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A new self-consistent quasistatic screening approach is proposed for studying the properties of an

interacting electron gas. The compressibility divergence and the ferromagnetic instability found in the
static unscreened Hartree-Pock approximation are nonexistent in this scheme. A better fit to the
experimental data on the plasma dispersion relation than the existing calculations for free-electron
metals is obtained.

Recently there has been considerable interest in
calculating the longitudinal dielectric response
function of the homogeneous electron gas in the
time-dependent Hartree-Fock theory. In this
scheme one goes beyond the random-phase approxi-
mation (RPA) by including the exchange-ladder
diagrams for the proper polarization part. The
resulting integral equation for the polarization or
the irreducible vertex function has been solved
variationally. '~ Woo and Jha3 have solved this
integral equation exactly by numerical methods,
and find close agreement with the variational solu-
tion. In all these calculations a statically screened
Coulomb interaction of the Yukawa form, 4ve /(q
+ ( g), for the effective two-particle interaction
in the momentum space, treating $~ as an undeter-
mined parameter, is used. $~ is assumed to be
either zero or to have the Fermi-Thomas value,
for purposes of simplicity. This procedure is not
self-consistent since the final expression for the
dielectric function leads to a value different from
the starting value for the screening parameter.

In this paper we also use the static effective two-
particle interaction as the starting point, but we
determine its form in the = 0, q- 0 limit sen-
consistently, taking care not to be in any real con-
flict with the Ward identity. In this sense, our
theory may be termed "quasistatic. " This leads
to a new self-consistent screening parameter $
as a function of r, [in terms of the electron density
n and Bohr radius no, r, = (-,'vnao') '~']. We obtain
an expression for the compressibility of the elec-
tron gas as a function of r, . The so-called com-
pressibility divergence ip the unscreened Hartree-
Fock approximation is found to be suppressed in
this scheme. The integral equation for the irre-
ducible vertex function is solved variationally to
determine the plasma dispersion, and it is found
that this leads to good agreement with the experi-
mental results for the plasma dispersion relation

in various metals.
In an earlier work, Garrison, Morrison, and

Wong '" have proposed a similar method to com-
pute $s self-consistently. However, they have ig-
nored the vertex renormalization, ' which must ac-
company the mass renormalization, even though
they are consistent with the Ward identity. This
implies that their results are inconsistent within
the time-dependent Hartree-Fock scheme. This
work has been critically examined by Rajagopal
and Mahanti. @ '

Recently, Singwi and collaborators have devel-
oped a successful ansatz to study the effects of
electron correlations in a consistent fashion. There
seems to be no obvious relation of their approach
to known schemes of the many-body theory, even
though there are some investigations with this in
view published recently.

In terms of the single-particle propagator G(K),
self-energy Z(E), proper vertex function A(E, Q),
the Coulomb interaction v(g) =4ve /q, and the un-
perturbed energy 8„"= S mk /2m, the dynamical
self-consistent dielectric function q(Q) can be ob-
tained in a shielded time-dependent Hartree-Fock
theory by solving the set of equations

G '(K)=8-$1, -1;(E),

Z(K) = i Z G(K- Q) v(q)/~(Q),
Q

A(E, Q)=1+ i' G(K ) G(K +Q)
K'

&A(K, Q)(K —K ) [e(K-K )]

g(Q) = 1+2iv(j) Z G(K) G(K+ Q) &(K, Q),

where E, Q, etc , stand fo. r four momenta (K, S),
(q, S~), etc. Instead of solving this dynamical
problem exactly, we assume that the quasistatic
dielectric function in the long-wavelength limit
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may be obtained from the above set of equations by
replacing z(Q) in Z and A by its static value z(q, 0).
In this approximation, the dielectric function is
given by

e(q) = 1 —2v(q) Z Af(k, q) X(k, q), (8)

x(k, q) = —[(S„--- Sf —tt(o)/(Ef -- E;—t/a/)] A(k q}

Ef = Sf-Z V(k -k ) n p,
Af(k, q) = (n„- -nf;, }//AS(k q),

t S(k, q)-=S;.;-S;-a~-t5
(V(k —k }=v(k —k )/g(k —k', 0),

where ng's are the usual Fermi functions. The
integral equation obeyed by A(k, Q) is'

X(k}= —1+f V(k —k ) M(k )

&&
~

x(k') — X(k)
AS(k)

~
(8w)' '

where we have suppressed the q, ~ dependences.
The proper vertex function A must obey the Ward
identity~

lim lim A(k, q) = 1—sZ(k, Ef) 1
(5)

«o ~o

Here Zg is the wave-function renormalization~ and
must be such that 0 & Zg & 1. We require in the
foregoing analysis only the value of (5} evaluated
at k= k~. One notes at once that it would be incon-
sistent with the variational solutions' if one takes
our static model literally, since one waQd then
have Zp= 1 for all k. We therefore suggest that
we should employ (5) as defining the renormaiiza-
tion Zp. , soith values of Zp close to unity as a cri-
terion for the validity of our approximation It is.
in this sense that our theory incorporates some of
the dynamical aspects, and thus is a "quasistatic"
scheme. The statically screened interaction V(q)
in the above equations is given by

v(q) 4we'

( 0) q'+h'~'W() '

(4nrJw)
1- (nrJw) A') (8)

In doing this, we have taken care to introduce
the mass, wave function, and vertex renormaliza-
tions. A direct calculation of A(h~ 0) using the
exact solution of (4), coupled with the self-consis-
tency condition (8), leads to the result

(5')

(4a, rJw)
,.0 [e(q, 0) —1]q pm

The ratio is plotted as a function of y, in Fi.g. 1.
This is compared with the result obtained in Hub-
bard, ' Vasishta and Singwi (VS), ' and the static
Hartree-Fock theories. ~ The divergence in x/x„
obtained in all these theories, including that of
Ref. 4, is seen to be nonexistent in our scheme.
This is consistent with the present experimental
situation, and shows that the correlations tend to

Z, =1/[1+-', )~In(1+4/$')].

The screening parameter can be numerically
determined from Eq. (8) for different r,. This
should be contrasted with the corresponding re-
sult of Ref. 4. We have verified that for x, be-
tween 1 and 8 (relevant to simple metals), the self-
consistent va. lue of ($2/4) varies monotonically
from 0.19 to 1.33. Also, we find that -', «Z~ «1
for all r, . One would thus expect this theory to
be quite reliable in the sense that Z, = 1, SZ/SE,kp
= 0 for y, in the range 1-3, and not too good for
larger r, Not. e that in RPA, $2aw„= q»/hr
=4argw. The compressibility ratio of the free
and interacting electron gas is'

where W(q) is expected to be a slowly decreasing
function of q. Equation (4) can be solved exactly'
in the ~ = 0, q- 0 limit, after replacing W(q) by its
long-wavelength limit, namely unity. This is justi-
fied since the integral in Eq. (4) is dominated by
the small IR -k I regions. We thus obtain

1 (4arJw) h„''" "=F ~'
~ -(-/ )'su'))

( I)
S(t') = I —(g'/4) ln(1+ 4/g'),

00

rs

where

(4/8w)1/8

For self-consistency, therefore, we demand

FIG. 1. Compressibility ratio K~/K in various
theories {see text). In our scheme, this is also the
ratio X~~gf/X {0,0) for the static paramagnetic spin
susceptibility.
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wash out the Hartree-Fock enhancement as they do
in various other physical problems of interest. The
calculation of the paramagnetic spin susceptibility
g„of the electron gas in our scheme is very simi-
lar to that of the dielectric susceptibility, and we
get )|„(0,0)/)tp„vg, = K/Kp. This is a co~sequence
of our approximation scheme. Because of this re-
lationship, it appears that the ferromagnetic in-
stability does not exist in this approach [see Refs.
1 and 4(b)].

The collective plasma mode in the electron gas
can be found either as the zero of the real part of
the dielectric function or as the pole of the real
part of the reducible polarization part gf M(k)X(k)/
c(Q). The best k-independent variational solution
of Eq. (4) for X is'

( )
M(q, (o)

M(q, (u) —Z(q, (o) '

where

(lo)

and

"dk dA -r
tJ(q ~)

( } ( }
V(k 'k )

Assuming V(q) = 4ve /(q + $~)Pz), the functions in-
volved in Eq. (13) can be expanded in powers of
qv&/u&, in the plasma range of frequencies. The
various integrals can be performed by using as-
sociated Legendre functions and spherical harmon-
ics for the expansion of the interaction V(lk —kl ).
This leads to the plasma dispersion relation

1 —((o,'/(o') [1 ++ (q/q )' -~ (q/k )'P(g')] = 0, (14)

where

From Eq. (1), we therefore find that the plasma
mode is determined by

Re I +2aM(q, &u) (Pj a&) 1+
I

=0 ~ (13)J(q, z)'t'
M q, (a) j

Fig. 2. This appears to fit the experimental data
remarkably well. It is gratifying to note that the
free-electron metals like Al and Na give the best
fit. For comparison we have plotted the results
of VS5 theory and the $ =0 limit of (16). In the
g =0 limit, P($ ) =1. This particular case was
considered earlier by Rajagopal, Rath, and Kim-
ball (RRK).

Although we have obtained very interesting re-
sults as a consequence of our self-consistent
quasistatic screening approach, we would have
liked to use a more realistic variation of W(q) in
Eqs. (4) and (6) than to replace it by its long-wave-
length value. However, as explained earlier, the
error introduced due to this in obtaining the long-
wavelength limit of a(q, 0) is expected to be ex-
tremely small.

A complete theory would necessarily involve
complications of dynamical nature and would make
Eq. (5) an identity, as well as make the computa-
tions more involved. The approach presented here
is one where the approximations are consistent with
the basic requirements of many-body theory but
still retain the ease with which all the calculations
can be performed. It is in this sense that this ap-
proach seems to be complimentary to the Vasishta
and Singwi result. A closer relationship with his
scheme could perhaps be inferred when we com-
pute the dynamical dielectric function in our
scheme.

One of us (B.S.S.) would like to thank Dr. Chan-
chal K. Majumdar for constant encouragement.
A. K.R. acknowledges some fruitful conversations
with Dr. S. D. Mahanti on questions of the%ard
identity and self-consistent schemes.
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P($ ) = (1 —t' ) + —,'( (1 + $ }ln(1+ 4/( )

If the plasma frequency is written

a)~(q) = (up (0) + pq',

(16)

(16)

R.o-5

CQ

a quantity of great interest is the ratio p/p»„,
where p»„ is determined from Eqs. (14}and (16)
by p«ing P(t') = 0. In our calculation we get

0.0
0

=1 — ' P(5 )
PHPA

Using the self-consistent value of $ determined
earlier, we plot this ratio for various r,'s in

FIG. 2. Plasma dispersion parameter p/p~A in var-
ious theories (see text). Experimental results (Ref. 9)
for Be, Al, Sb, Mg, Li, and Na in order of increasing
rs are also shown.
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