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Impurity states between two bands
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(Received 21 September 1973)

It is shown that an impurity state in a one-dimensional periodic potential can be associated uniquely

with one of the bands between which its energy level lies. If the procedure of Kohn and Onffroy is
then used to construct the generalized Wannier functions (GWF), equivalent to the scattering states and
bound states associated with a given band, it is found that the GWF have the same exponential
localization as the Wannier functions of the perfect crystal. This is true even though the impurity-state
wave functions themselves may be longer ranged. In addition, the GWF approach the Wannier
functions of the perfect crystal exponentially in the distance from the impurity site.

I. INTRODUCTION

The presence of an impurity in a crystal often
leads to the existence of one or more localized
bound states whose energy levels lie in the forbid-
den-energy regions. In the anaylsis of such impure
crystals it is sometimes useful to deal with the
generalized Wannier functions (GWF) of a given
"band, " which are appropriate localized super-
positions of the energy eigenstates, including bound

states, belonging to the band in question. A dis-
cussion of such GWF in one-dimensional crystals
has been given by Kohn and Onffroy'; however,
they restricted the impurity potential so that only
a single impurity state was present below the low-
est band. With a more general impurity potential,
bound states may also lie in a forbidden gap be-
tween two bands, in which case the question arises:
With which of these bands should a given impurity
state be associated?

In this note we show that this question can be
answered unambiguously, and that, with the proper
choice, the conclusions of Kohn and Onff roy regard-
ing the localization properties of the GWF remain
valid for an arbitrarily strong, short-ranged im-
purity potential. We find that the impurity state is
to be associated with the higher (lower) of the two
bands n and n+ 1 if its energy is greater than (less
than) the unique value E„, which corresponds to the
branch points of the energy surface E(k) that con-
nect the nth and the (n+ 1)th bands. A set of GWF
may then be constructed' that span the same func-
tion space as the eigenstates of a given band, in-
cluding any associated impurity states. We find
that these GWF have the same degree of exponential
localization as the Wannier functions of the perfect
crystal, even though the impurity wave functions
themselves may be less well localized. In addition,
we find that the GWF approach the Wannier func-
tions of the perfect crystal exponentially in the dis-
tance from the impurity location. Had we associ-
ated the impurity state with the other of the two

bands, this would not have been the case.

II. IMPURITY BOUND STATES

We consider here a one-dimensional crystal of
lattice constant a, to which a single impurity has
been added. We make no restriction on the im-
purity potential strength, but we assume that this
potential is symmetrical and short ranged. For
simplicity in our discussion we assume that the
impurity potential is confined to a single-crystal
cell centered at the origin.

First let us summarize some properties of the
perfect periodic lattice. The crystal momentum
k will be treated as a complex variable k =g+ih.
If k is real, the corresponding eigenfunctions and
eigenvalues are the Bloch waves p„,,(x) with ener-
gies E(n, k), n being the band index. They repre-
sent the branches of multivalued functions of k,
y„(x) and E(k) which are analytic everywhere ex-
cept at a set of branch points away from the real
axis. If g is restricted to the fundamental interval
—w/a (g c v/a, these branch points have the form
k„= u„m/a +ik„, where a„= 0 or 1 for n odd or even,
respectively. The corresponding energies at these
points E„=E(k„)are real. Starting from the real
axis, the branch E(n, k) of E(k) may be continued
analytically into the complex plane. If one starts
on the real k axis from the branch E(n, k), moves
a,round the branch point k„[or k„,], and returns to
the real axis, one arrives at the branch E(n+ l, k)
[or E(n —l, k)] (Fig. 1).

The real energy bands E(n, k) and branch points
k„can be determined from the Kramers plot (Fig.
2) of coska versus real E. The branch point k„
corresponds to the (n+ 1)th extremum of this plot.

The eigenstates of the crystal uith the impurity
are, for real k, the scattering states y„~~ (x) and
bound states y (x). Here (+) and (-) denote states
with outgoing and incoming scattered waves, re-
spectively. Outside the impurity cell the scatter-
ing states are appropriate linear combinations of
Bloch waves':
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FIG. 1. Branch of the energy surface E{k) correspond-
ing to band n (assumed odd); E(k) =E{n,k) ontherealaxis.
On this branch E(k) has branch points (&) at k~~ and k„.
By moving along a contour C starting from the real axis
in this branch {solid line), around the branch point k„
[or k~&), and back to the real axis (dashed line) on the
next sheet, one arrives at the next band: E(k) =E(n+1,k)
[or E(n —1,k)].
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+ t~, (n, k) y„~ (x), x —ha,

S.',.'(x) = 9.', -'. (-x).

The coefficients tz2(n, k) and tz, (n, k) are elements
of the impurity transfer matrix. These functions
y„+~ (x) are branches of multivalued analytic func-
tiOns of k, y,"'(x). In the upper-half plane, in-
cluding the ral axis, the only singularities of y", '

are branch points at the points k'„, previously de-
fined, and at the points 4~ corresponding to the
bound states with energies Es =E(ke).

Consider now the wave function p (x) of an im-
purity state between bands n and n+ 1. Since E~
is real, it follows from the Kramers plot (Fig. 2)
that on both sides of the impurity cell, the impuri-
ty state y (x) is a decaying Bloch wave with com-
plex wave number k = +k~. Here k~ has the form
ks= a„s/a+the, such that 0&he & jh„l, where Ih„l
is the distance from the real axis of the branch
points k„. At ks, t22(k) vanishes on the appropri-
ate branch. '

An impurity level E~ is then naturally associated
with band n or band n+ 1, depending on whether E~
is less than or greater than the unique value E„,
corresponding to the branch points k„connecting
these bands. The correctness of this assignment
will be further substantiated in Sec. III.

As an illustration, let us examine a typical case
in which, as the impurity strength U is varied from
0 to ~ through repulsive values, an impurity state
splits off the top of band n, and eventually, as
U- ~, asymptotically approaches band n+ I (Fig.
3). We observe that at a small value of U, a zero
exists in the upper-half k plane of the function tzz(k),
corresponding to an impurity state at k~ = a „m/a

+the with energy Es =E(ks) just above band n.
This state is to be associated with band n. As U

is increased, the zero moves upward in the com-
plex plane until, at a particular value U„ it just
reaches a branch point k„, at which EJ, = E„. As
U is further increased, the zero moves down from
the branch point on the next Riemann sheet. For
these values, U& U„, the impurity state is to be
associated with band n+ 1. Eventually, as the
strength U- ~, the zero asymptotically approaches
the real axis, corresponding to an impurity state
asymptotically close to the bottom of band n+ 1.

III. GENERALIZED ttjjtANNIER FUNCTIONS

The GWF for a given band, say band n, of the
impure crystal are appropriate linear combi-
nations of the scattering states and any bound states
associated with that band, which are localized
about the atomic sites. They form an orthonormal
basis that is equivalent to this set of scattering
eigenstates and bound states. The construction of
the GWF in a one-dimensional crystal with a single
impurity has been discussed by Kohn and Qnffroy, '
but with the restriction to the case of a single im-
purity state below the lowest band. In this section
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FIG. 2. Schematic version of a Kramers plot of coskg
vs real E. The energy bands E(n, k) are determined by
the regions for which I coska I —1. The branch points
k„correspond to the (n+1)th 4.xtremum of this plot at the
energy E„. The point (E~, cosk~) indicates the position
of an impurity bound state in the gap between bands 1 and
2.

FIG. 3. Motion of the complex impurity-state wave
number kz as a function of the impurity strength U (see
text). For small positive values of U the energy of the
bound state is at E(k&) just above band n (assumed odd).
As U is increased, the point kz moves upward (solid
line) until at the value U„, E(kz) =E„. As U is further
increased, the point k& moves downward on the next
branch (dashed line) and, in the limit U , asymptoti-
cally approaches the bottom of band n+ 1.
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lim e"'" " ' P„(x,x') = 0, k & iz„,
IX-xs~ -~

(3)

and (ii) that P„(x,x') approaches P„(x,x') exponen-
tially in the distance from the impurity:

lim
l(xw')/2I» ~

e2h I (x+x' ) /2 I

xlP„(x, x')-P„'(X,X')I =O, k k„.
Here k„= min(k„, k„,) is the imaginary part of the
nearest of the branch points k„, k„, to the real
axis.

This we now show. In the upper-half k plane,
including the real axis, the projection operator for
a single scattering eigenstate of the impure crystal
is given by'

P„, (x, x')= V»„'(x) I(&„I
& (x').

This function is regular in the upper-half 4 plane
in a region between the real axis and the branch
points k„, k„, (simply kn in the case of the lowest
band), except for possible pole singularities at the
zeroes of tzs(k) [see Eq. (l)], corresponding to the
existence of impurity bound states. The complete

we show that this is not a necessary restriction.
Similar calculations may also be carried out for
higher bands. Provided that the prescription of
Sec. II for associating each impurity state with a
particular band is adopted, it is shown that the
GWF have the same localization properties as the
Wannier functions for the perfect crystal.

In brief, the construction process for a given
band is as follows'. One first constructs the band

projection operator P„(x,x'), which projects an

arbitrary function onto the subspace spanned by
all the functions associated with band n. The GWF
are then constructed by applying P„ to all the Wan-

nier functions of the perfect crystal and by sub-
sequent orthonormalization. To establish the lo-
calization properties of the GWF it is essential to
show (i) that P„(x,x') has the same localization
properties as the band-projection operator P„(x,x')
of the perfect crystal:
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FIG. 4. Integration con-

tour for the integral in Eq.
(7). The dots indicate the
positions of the wave num-

=g bers k~ of impurity states
with energies between E
and E„.

band-projection operator P„(x,x'} is thus given by
an integral of P„s(x,x') over real k in the funda-
mental interval plus the contribution from the as-
sociated impurity states:

P„(x,x')= dkP„',c(x, x)+Z P;(x, x'). (6)
-ff /a i

l
v&„a,&(x)

l

& (const)e'"+, (8)

valid along the contour C, and the symmetry prop-
erties, '

P„(x,x') =P„(x',x) =P„(—x, —x').

The steps in this demonstration are similar to
those followed in Ref. 1, as is the remaining proof
of the localization of the GWF.

Here Psz(x, x') = y; (x) [y, (x')]s, and g'; extends over
all impurity states with energy levels between E„,
and E„. By deforming the path of integration,
P„(x,x') can be expressed simply as an integral
along a contour C between the bound-state poles
and the branch points k„, k„, (Fig. 4). This re-
sults because of the precise cancellation of the
impurity-state contributions to Eq. (6) from the
residues at the poles of P„,&,(x, x'), as shown in
Ref. 1:

P„(x,x') = f dk Ps c(x, x'). (7)

Had we associated the impurity states incorrectly,
this cancellation would not have been complete.
Because of this cancellation, however, the local-
ization properties (3) and (4}can now be concluded
from Eqs. (5) and (7) using the bounds,
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