

For the tetragonal mode of distortion, consider
the displacement of the four nearest chalcogen
neighbors (ligands) only:

1
qz= Z [ie z —z(u x +n y )],

van *

pected to dominate the average local tetragonal
mode S&~. The approximate agreement of the
TA (L) mode frequency with fkdz determined from
the analysis of the optical spectra was taken by
these workers as evidence that the model was sub-
stantially correct. In addition, observation in the
far infrared of a transition within the Ba spin lev-
els of ZnSe: Cr hah been interpreted to supply
confirmation that the distortion is a pure tetragonal
one."

More recently, Nygren and co-workers have re-
ported a broad absorption band in the 500-2000-
cm ' region for ZnSe: Cr3 and ZnTe: Cr~ which
they interpret in terms of a direct transition be-
tween the Jahn-Teller split states, sB2- 'f. Their
analysis of these results give a Jahn-Teller ener-
gy of - 370 cm ' and 5(d~ - 75 cm ' in ZnSe, and
-360 and -65 cm ', respectively, in ZnTe. These
are generally consistent with the other estimates
and are also included in Table III.

The optical results therefore appear to find a
consistent interpretation in terms of the following
picture: In all II-VI lattices studied, the cubic-
field splitting is -4500 cm ', with the T~ state
lowest. A static tetragonal Jahn- Teller distortion
occurs and the magnitude of the Jahn-Teller energy
is roughly constant for all lattices at -400-600
cm

However, other workers" "have interpreted
the spectra, not invoking the Jahn-Teller effect.

where x, y, z are the coordinates of the ~th
neighbor and g, v„m, its displacement in the
z, y, z directions, respectively. From (9), the
effect of externally applied uniaxial stress can be
written

bE= —Vd Q~, (17)

where 4Q~ is the small additional component of
mode Q~ induced by the applied stress. Making the
assumption that the ligands move under the applied
stress in the same way as they would in the per-
fect lattice, Eq. (16) gives

4Q =(2 '/3) Re (18)

where e, is the bulk tetragonal strain given by Eq.
(2)

At any Cr ' site, the probability that the Jahn-
Teller distortion will occur with its tetragonal
axis (z axis) oriented along a specific cubic axis
(z) is therefore proportional to the Boltzmann
weighting factor

p' - exp(- z E'/kT) = exp[(2 W2/3) VRe~~ '/k T),
(19)

where e~
' is the component of tetragonal strain at

the site defined along the ith axis.
If the externally applied stress is distributed

uniformly throughout the crystal and random in-
ternal strains can be ignored, the relative intensi-
ties in the EPR spectrum for two different defect
orientations, c and a, will therefore be given sim-
ply by

C. Results of present study

General conclusions

c/a= exp[6(ega —e,')],
where

6 = (2W/3)VR/kT.

(20)

(21)
%'e interpret the anisotropy of the observed EPR

spectra as unambiguous evidence for a static
Jahn-Teller distortion for Cr~' in all of the lat-
tices studied. In the cubic materials, the axial
symmetry (E=O) along each of the three cubic
axes indicates that the Jahn-Teller distortion is
a pure tetragonal one. The small value of F. in
the hexagonal materials indicates that here too
the distortion is primarily tetragonal. As dis-
cussed in Sec. IV B, the stress-alignment studies
confirm this interpretation, ruling out the alterna-

A simple exponential dependence upon applied
strain is predicted with the slope 6 (on a semilog
plot) inversely proportional to temperature. From
an experimental determination of the slope (Fig. 4),
a direct estimate of the coupling coefficient can
therefore be obtained.

If, however, internal strains (e~'") or inhomo-
geneities in the applied strains (fez) are not neg-
ligible, i.e. , if

((e,'")')'" ((~e,)')'" ~~ 3kr/2&2 VR ~,
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TABLE IV. Experimental estimates of the Jahn- Teller
coupling coefficient (V) and Jahn- Teller energy Nzz)
from stress-alignment studies at 4.2'K. Point-ion esti-
mates of V are included for comparison. The Jahn-
Teller energy was calculated from Eq. (12) using the
characteristic tetragonal phonon energy Afd@ deduced
from optical studies (Table III).

Lattice

ZnSe
EnTe
CdTe

—V(eV/~)
Expt. Pt, ion

&0.40 0.37
&0.32 0.28
&0.34 0.21

Icy@(cm ')

69
67

(42)

E~(cm )

& 470
&200
&560

the simple relationship (20) will no longer hold.
In this case, Eq. (19), properly normalized,
would have to be averaged (convoluted) over the
distributions of internal and inhomogeneous ap-
plied strain separately for c and a and then the
ratio taken. The dependence of the intensity ratio
c/a would then depend critically upon the specific
distribution of strain. In general, it would not be
exponential, and, in the limit of large internal
strains, the temperature dependence would dis-
appear.

In the data of Fig. 4, evidence of some of these
difficulties is apparent. For ZnSe, an approxi-
mate exponential dependence is observed but with
almost no temperature dependence between 4.2
and 1.5 'K. We interpret this as evidence of large
internal strains,

((e,'") )" &~3kT/2v 2 VR~ .
Consistent with this, the lines in this material are
significantly broader than in ZnTe and CdTe. 3

For ZnTe and CdTe, the lines are much sharper,
indicating that internal strains are smaller. Con-
sistent with this, the slopes in Fig. 4 are tempera-
ture dependent. They still scale by somewhat less
than I/ 7, however, indicating residual effects of
strain. In addition, evidence of inhomogeneity of
applied stress is apparent in the broadening of the
EPR lines under stress (Fig. 2). This presum-
ably contributes to the observed departures from
exponential dependence, particularly at high ap-
plied strains.

The data for CdTe are believed to be the most
reliable. In this material the EPR lines were
sharpest, indicating the smallest internal strains.
Careful measurements of the integrated area of
the spectral components were taken to obtain the
data in Fig. 4. The values of 5 were deduced from
the initial (low applied strain) parts of the curves.
The value of the coupling coefficient V was esti-
mated using Eq. (21) from the results at 4.2 'K,
where the effects of internal strains should be the
least. The result is given in Table IV.

Estimates for ZnTe and ZnSe are also included
in the Table IV. For ZnTe, the initial jump at
low stresses was disregarded and a best linear fit
to the remainder of the curves was used to esti-
mate 5.39 Again, the value of V for each was esti-
mated from the 4.2 K data. Since the effect of
internal strain is to reduce 5, the magnitude of V

is always underestimated, as indicated. For ZnSe,
the failure to see any temperature dependence
means that the underestimate could be substantial,
perhaps by a factor of 2 or more. For CdTe and
ZnTe, however, the underestimate should not be
great. In Table IV we give also the value pre-
dicted by the point-ion model, Eqs. (14) and (15).
For this we have taken q~ = —2e and have used
the values of (w~) and ( r ) calculated from Har-
tree-Fock wave functions for the Cr ' ion, as
tabulated by Abragam and Bleaney. 4 We note that
the point-ion predictions are of the correct sign
and roughly of the correct magnitude.

3. Estimate of Jahn-Teller energy

When the coupling coefficient V is known, it is
possible to determine the Jahn-Teller stabiliza-
tion energy from relation (12). An estimate of the
force constant K can be made from the relation

2K= P~» (22)

The fact that stress-induced alignment occurs
"instantaneously" even at 1.5 'K suggests that the
activation barrier for reorientation from one Jahn-
Teller distortion direction to mother must be very
small. Therefore, as the temperature is raised,
one would expect thermally activated reorientation
to eventually become rapid enough to cause ob-
servable effects in the EPR spectrum itself. The
broadlening observed in the spectral lines at tem-
peratures -8-20'K, Figs. 6 and 10, could be in-
terpreted as evidence of this.

Thermally activated reorientation affects the
linewidth in two different ways depending upon
whether a spin flip is induced by the reorientation
or not.

(i) If the spin does not flip, a reorientation sim-
ply shifts the resonance frequency as a result of
the anisotropy of the spectrum. This random
modulation of the resonance frequency is a pure
T2 process which initially causes a broadening,

where p. is an effective mass, and ~~ is the charac-
teristic frequency of the Jahn-Teller active modes.
In our calculations we have used p equals the li-
gand mass. The results are given in Table IV and
are in reasonable agreement with the optical re-
sults. For CdTe we have used h&~ equal to & the
energy of the Ta (L) phonon, which is consistent
with the general trend in Table III.

4. Linewidth versus temperature
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but at higher temperatures produces a subsequent
narrowing due to "motional averaging. " When this
occurs, an unambiguous identification of this effect
is possible. ~

(ii) If a. spin flip occurs during reorientation,
however, T, is also affected. In this case, the
initial broadening is the same but motional aver-
aging may not be observed. In this case, it is
difficult to distinguish this mechanism from other
possible T, mechanisms.

In no case was motional averaging of the Cr2'

spectrum observed. In fact, observation with
H 11&111), where reorientation produces no changes
in the static spectrum, also reveals broadening in
approximately the same temperature region. From
this we conclude that the broadening is a T& process.
Whether this results from reorientation or some
other process therefore cannot be unambiguously
determined. If this does result from reorientation,
the activation energies deduced in Table II would be
identified with the barrier height for reorientation.
These low activation energies are generally con-
sistent mith the observation of stress-induced align-
ment at 1.5 'K.

V. THEORY OF THE SPIN HAMILTONIAN

A. Fine stxuctuxe

Due to the local electronic symmetry the effec-
tive spin Hamiltonian for the ground state has to
have the following form:

responding definitions for Ss, S&, S1, S„, and Q.
Here matrix elements of L and S are those of the
standard angular -momentum operators within the
I L, Mz, S, M, ) manifold.

In a simple crystal-field treatment where the
wave functions are taken to be those of the free
ion, a single parameter each for X and p is suffi-
cient for all matrix elements within the term.
This approximation is often made in the EPR litera-
ture and found to give satisfactory results. How-
ever, in a more general treatment (ligand field)
where the wave functions are not so constrained,
this is no longer true. In this more general case,
the Wigner-Eckart theorem says only that there
is a single multiplicative parameter (reduced ma-
trix element) for each set of matrix elements
(I"ll'l I")where the initial and final states
transform as 1" and I" and the interaction as 1"'.

In our treatment we will consider the problem
as a small distortion from cubic (T,) symmetry.
We will allow full generality for the undistorted
T„case but will not consider the wave functions
as significantly altered as a result of the Jahn-
Teller distortion. Since L transforms as T&, there
are, therefore, two reduced matrix elements for
the spin-orbit interaction:

(27)

For the spin-spin interaction, there are three re-
duced matrix elements:

X,= DSs+ E(ss —Ss) ++F [35S, —30S(s+ 1)s1+25Ss]

+~sa(s,'+ s,'+ s,'), (23)
P1 =

& T, I I ~.".s'
I I T, &,

Ps =
& Ts I I

~"1'
I IE), (23)

where E=0 in D~„symmetry.
These fine-structure terms arise from spin-

orbit and spin-spin interactions which serve to
couple the spin to the spatial parts of the wave
function. Within a manifold of states derived
from a single Ls term (sD in our case), the first-
order spin-orbit and spin-spin terms can be rep-
resented by the equivalent operators4

Here the notation K,'~' refers to the first term in
(25b), for which the orbital parts transform as E,
and K,', &' refers to the second term for which the
orbital parts transform as T~.

With these spin-orbit and spin-spin parameters,
we find to second order in X and first order in p,

X„=XL 8,
K„=-p[(L~ 8) +sL ~ S- sL 8

= —p[~(Le Se + L,s, )

+ s(L1S1+Lq S„+Isss)],

(24)

(25a)

(25b)

D = X1/E1 —4Xs/Es —3ps, (»)
and to order X, PXs, and p,

(35/E 1Es)[PsE 1 + 2~1 s PsE1 + ~11 ' + s (P1 + PslsH .
(30)

where

L, = ,'W3(L„—L,), — (26)

L(= L„Lg+ LgL~,

with obvious changes for L„and L and with cor-

E&, E~, and E3 are defined in Fig. 12.
It has been demonstrated+ that spin-orbit cou-

pling between different LS terms provides an addi-
tional interaction which can be expressed as an
effective Hamiltonian in the ground term of exact-
ly the same form as the spin-spin interaction,
Eq. (25), when this coupling is treated by second-
order perturbation theory. The p, 's thus can be
considered to represent the combined effect of the
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true spin-spin interaction and the spin-orbit in-
teraction to the higher LS terms of the d 4 con-
figuration having S= l. [This is strictly correct
only for D in Eq. (29). The terms involving p in

the expression for a, Eq. (30), which are obtained
by second- and third-order treatments in the ground
manifold are not fully equivalent to a full fourth-
order calculation to the excited triplet states.
However, Eq. (30) should represent a reasonable
approximation to these terms. ]

In the Appendix we show that an estimate of those
parts of p1, p2, and pz arising from the spin-orbit
coupling to the triplet states can be made by sim-
ply assuming the excited states all to lie at a large
energy E above the ground state. The result is

p, =(5/9E)(Xaf+2g)+ p,

Pa = (5/3E)&f&2+ Pao.

p, = (5/9E)(- oaf+ 4122) + p„,
(31)

where p10, p20 and p30 represent the true spin-
spin interaction. A check on this simple procedure
is available for the free ion. For it, X, = X2 = X,

P10 P20 P30

P=P1 =Pa =Ps= 5&l3E+Po ~
2 (32)

With X=57 cm ', 4 E@20000 cm, 6 and p0=0 12
cm, + we obtain

p=0.42 cm

in good agreement with the value deduced from
spectroscopic free-ion energies by Prycesv of
0.42+ 0.04 cm 1. This demonstrates the important
fact that the spin-orbit coupling to the excited trip-
let states provides the dominant contribution to
p (-0.3 cm ), the true spin-spin interaction being
relatively less important (-0.1 cm f).~ This has
important consequences for the cubic field term a.

Substituting (31) into (30), we obtain

Xa = if2 [g„S,H, +g, (S„H,+ S„H,)], (34)

where if 2= e)f/2mc is the Bohr magneton and H is
the magnetic field. With the perturbing Hamilto-
nian

A.L ' S + P L ' H +g0 P~S ' H

second-order perturbation gives, for the terms
linear in the spin-orbit interaction,

gI =go —6+ ka /Ea 1 gf =go —2Xfkf/Ef 1 (35)

where go (= 2.0023) is the free-electron g factor.
Here, in analogy to Xf and g,

kf PB Pf (~21 I ELHI I Ta &,

kai B 02(T2'I I &LHI IE &

(36)

are defined in terms of the reduced matrix ele-
ments p, , and p2 for the orbital Zeeman interaction
p.L ~ H.

2. Static strain

An applied stress will also give changes X, in
the spin Hamiltonian. For the D2~ symmetry,
these changes can be written

e c181Sy+ c2ey Sy+ c286$6

+ c,e,S5+ cs(e, S, + e„S„). (37)

e1= 8~+8»+8« .
We have estimated the constants c„~ ~ ~, c, using

third-order perturbation theory (first order in
strain and second order in spin-orbit interaction)
and obtain the following results:

Here, the strain components (e,) and spin operators
(S,) are defined in the same manner as the orbital
angular momentum operators (L,) in Eq. (26). In
addition,

36X1+ ) 5 2E1 + Eg 5E1

36 SE,I+ 2 P20E 1+2~1~2 P20E1 1 +
1 3 3Q)

c1 (16~2/Es)(T2 Tf) i

ca=(aa,'/E'a)(va vf)+(3—~f/E f)U, ,

c,= -(3~'1/E'1) v, , (36)

+ a "f(pfo+Pso)Es (33)

B. External perturbations

Magnetic field

The Zeeman term K, in the effective Hamilto-
nian for the ground state must, according to group
theory, have the following form (for Dao symme-
try):

We note that, to the extent that the second term in-
volving the true spin-spin terms is small, the
cubic field varies as - X21X~.

ca= (»1/E 1)Wf+ (I»f~a/EfEs) Wa i

cs = (6~2/E1E2+ ~1/E 1)w1+ (6xfka/E1E2) wa ~

Xf and Xa are given by Eq. (27), and we will now

introduce the reduced matrix elements T, U, and
W. The matrix elements of the crystal field pro-
duced by the strain (within the 5D manifold of
states) can be expressed by the matrix elements
of the following equivalent operator (in Ta symme-
try):

X,z,
= TefL + U(e,L,+e,L, )

+ W(e, L, + e„L„e&+)L.a(39)
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By symmetry there are six different reduced
matrix elements for T, U, and 8',

T =&Tzl l&~~"
I ITz&, Tz=«l I&!i"IIE&,

v =& r
I lx!"IIr, &, u, = &El lx!"I Iz&, (4o)

g =&1"zl I&!2"I
lf" &, li' =&f;

I
I3~."X"I IE&,

where X~~)', X,'~~', and X,'~3' refer to the first,
second, and third terms, respectively, of Eq. (39).

The reduced matrix elements T, U, and 8'have
been calculated from the point-ion model consider-
ing nearest neighbors only. 4' The results are

r, —T, = -35B,

Uj = -A - 32B, U2 = -A+ 24B,

8~=A+120B, Vp =A -90B .
A and B are given by Eq. (15).

X3(ll2)

Z4(lll)

(IIO)

yl (Ifo

II2)

C. Ligand effects

In this section we will consider the effect of ad-
mixtures of ligand p functions into the central
(Crz') ion d functions. There will be symmetry
limitations on the linear combinations of ligand
orbitals and the possible combinations of interest
to us are given in Table V together with the cen-
tral-ion wave functions. The coordinate system
and the numbering used are shown in Fig. 13.

We can now write the one-electron orbitals for
the central ion, including their mixing with ligand
orbitals, in the following way:

gz= Nz(dz+ avz),

fr = Nr z(di + Po'& + W, ),
with obvious changes for g„p„, and gq ~

FIG. 13. Coordinate axes for the central-ion and li-
I,and orbitals, after Viste and Gray Qef. 52).

ter.
This can be further expanded as

KID =Z f lg(p) S( ~ (44)

where the summation is over the p. =5 central
plus four nearest ligand ions. f" is the one-elec-
tron spin-orbit constant appropriate for the pth
ion and 1,(p), the orbital angular momentum oper-
ator centered at its origin. With the molecular
orbitals of Eq. (42), this leads directly to the re-
duced matrix elements

Spin-orbit matrix elements

To evaluate the spin-orbit matrix elements, we

take

.'N', ,[i4+ r-(~~P ,'r)V1, -—

= —,
' N, ,N~[g'+ n(P/W6+ y/3v 3)1"].

(45)

K„=XL ~ S =Zfl( ~ sq, (43)

where the summation is over the i= 4 electrons and

f is the effective one-electron spin-orbit parame-

In deriving these results, we have neglected, as
small, matrix elements of X„between orbitals
centered on different ions. Here

TABLE V. Basis functions for a Tz complex. ~

Irreducible
representation

Ag

Eg
E,

T2f
T2 f)

T2(z

0 orbitals

$(zg +z2+zs+z4&

$(z1 —z2+z3 —z4)
$(z&+z2 —zs —z4)

2 -&3+Z4)
1

Ligand p orbitals
n orbitals

4 (zf z2 z3 + Ã4)

lb i -Wg -F3+&4&
1
Q[Xf +%2 X3 X4 -v 3 (y(+y2 -y3 y4)]
1
g [X) —X2+X3-X4+Pag, -y, +y, -y4))

—$(Ã( +z2+ zs+z4&

Metal
orbitals

d4I

d,

~Referred to the coordinate system shown in Fig. 13.
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k, =N', (1 —.r +&—2pr
2

+2P&d&lo&&+2r &dclv~&)

km= Nr Ns(1+ ay/2v 3+ np/v 6+ n&delv~&

+P&d(lo, )+y&d~lv, )) .

(48}

VI. DISCUSSION

A. Finewtructure constants

Using the point-ion model with the free-ion val-
ues for X (= 57 cm ~) and p (=0.42 cm ~) and the ex-
perifnental optical data for E, and E» we may
calculate D from Eq. (29), and a from Eq. (30).
We obtain D =- —1.6 cm ' and a =- 0.05 cm ' for all
the crystals in this study. The experimental val-
ues of D for Zn8 and CdS (Table 1) are in favorable
agreement with the point-ion predictions. How-

ever, for ZnSe the agreement is poor and for ZnTe
and CdTe even the wrong sign for D is predicted.
The experimental a values differ considerably from
compound to compound, although the values for
ZnS and CdS are quite similar. These large dis-
crepancies between theory and experiment show
that the point-ion model is insufficient to describe
the fine structure of Cr~ in II-VI compounds.

Now consider the effect of ligand admixtures into
the central-ion wave functions. In order to be
able to use Eq. (45) we must first estimate the
coefficients ~, P, and y. For this, we proceed
as follows.

Nr = (1+P + y + 2P &d& I
o~)+ 2y&d& I w& ))

Ns=(1+a'+2n&d, lw, &) '",
with &il j& denoting the overlap integral between the
corresponding orbitals.

Because the ligand spin-orbit constant f" is often
much larger than that of the central ion f", even
small admixtures (a, P, and y) of ligand wave func-
tions may have significant effects on X, and X2. In
particular, X, and L are no longer equal.

2. Orbital angular momentum matrix elements

For the free-ion d functions, the reduced matrix
elements p„p2 of the Zeeman-orbit interaction,
Eq. (36), are equal to ps (= eh/2mc), i.e. , k, = kz
=1. For the ligand-admixed orbitals, k& and k2

are therefore given by

ki = &le I f, I ln & &del f
I
d &

k =&0 If, lt &/(d If, ld &

and are often referred to as "orbital reduction fac-
tors. "0

Proceeding as in Sec. VC 1, but including here
matrix elements between orbitals centered on the
central ion and the ligands (but excluding ligand-
ligand terms), we obtain

(i) We take o,, P, and y as proportional to the
negative of the corresponding group overlap inte-
grals, i.e. ,

a = —ko&d, lw, ),
p= —k, (d, lo, ),
r= —k, &d, l~, &

(49)

o = —0.262ko,

p = + 0.167ko,

y = —0.151ko,

which, with Eq. (45), give

&g = —,
' Nr (0' —0 048k()f.*),

A2 = ,'Nz, Ns(f ——0.006kof'") .
These can be further simplified to

Xq = X(1 —K), Am = X(1 —8 K),

with

K= 0 048k f."/0

(5o)

(52)

(53)

Here, for simplicity, we have dropped the nor-
malization constants, which, in the analysis to
follow, will be found to depart only very slightly
from unity.

In this way, we have reduced the problem to a
one-parameter (K or ko) model. We have, in ef-
fect, used the group-overlap proportionality and
the specific values for MNO4 only to estimate the
relative values of z, P, and y. The magnitudes
of the admixtures are embodied in K, which we
will adjust for best fit to the data.

In Fig. 14 we plot the calculated values for D
and a, vs K, using Eqs. (29), (31), (33), and (52).
Here we have used E» = 500 cm ', ~= 4500 cm ',
giving E, = 1500 cm ', E2 = E3 = 5500 cm . For A,

we take 57 cm ' and for po = p, o
=

p2O
= p30 we take

0.1 cm '. We see that large changes in D and a
are i.ndeed predicted vs K. From Fig. 14, the
value of D for ZnTe can be matched at K=2.33.
With fT, = 4136 cm ', this gives ko = 1.64, with the
corresponding admixture coefficients from (49}

n = -0.430, P=+ 0.274, y= —0.248 .
These, in turn, correspond to

(54)

The rationale for this is twofold. In the first place,
orthogonalization of the central-ion and ligand func-
tions alone produces admixtures according to (49).
Second, covalency produces additional contribu-
tions, which, in the Wolfsberg-Helmholz approxi-
mation ' to the relevant matrix elements, are also
proportional to the negative of the group overlaps.

(ii) As a rough guide for these overlaps, we take
the estimates of Viste and Gray for Mn04 . These
give
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el accounts quite satisfactorily for the large varia-
tion in D. The observed (dashed) line and calcu-
lated (solid line) values for a are also given in Fig.
14. Here the calculated values appear uniformly
low, but, otherwise, the general trend again is
clearly indicated. In particular, the anomolously
low value for ZnSe is predicted. From Eq. (33)
we see that this reflects the X~X~~ dependence, X,

going to zero and reversing sign at K-1. The
fact that the predicted values are uniformly low

suggests that other contributions, not considered
in our fourth-order treatment, may also be im-
portant. These could involve excitations to charge-
transfer states, higher LS terms, other configura-
tions, etc. Indeed, with such a high order of per-
turbation theory, such neglected excitations can be
expected to become increasingly important. How-
ever, we interpret the observed low value of a for
ZnSe to indicate that these will also reflect a simi-
lar -

Xg dependence. In other words, we interpret
these results to reflect the spin-orbit origin of a
and the role of the ('4'& IZ„I ~4', „)matrix elements
in serving as a "bottleneck" for coupling out of the
ground 54'z state.

9. G shifts

FIG. 14. Calculated fine-structure parameters (a) a,
and (b) D, vs ligand parameter X (see text). The exper-
imental points (circles) are plotted at values of K, scaled
assuming constant covalency through the series, with the
ZnTe value being deterndned to match the calculated
value of D.

a Ns = 0.19, (P + P)Nr = 0.14 (55)

fractional ligand admixtures into the g~ and g~
wave functions, respectively, values certainly not
unreasonable for a covalent tetrahedral environ-
ment. For such admixtures, N~-N& -1.02,
justifying their neglect in (52).

In Fig. 14, we have also plotted the values for
ZnS and ZnSe. %e have plotted them at values of
K scaled from the K=2.33 value for ZnTe simply
by the ratios of the corresponding ligand spin-
orbit parameter f' (= 1689 cm ' for Se, 382.4 cm '
for S).5~ In doing this we are in effect making the
assumption that the admixture coefficients e, P,
and y are roughly constant for the series. This
is not strictly true, of course. However, it is
probably a reasonable first approximation in that
the valence orbital ionization energies" of S, Se, and

Te are within a few volts of each other, and the
degree of covalency should therefore not differ
greatly versus ligand. The major part of the
variation in K must derive from the order of mag-
nitude change in P.

From Fig. 14, we see that the ligand-field mod-

Values calculated for g„and g, using Eq. (35) are
given in Table VI. Here, in order to estimate X&

and X~, K was first estimated by matching the ob-
serv ed value of D w ith the curve of Fig. 14. A.,
and Az were then determined from Eq. (52), and
are included in the Table VI. The orbital-reduc-
tion factors were determined from Eq. (48) to be

kg -0.72, Q -0.82, (58)

using the admixture coefficients of Eq. (54) and the
Viste-Gray overlap matrix elements implied by

Eq. (50). These were taken as constant for the
series, as were E&=1500 cm ' and E~=5500 cm '.
For the point-ion estimate, k, =k, =l and &, =X&

=57 cm ~.

%e see that the agreement is satisfactory for
g„, but it is poor for g,. TPe ligand-field theory
predicts a substantial increase in g, as the ligand
goes from S to Se to Te, reflecting the large change
in X,. This is not observed experimentally, g,
being essentially constant.

The reason for this failure is not clear. There
are, of course, excitations to charge-transfer
states, higher atomic states outside the SD mani-
fold, etc. , that have not been specifically included
in our treatment, and they may be playing an im-
portant role. Their contributions could tend to
cancel the anisotropy predicted by (35).

An alternative explanation is that the orbital re-
duction factor k& is smaller than we have estimated.
In particular, in Sec. VI A, we have interpreted the
good agreement for D and a achieved by the ligand-
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TABLE VI. Calculated and observed values of g„and g~ for the point-ion
and ligand-field treatments.

Lattice (cm-')
X2

(cm )
g)i

Theory
gz

Expt. Theory Expt.

Point-ion
all

ligand-field
Cds
ZnS
ZnSe
CdTe
Zn Te

0.2
0.2
1.2
2. 0
2.3

57

46
46

-11
—57
—74

57

56
56
49
43
41

1.919

1.936
l. 936
l. 944
1.951
1.954

1.93
1.94
1.96
1.98
1.97

1.926

1.958
1.958
2. 013
2. 057
2. 074

1.97
1.98
1.98
1.98
1.99

field model to confirm that the effective spin-orbit
interaction X&L ~ S is being satisfactorily accounted
for. A necessary consequence of this is that orbi-
tal angular momentum is being induced around the
individual atomic cores in the ground 8~ state.
The failure to see a related g shift then would ap-
pear to require a we~ net total angular momentum
and a corresponding weak coupling to the external
field.

For instance, we may solve for the admixture
coefficients (o, P, y) required to make k„Eq. (46),
equal to zero. Again maintaining their relative
values given by the Viste-Gray overlaps, Eq. (50),
we obtain

N~~ (P +y ) =0.52, N~gam=0. 65 . (57)

These represent more covalency than was esti-
mated in Sec. VIA, Eq. (55), but they are still not
out of line with estimates that have been made for
transition elements in tetrahedral environments. ' "
Such admixtures could still account for X, and X

in Eq. (51) but only if a substantially reduced ef-
fective value for i;* (-factor of 6 from the free-
atom value) were used.

Considering the simplicity of the present ligand
treatment, particularly when carried into these
largely covalent regimes, this level of agreement
is perhaps as good as one can expect. The ligand
orbitals we have used, Eq. (42), are highly over-
simplified. They do not include 4p orbitals on the
central ion or valence s orbitals on the ligands,
both known to be important '; nor do they allow
for higher excited orbitals or more distant ligand
effects. Also, in our treatment we have not allowed
for independent adjustment of the admixture coef-
ficients nor have we attempted to estimate reduc-
tion of the atomic spin-orbit parameters resulting
from ionization state and environmental effects at
the ligand sites. Our theory in its present form
does demonstrate, however, that reasonable ligand
admixtures can account for a large decrease in k&

as well as the large changes in X,. Better agree-
ment than this will evidently require a more so-

phisticated ligand treatment than we have attemped
here.

TABLE VII. Observed and calculated values {cm ')
for the strain coupling coefficients of Cr ' in CdTe.

Experiment
Theory

Point-ion Ligand-Field

Ci

C2

C3

C4

Cg

—2 +15
+40+15
—10+4
+ 40+ 15
+ 30+ 10

—0.3
+6.3
—6. 1

—13.2
—15.4

—0. 2
+6.4
—6. 1
-4.6
—9.2

C. Strain-coupling coefficients

Using Eq. (3V), and a computer fit to the data
in Fig. 5, the strain-coupling coefficients
cz, ~ ~ ~, cs were determined for the spin Hamilto-
nian of Cr~' in CdTe. The results are given in
Table VII. Also included in Table VII are values
calculated from the theory developed in Sec. V B,
Eq. (3&). For these calculations, we have used
Ej = 1500 cm ', E~ = E, = 5200 cm '. For the point-
ion estimates, we have taken X, = A, = 57 cm '.
For the ligand-field estimates, we have taken X,
and X2 as given by Table VI. For each, however,
we have used the point-ion estimates for the strain-
reduced matrix elements T, U, Was given by Eq.
(41).

For the symmetric coefficient cj and the tetrag-
onal coefficients c~ and c3, the point-ion and ligand-
field predictions are identical. For these the
agreement with experiment can be considered rea-
sonably satisfactory, the approximate magnitude
and the sign of each being accounted for. For the
trigonal coefficients c4 and cs, however, the
wrong sign is predicted in both theories.

The degree of agreement is not unlike that found
for other transition-element-ion systems. A good
example, is afforded by the d ions, V~', Cr~,
Mn~, octahedrally coordinated by oxygen ions, as
in MgO and A1~0~. For these ions, highly detailed
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calculations have been performed including excita-
tion to other LS terms, configuration interaction,
etc. , 6 but the agreement with experiment is
still only fair. ~ These authors have shown that,
even in these highly ionic environments, the one-
electron strain matrix elements (5, p, v, v ),
(which bear a direct correspondence to U„U2, W„
Wz, respectively, in this paper) are only approxi-
mately given by a point-ion treatment. As we have
found here, they find that the tetragonal coupling
coefficients tend to be more reliable. In Al&Os,
for instance, v(W, ) is of the wrong sign. 5'

The system we are studying here is considerably
more complex, having a substantially higher degree
of covalency than in the ionic octahedral environ-
ments. Our theoretical treatment is also less de-
tailed being restricted to excitations only within
the 5D manifold. At the same time, we are relying
in Table VII on point-ion estimates for the strain
matrix elements. In view of these, we conclude
that the degree of agreement given in Table VII is
as good as should be expected. The differences
between the point-ion and ligand-field predictions
are not great enough to allow a test of the two
models, in this case.

Consider cs in more detail. From Eq. (38),
this is the simplest parameter to interpret, being
directly related only to Xz, E&, and U&. Comparing
Eqs. (41) and (14), we note that it, in turn, is di-
rectly related to the Jahn-Teller tetragonal cou-
pling coefficient V,

V = (9/2v 2 R)Ug = —(3E~J2&2RXg) c3 . (58)

From the experimental value for cs and with E&

=1500 cm, ~, =-57cm ', and 8=2.78 A, this gives
V= —0.33+ 0.13 eV/A. This is in excellent agree-
ment with the value given in Table IV, which was
determined independently from stress alignment
studies. This would appear to confirm the general
consistency of our treatment, both as reflected in
the tetragonal-strain coupling coefficient (U~) with-
in the 'T& manifold, and the magnitudes of X& and

the Jahn-Teller energy. For both V in Table IV
and cs in Table VII, the theory predicts values
-60% low, presumably reflecting a corresponding
underestimate by the point-ion theory of the tetrag-
onal-strain matrix elements.

The stress results for ZnTe, shown in Fig. 11,
do not allow analysis for the coupling coefficients,
the (110) stress involving both trigonal and tetrag
onal strain. Additional experiments with stress
along a different crystallographic axis would be
required for complete analysis. However, the
magnitudes of the shifts indicate that the stress-
coupling coefficients are comparable to those in
CdTe. In ZnS and ZnSe, the lines were broader
and reliable measurements versus stress were

era = eas= e~ = —0.002 . (59)

For CdS [with R=2.52 A, E&=1500 cm ~, Ez 3
=5500 cm ~, and X&=46 cm ', %&=56 cm ' (Table
VI)], Eq. (38) gives

t."4= -12.1 cm g5-——15 0 cm (6o)

Rotating from the cubic 1, 2, 3 axis system to the
x, y, z axis system of the defect as shown in Fig. 9,
the terms in Eq. (3V) resulting from (59) and (60)
predict

8 =+ 1.45', E =+0.033 cm ' . (61)

These values agree in sign and magnitude with the
experimental values, Table I, indicating that here
the trigonal coupling coefficients are being satis-
factorily accounted for. [Alternatively, the ex-
perimental values, Table I, correspond, with Eq.
(59), to c4= —16.1 cm, cs = —5.1 cm ~, which can
be compared with Eq. (60).] This agreement also
serves to confirm our interpretation that the Jahn-
Teller distortion is essentially a pure tetragonal
one, the small departures observed in the spin
Hamiltonian being adequately accounted for by
the small hexagonal crystal field of the wurtzite
lattice.

VII. SUMMARY AND CONCLUSIONS

The EPR results confirm that Cr~ undergoes a
static tetragonal distortion in all II-VI lattices
studied. Stress-alignment experiments have al-
lowed a direct estimate of the Jahn-Teller cou-
pling coefficients, and these, in turn, have been
used to estimate the Jahn-Teller energies. The
indicated energies, - 500 cm ', are consistent with
those estimated by Vallin et al. '4 from optical
studies and serve to confirm their general inter-
pretation of the optical spectra.

A simple point-ion crystal-field model has been
found to be incapable of explaining the spin Harnil-
tonian parameters, and their variations from one
crystal to another. A ligand-field model, how-

not possible. We note from Eq. (38) that Knge

could serve as a critical test for the ligand-field
treatment. For it, A& is predicted to be small
(see Table VI), and cl and c4 should therefore also
be small.

One final test of the theory is afforded by esti-
mating E and 8 (Table I), for hexagonal CdS. For
CdS, the c/a ratio is 1.6234 compared to 1.6330 for
the cubic zinc-blende structure. Therefore, as
mentioned in Sec. III B, we may consider the near-
est sulfur neighbors as a regular tetrahedron that
has been compressed by 0.6/~ along the [111]axis
(c axis). The corresponding strain in terms of the
cubic 1, 2, 3 axes (see Fig. 9) is
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ever, can account for many of the observed fea-
tures. In this model, the large variation in the
fine-structure splittings, D and g, versus II-VI
lattice, is explained by the contribution of the
syin-orbit interaction at the ligand cores, mhich
varies substantially as the ligand changes from S
to Se to Te. The absence of substantial g shifts
is interpreted to indicate significant orbital reduc-
tion also accompanying the covalency.

Ligand-field effects have been treated in con-
siderable detail in the literature for transition-
element ions in the ionic octahedral environments. '
The treatment presented here has been similar,
but modified as required for the tetrahedral en-
vironment. In addition, we have introduced a
simple method for including ligand contributions
to the spin-orbit interaction with excited d terms.
%e have found that ligand contributions to these
interactions can also be important and that they
help to explain the large variation found for a.

The EPR spectrum of Cr~' in II-VI lattices pro-
vides a particularly dramatic example of the role
of ligand effects in the ground-state spin Hamilto-
nian. Such effects are often only rather subtle in
the much studied octahedrally coordinated sites of
ionic crystals. s Here they are much more evi-
dent both because of the very large spin-orbit in-
teraction associated with the heavier ligands (Se,
Te) and because of the increased covalency in the
tetrahedrally coordinated II-VI lattices.

Strain-coupling coefficients, describing the
changes in the spin Hamiltonian under externally
applied stress, have been determined experimen-
tally for Cr~' in CdTe. A simple theory has been
developed which includes ligand effects for the
spin-orbit interactions but relies on point-ion es-
timates for the matrix elements of strain. Agree-
ment with experiment is reasonable for the tetrag-
onal coefficients, but the wrong sign is predicted
for the trigonal ones. Similar failures are some-
times found for transition-element ions in the more
ionic octahedrally coordinated lattices and probably
reflect the failure of the point-ion approximations
to the strain matrix elements.

The ligand-field treatment developed in this
paper is a very simple one. It does not include
the effect of excitations to charge-transfer states,
for instance. Such excitations have been demon-
strated to give important contributions to g shifts
where covalency is important. 59 Simple estimates
of their possible contribution to D indicate that
their effects in this case may be relatively small-
er.~o However, it is still difficult to rule out their
importance. The main justification for not attempt-
ing to include them is that most of the essential
features of the spin Hamiltonian appear to be de-
scribable without them. Clearly, detailed agree-
ment would require their inclusion.

&'q. , M. =0130 I'4„M.=2&=-3~»p. . (Al)

Spin-orbit coupling to excited triplet states also
produces an effective matrix element between these
states which, to second order in the spin-orbit
interaction, can be written

&Se„M,=o~e~se„M, =2&, (A2)

where

p &..In&&n~ Z,
E —E (A3)

Here n is summed over all excited triplet states
within the d manifold.

For the free ion, the excited d4 triplet states
are -20000 cm above the ground D state, an
energy splitting significantly larger than the crys-
tal-field splittings in the 'D state (- 5000 cm ').
As a first approximation, therefore, me will con-
sider I EO —E„l to be constant (= E) and take it from
under the summation sign:

(A4)

Invoking closure, this may now be written

s=-(iyzl(x'. .-Zz..~~m)( ~x..), (A5)
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APPENDIX

As shown by Trees, 4 spin-orbit coupling be-
tween the ground and higher LS terms of a given
configuration provides an additional important in-
teraction having exactly the same form as Eq. (25).
In this appendix we mill demonstrate the procedure
we have followed to estimate these additional con-
tributions to p„p„and p~.

As an example, we will outline the calculation
for p~. From Eq. (25), a typical matrix element
within the D manifold of the spin-spin Hamiltonian
is
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where m is now conveniently summed only over the
ground-state quintet orbitals.

To evaluate the matrix elements of (A2) and (A5),
we first express the quintet wave functions as prod-
ucts of the one-electron wave functions, e.g. ,

4'~(M, = 2) = (Hogg),

'4„(M, = l)= ', [(H-ett)+(Hemi)

+ (He(g)+(He]g)], (A6)

For instance,

7 kl„;s„,l 4'&, M, =2)= —,'l'~[-i v 3 ($e$v)

'4', (M, = 0) = (1/W6) [(e]ql') + (e ]7)g)

+ («n~)+ (e~6~)+ (.~a~)+ («~l)],
etc. Here (Hc)q) is a Slater determinant of the
one-electron orbitals g„g„g„and P„with all
electrons having m, =+-,'. The bar denotes m, = ——,'.
We then evaluate all relevant matrix elements in
(A5) of the spin-orbit interaction

Z„=Zgl( ~ s; . (A V)

-i(H~~t))+i(Heep)+ i&3(HeHq)] —g, (Heing),

leading to

&'e„,M, =ilZ'~f„, s„,l'e„M, =2) =--,'it,

Here we have used the properties of the one-elec-
tron operators

l„e = —i~3',
l„& = —i$,
l„)= i(&+v 3H),

l„v) = —if,
s„e=-,'e,

etc. Evaluating all nonzero matrix elements of
(A5) in similar fashion leads to

&'e„M, =olsl'ee M. =z) =-(si/8v 2E)l.,t,
(A8)

With (Al), this gives

p~ = (5/48E)t~l'~ = (5/3E)X~+ .
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