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Integrals of the Toda lattice
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The exponential lattice introduced by Toda is shown to be an integrable dynamical system. An explicit
set of n integrals is given for a lattice of n particles with periodic boundary conditions. The case of
fixed-end boundary conditions is also covered as a particular case. An alternative set of integrals is
obtained, which can be extended to the case of an infinite lattice.

Toda' introduced and studied a one-dimensional
lattice in which the force between neighbor parti-
cles is an exponentially decreasing function of their
distance. With an appropriate unit of length, the
equations of motion are

For the proof it will be convenient to write sym-
bolically u,. = [i], (-Xi) = [j, j+ 1). The relations
(3) become

—„[I,I+1]=([I]-[f+ 1])[f, I+ 1],

x&=u&, u, =C(e "~ "~-& —e "&+~*& ), —[i]= —[f —1, I]+ [f, f + 1] .
(6)

where x» is the displacement of the ith particle
from its equilibrium position and u» is the corre-
sponding velocity. C is a constant.

Extensive numerical investigations by Ford,
Stoddard, and Turner strongly suggested that the
Toda lattice is an integrable dynamical system.
We prove here that this is indeed the case and we

give explicit expressions for the integrals.
Let us define

(X»+ i X» )

The equations of motion become

X(= (u; —u(, |)XI, u(=X(, —X(. (3)

where the summation is extended to all terms
which satisfy the following conditions: (i) the in-
dicesi„. ~ . , i~, j„j,+1, . . . , j, , j,+1, which
appear in the term (either explicitly, or implicitly
through a factor X&) are all different (modulo n);
(ii) the number of these indices is m, i. e. , k+ 2l
=m. Two terms differing only in the order of the
factors are not considered different, and therefore
only one of them appears in the sum. For example,
for n= 3 the integrals are

Ii =ui+u2+u3,

I2- uiu2+ u2u3+ u3ui Xi Xp —X3

I3 u iu2 u3 u IXg u2X3 u3Xio

We consider first the case of a periodic lattice:
x»,„=x», with n given. The system is defined by
one full period, for instance by particles 1 to n.
Then the following expressions are n-independent
integrals of the motion:

I~= Zu( ~ ~ u( ( —X ) ( —X )
(4)

(m=1, . . . , n),

Therefore I is a sum of derived terms of the
same form as the original terms, except that one
index may eventually appear twice. We consider
all possible cases:

(a) A derived term has no doubled index. This
can only result from the derivation of a factor [i]
in an original term of (4), in which one of the neigh-
boring indices i —1 and i+ 1 is not used. For in-
stance, if i+ 1 is not used, then the derived term
containing [i, i+ 1] has no doubled index. But then
there exists another original term where [i] is re-
placed by [i+ 1], the rest being unchanged, and
this term produces a derived term containing
—[i, i + 1], which destroys the previous one. Thus
all derived terms of this kind disappear.

(b) A derived term has a doubled index i, common
to a factor [i] and a factor [i, f 1]+. This can re-
sult from an original term containing either [i, i+ 1]
or [I] [i+ 1] (through the derivation of [i+ 1]). The
sign is+ in the first case, —in the second case;
for any original term containing [i, i+ 1] there is
another term where this is replaced by [i] [i+ 1],
and vice versa, as shown by the formation rules;
therefore derivedterms of this kind also disappear.

(c) The case of a doubled index i common to a
factor [i —1, i] and a factor [i] is treated in the
same way.

(d) A derived term has a doubled index i, common
to a factor [i —1, i] and a factor [i, i 1].+This re-
sults from an original term containing either [i —1]
[i, i+ 1] or [i —1, i] [i+ 1], and again the derived
terms cancel each other in pairs. This completes
the proof of I =0.

To show that the n integrals I are independent,
we remark that if a general relation existed be-
tween them, it would exist in particular for C = 0.
But in that case I reduces to the symmetric func-
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tion of order ~n of the velocities

Im +Sf

with i„.. . , i„all different, and the n symmetric
functions of n variables are independent.

I, is simply the total momentum of the n parti-
cles (assuming that each particle has unit mass),
while I2 is related to the total energy H by

I2—- 2I~- H.2 (8}

No simple physical meaning has been found for the
other integrals Iz, ~ ~ ~, I„. Flaschka has found
an elegant derivation of the constancy of the I
based on Lax's4 formalism.

We consider now the case of fixed-end boundary
conditions, which has been investigated numerical-
ly by Saito et al. ' xp and x„„are set permanently
equal to zero, and the motion of particles 1 to n is
studied. It turns out that this case can be reduced
to the previous one. 6 Consider a periodic lattice
of period 2n+ 2; define it by the particles —n to
+ (n+ 1); and take initial conditions such that

x ]=-x;, u;=-u; .

If these conditions are satisfied at t = 0, they will
be satisfied at all times because the initial sym-
metry will be preserved. Therefore, in particular,
xp=Q, x„„=Oat all times, and particles 1 to n be-
have as a fixed end system. We have the integrals
I„~~ ~, I~„,2 of the periodic system, which can be
expressed in terms of the positions and velocities
of particles 1 to n. For m odd, I vanishes because
symmetrical terms destroy each other. I2„,2 re-
duces to a constant: Consider one of its terms
which contains factors u;, and let zp be the smallest
value of l}i ) among these factors. Since all indices

Io = Z (-uo, ) ~ ~ ~ (-u'; ), (12)

with z„.. . , z all different: the n integrals I~
are the symmetric functions of the n quantities
( —u~), and therefore they are independent.

Finally we consider the case of an infinite lattice.
The integrals (4) of the periodic case cannot be
readily extended to &e limit n- ~ because they
involve a multiple summation on the indices. But
it is possible to write another set of n independent
integrals for the periodic case, namely:

must be used in a term of I~„,~, the only possible
configurations between —i 0 and + ip are

[ —i o, —go+ 1][-io+ 2, —io+ 3] ~ ~ ~ [io —2, i o
—1][io],

(10)
and the symmetrical one. But then there exists in

I&„,2 another term with the sequence from —zp to
+ ip inverted, the rest being unchanged, and the
two terms destroy each other. The only terms
left in I,„.2 are those which do not contain factors
u; . There are two of them; one is

[ —n, —n+ 1] [—n+ 2, —n+ 3]' [n n+ 1] (11)

and the other has the same form with all indices
shifted one place to the right or left. Therefore
Io„,o = 2( —C)"'= const. We are left with the n inte-
grals I~, I4, . . . , I3„, i.e. , the required number
for the system of n particles with fixed ends. To
show that these are nontrivial independent integrals,
consider a term in I~ which contains only factors
u; . Assume that some factor u; is present without
the symmetrical factor u;. Then there exists in

I& an opposite term obtained by replacing u; by
u;, and these two terms cancel. The only terms
of the form considered which are left are products
of pairs u; u; . Therefore in the particular case
C=O, we have

J„=Z Z A(o'o, . . . , &o, po, .. . Po,}u Foul.'i ~ ~ u&.~pXaoX„', ~ ~ Xi+~', (m = 1, . . . , n),
i=(

where the second sum is extended, for a given i, to all terms which satisfy

p~0, a)~0, P) 1, ~Q n)+2ZP)=m,
g=p /=0

(13)

(14)

and the numerical coefficients A are given by

(15)

In the first product it is understood that p, = pal=0. Note also that if p= 0, there is no X factor in (13). The
explicit expressions for m = 1-5 are
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Js=

J4=

Q [ 3 uk+ (ui + up~1)Xg] 1

n

Z [ guy+ (uq + up u)~g+ u(~g) Xq + p X( + XI X(~)]
n

5 3 2 2 3 2
[ —,u, + (u(+u; u(„+u( u(„+u(„)X(+(u(+up„)X(+ (u(+ 2u(„+u(,2)X;X;„].

(16)

A straightforward computation shows that J = 0.
The J 's are independent, since for C = 0 they re-
duce to

u; = P(tanh 8; —tanh 8;,),
X( = 1+ P (1 —tanh 8;),

(19)

1J = — u]
OZ

(17)

There are, of course, relations between the two
sets of integrals I and J; the first of these rela-
tions are

J~= I]~ J2 = I2+ 2I(~ Js= Is I~I2+ 3I),2 1

J4= -I4+I)Is+ 2I2 —I)I2+ 4I) .2 2 1 4 (18)

Note that Jz is the total energy H, as shown by (8).
Using again the particular case C = 0, we find that
these relations are the standard relations between
the sums of equal powers (17) and the symmetric
functions (7) of the variables u& .

The integrals J involve a single summation
over i, for a given value of m. Therefore they
can be extended to the limit n -~, provided that
the sums converge. In order to secure the con-
vergence, it will usually be necessary to subtract
appropriate constants from the brackets of (16) be-
fore going to the limit n-~. Consider, for in-
stance, the soliton described by Toda, ' given in

our notations by

with 6};= o.i —P t, P = sinh o.. For i - + ~, there
holds u&-0, X&-1, and the terms in brackets in

(16) tend to definite limits C . It can be shown
that C =0 for m odd, C = (m —I)!/(~m)! for m

even. We define new integrals K, for n finite,
by

Kj= 2sinho, K, = sinh2u,

Ks= & sinh3u+ 2sinho, ,

K4= 2 sinh4Q. '+ 2 sinh2+.

(21)

The integrals J will also be of interest when going
to the continuum limit, where they reduce to "con-
stants of local conservation type,

" as defined by
Miura, Gardner, and Kruskal. '
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For the above soliton solution (19), the integrals
K converge for n-~. The first values are
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