
PHYSICAL RE VIEW B VOLUME 9, NUMBER 4

The Toda lattice. II. Existence of integrals

15 FEBRUARY 1974

H. Flaschka
Department of Mathematics, University of Arizona, Tucson, Arizona 85721

(Received 22 August 1973)

Following recent computer studies which suggested that the equations of motion of Toda's exponential
lattice should be completely integrable, Hoon discovered analytical expressions for the constants of the
motion. In the present paper, the existence of integrals is proved by a different method. Our approach
shows the Toda lattice to be a finite-dimensional analog of the Korteweg-de Vries partial differential
equation. Certain integrals of the Toda equations are the counterparts of the conserved quantities of the
Korteweg-de Vries equation, and the theory initiated here has been used elsewhere to obtain solutions
of the infinite lattice by inverse-scattering methods.

The Toda lattice' is a system of unit masses,
connected by nonlinear springs governed by an ex-
ponential restoring force. The equations of motion
are derivable from the Hamiltonian

It is easy to check that if Q„, P„satisfy the equa-
tions of motion derived from (I); then a„, b„satisfy

a„=a„(b„, b„), — (2)

in which Q„ is the displacement of the nth mass
from equilibriur, and P„ is the corresponding mo-
mentum. We assume periodic boundary conditions:
Q..N= Q. .

Recent computer experiments by Ford, Stoddard,
and Turner2 suggested that the Toda lattice is inte-
grable. Subsequently, Hbnon' confirmed this con-
jecture by exhibiting N integrals; the starting point
of his investigations was the integrability of the
hard-sphere gas, which is one limiting form of the
Toda lattice. Here, we shall present a different,
less computational proof of his result. Our method
is based on the realization that the Toda lattice
belongs to a class of evolution equations which can
be studied, and in some cases solved, by utiliza-
tion of a certain associated eigenvalue problem.
All other known equations of this type are partial
differential, the most famous of them being the
Korteweg-de Vries equation. It is interesting and
suggestive that the latter is one continuum approxi-
mation to the Toda lattice. ' In a subsequent paper
we shall show that, in fact, the infinite Toda lattice
can be solved by means of the inverse-scattering
problem for a discrete Sturm-Liouville equation, '

the details are quite similar to those involved in
the sol ~. ion of the Korteweg-de Vries equation,
as are he formulas for N-soliton solutions, the
conservation laws, etc.

We begin by introducing new variables

b„= 2(a„—a, ).

Now we define matrices L and B, functions of
t, by'

b, a, 0 0 . . ~ a„
a, b2 a2 0

0 az be ae

0 0 a3 b4

0 a, 0 o ~ ~ ~ —ag

a, 0 az 0 ~ ~ ~ 0

0 —az 0 as . ~ . 0

A simple computation shows that

L= [B,L]=BL —LB. — (3)

Now we appeal to a theory developed by Lax,
which has been used with success in the theory of
certain partial differential equations. Let V= V(t)
be the solution of V =BV; since B is skew sym-
metric, V is orthogonal. A simple computation
shows that (d/dt) V 'LV= 0; in fact, the derivative
on the left reduces to V '(L —[B,L]) V, which van-
ishes by (3). Hence V'LV= const, so that L(t) is
always (orthogonally) similar to the same matrix.
It follows' that the eigenvalues X„.. . , X„ofL(t)
are constant in time. In particular, in the charac-
teristic polynomial
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of L (the extra power of 2 is a normalization con-
sistent with Ref. 3), the quantities 2~I& are con-
stant: they are the integrals of the Toda lattice
constructed by Hoon. 3 Furthermore, it can be
seen that the Hamiltonian (1}can be written as
H=-,'g„, (2A,), so that the (2A.„)'s play the role of
linear momentum variables for the Toda lattice.
For an argument establishing the independence of
these integrals, and for the reduction of the fixed-
end lattice to the periodic lattice, we refer to
Ref. 3.

Hbnon has also constructed a different set of
integrals, which he denotes by J„, which can be
extended to the case of an infinite lattice, N

He has observed' that these, too, have a simple
interpretation in terms of the matrix L:

mJ = ( —2) Tr L for m &N,

NZ„= (- 2)"TrL" —2N( —1}".

It is interesting that the integrals of the Korte-
weg-de Vries equation can also be represented,
in a certain sense, as traces of powers of a dif-
ferential operator whose role in that theory is
similar to the role of the matrix L in the present
example. " We intend to comment further on this
matter in the next paper.
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