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Heterodyne generation of polaritons

R. Reinisch, S. Biraud-Laval, G. Chartier, and N. Paraire
Institut d Electronique Fondamentale, Laboratoire associe au Centre National de la Recherche Scientifique, Batiment 220, Universite

Paris XI-Centre d'Orsay (91), France

(Received 22 August 1972; revised manuscript received 21 May 1973)

A quantum-mechanical analysis is given which takes into account the ~mping of polaritons excited in

a crystal by the two-beam method. The Heisenberg equations of motion are linearized by an

approximation, well adapted to this method, in which the two beams are symmetrically considered. We

get the polariton P function which allows us to study the coherence and the time evolution of the

polariton beam.

I. INTRODUCTION

In crystals having optical modes exhibiting both
Raman and infrared activities, it is possible to
study polaritons by the Raman effect. As in the
very center part of the Brillouin zone, the polari-
ton frequency varies, these crystals are a poten-
tial material for tunable sources of infrared radia-
tion. If one can achieve stimulated Raman scat-
tering, coherent infrared radiations are obtained;
this is a possible way to generate far-infrared
electromagnetic waves. There are two ways to
obtain stimulated Raman scattering. In the first
one a single pumping-light beam is used; as it
propagates inside the crystal, it generates spon-
taneous polaritons and Stokes photons. As the
number of these particles increases, stimulated
emission becomes more and more important. A

great number of coherent polaritons are emitted
only for a sufficient pumping power. This pump-
ing power is lowered in the experiment of Ref. 5

by putting the crystal inside an optical resonator in
order to increase the electromagnetic energy den-
sity at the Stokes bea-m frequency. In the second
way, that we shall call the two-beam method
(TBM), two coherent light beams, with a frequency
difference equal to that of the expected polaritons,
are simultaneously sent inside the crystal. Be-
cause of the nonlinearity associated with Raman
scattering, a beat is driven between the two light
beams: stimulated polaritons are generated with
rather low powers of the two pumping-light beams.
This heterodyne method to obtain a stimulated
effect has been suggested by Kastler and Kroll
for Brillouin scattering. Papoular has general-

ized their proposition to Raman scattering by op-
tical modes of crystals. We have experimentally
shown that optical phonons can be generated by
the TBM with a very high intensity. Independently
Coffinet and de Martini and the present authors
have excited polariton modes by the TBM and have
characterized infrared radiations outside the crys-
tal.

Because of the recent progress observed in the
tunable-dye-laser field, the TBM has interesting
technical applications; it can also provide informa-
tion on the solid-state properties of crystals.

In this paper we are considering a crystal having
only one infrared-active optical mode which is not
supposed to be undamped; we study the time be-
havior of the number of polaritons excited by the
TBM and the coherency of the corresponding beam.
Glauber's formalism' for coherent states is used.
The damping of polaritons is introduced by con-
sidering the lattice-vibration anharmonicity.
We do not use the approximation usually made to
study parametric interactions, i.e. , undepleted
higher-frequency pumping beam, because it does
not apply to the TBM, in which the two light beams
must be symmetrically considered.

II. HAMILTONIAN OF THE SYSTEM

We shall first derive the Hamiltonian for the
polariton-damping process. We consider this
damping as a consequence of the anharmonicity of
the mechanical vibrations; in the expression for
the potential energy we drop all the terms of order
higher than three. The Hamiltonian describing the
interaction between polaritons and lattice vibra-
tions can then be written as

The sums are taken over the N wave vectors in the
Brillouin zone and over all branches, r&, r, of the

frequency spectrum: b „„,bI „("X=i,j) are pho-
non creation and annihilation operators, b„&„and
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by „are the creation and annihilation operators
for the polarization field' and V( ) is a coupling
coefficient which satisfies

k, k, k, —.-k,
The expression b „-„+b."„canbe written as a-ks~s "sos

linear combination of the operators describing
polaritons.

In crystals having one infrared-active mode,

polaritons corresponding to the upper branch of
the dispersion curve cannot be excited by the Ra-
man effect, "hence we shall only consider in H, the
terms describing the interaction of a polariton
from the lower branch with two lattice phonons.
The effect of the other terms is supposed to be
negligible as long as the coupling described by
V( ) remains weak; this will be assumed in the fol-
lowing.

B& can then be written

N

H, = ji)»((dg) Z Z ih(kg -k» k») V

tyr~rf

13 t t yy 1) ff 93 t
"3 b4"'b~f f -k -k k 3 b~"'bk

» /2

( tl — '/ 'I 0 0

where ~s and 4nP are respectively the polariton
frequency and the mode oscillator strength; and
a„" & end a-„& are the creation and annihilation op-
erators for polaritons from the lower branch of
the dispersion curve. We shall write H, in a more
simple form,

H, =@p,((d, )Z(K»;a, b»b', +K»»asb»b»),

y'3
K»» = i4(k~ -k; -k»)V

-kg -kf ks

t»((d, ) is a quantity ranging from zero to unity; it
expresses the fact that the damping of polaritons
exists only through their phononlike part and so
is growing as the frequency ass gets closer to the
resonance frequency ~0.

Let us now derive the complete Hamiltonian for
the system studied. For a Raman process, the
Hamiltonian H is usually written as"

&= Sm&aqaq + +co2amaq + ~vsasa3t

—M'(a&a). a3+ a»aaa, );t t t

a&, aq, aq, a~ are annihilation and creation opera-
tors of photons 1 (frequency (d, ) and photons 2 (fre-
quency co&). Photons 1 and photons 2, respectively,
belong to the higher-frequency beam (HF) and to
the lower-frequency beam (LF); they are also
called pumping and Stokes photons. K is a coupling
coefficient.

We then get the final form of the complete Hamil-
tonian

&» =H+Z)f(d»b, 'b»+H, .
l

The term g»ft(d»b, b» represents all the phonon
modes existing in the crystal, and acts as a reser-
voir of harmonic oscillators describing the loss
mechanism to which the polaritons are coupled by

i = +sas -KA~A2e~ 3 t -t4] -b9 )t
dt

+Z t»((d00)K;gb»b»,
&»f

i —(b»b») = ((d;+ (d;)b;b»+ [b;b», H»] .
dt

(2)

Following Senitzki' and Opie' the commutator of
the last equation is repla. ced by

II( ) 0~(0)5g(0) ZK 0 (0)l (0) )ga

The lattice phonons being in thermal equilibrium,
we have, setting

n» = (b;(0)b, (0))= (e""»t —1)

i —(b;b») = (ru»+(d»)b»b»+ 2'»u(~) K»»qa(1+n+»n)».
dt

Equation (1) being nonlinear, we are making rea-
sonable assumptions to linearize it with respect
to Aj and Az. First, the two pumping-light beams
being powerful and coherent, the correspondence
principle allows the replacement of the operators
a, (t) and ~(t) by the complex quantities»»&(t) and

»)»g (t). Before entering the crystal the two light
beams have about equal intensities. Afterwards,

I

means of H, .
With regard to the loss mechanism and following

Refs. 11 and 17-19, we make the assumptions that
the reservoir of oscillators has a very large num-
ber of closely spaced energy levels, and that it is
only slightly affected by the interaction with the
polariton field.

III. STUDY OF TBM IN CASE OF POLARITON DAMPING

To study the properties and the time behavior of
the polariton beam, we use the Heisenberg equa-
tions of motion. ao Setting

a» 2(t) =&»g(t)e '"» 2',

we obtain
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as the interaction occurs inside the crystal, the
LF beam is amplified while the HF beam is atten-
uated; if we neglect the energy given to the polari-
ton field, we can assume, as a first approximation,
that aq(t)as (t) remains constant and equal to
a, (0)as~ (0).

Equation (1) then becomes

t ' =/d, a, -Ka, (0)a, (0)e ""&"s"~ Qcg

dt

+Z t/, (/dg)IP(yb; b/ . (4)

Equations (3) and (4) are solved by taking the
Laplace transforms ' a„(s) of the various operators

a~(t) and B,/(s) of the operator b&(t)b/(t):

t[sa, (s) -a, (0)]= (o,a,(s)+Z p((u, )K*„&;,(s)

Kcg Qp

s + t((og —(os)

i[sIT&/(s) —b; (0)b/(0)] = (/d& + ~/)&, /(s)

+ 2p, (&uz) K; /a~(s)[1 +n& +n /] . (6)

az(0), b, (0), b/(0) are the operators a, (t), b;(t),
and b/(t) taken at time t=0.

To excite, with the TBM, cu3 frequency polari-
tons, ~& and vz have to be chosen in such a way
that ~, -co~= ~~; if we suppose that this relation
is fulfilled then we have

K)~,b( (0)b, (0) . z ~, ~2~ p I&. I {1+n +n )a3(s)= csgO) -g~ p. (&os) +g s+ K&3+~ 2p
(/ S + t((d( + (d/) S + t(dg S + t((d( + (d/)

We haven
6~)ao

a, (t) = . ds e"a,(s),
2KZ 6 ~ j40

where & is a small positive number.
It is shown in the Appendix that

a~(t)= u(t)as(0)+Zv;/(t)b&(0)b/(0)+ w(t)nqa2,

a(t) i&a3t -'tT-/2) t (4&at-
v&/(t) = K&&[e

"-"/'"/" —exp(- M2t —tn/dt t/d&t)]-/[~q —(~&+ ~/) —t(2'r)+ &/d]

1 -&t/2)t-i&tN) t
w(t) =K 4~ —&ir

(10)

~y and &~ are defined in the Appendix.
From (8) one obtains the normal characteristic

function XN(&&) for the polariton bea, m

XN (g3) = Tr{pe"3'&"'e "3'3"'),

where p is the density operator at time t=O:

XN (/)3) = exp(nmw aq as —q3 w aq &s ] Tr [p exp[ pq u*as (0)]exp[ —/)3 Qa3(0))

x exp g3 vg~b) (0)b~{0) exp —q3 v]~b] 0)by 0) . 12)

From (12), we obtain:

XN ()3)= exp[U3w 1 3 l3 wa1 2 ]XN ( )3)

where XN(g3) is the normal characteristic function
that wouldbe obtained for the polaritonfield in the ab-

I

eence of the LF and HF beams. XN('/)~) only de-
scribes the interaction between the polaritons
which are in the crystal and the loss mechanism.
According to the very general hypothesis made in
Sec. II about the phonon reservoir, it can be shown
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that this interaction describes a thermalization
process. ' ' ' lf one assumes that the coupling
between the polaritons and the loss mechanism has
been existing since t= —~, then in the absence of
any other coupling the polaritons are in thermal
equilibrium at time t. XN(g3) is therefore the nor-
mal characteristic function associated with a po-
lariton field in thermal equilibrium. Thus, we
have 20'~'

Xz(s)s)=e '"" ",
with

hence

X(»(7)3) = exp(-
~
s)s ~'((s+ ()sm& o1 (ss

—s)s s(&(ss os 1 ~ (13)

The expression of the P((ss, t) function of polaritons
is easily deduced,

P((s„ f) = (I/(((ss) exp(- [~ (ss —(ss(t) ~']/(ss), (14)

where (ss(t) = s(&(t)(s, c(ss. It is well known' that the
I' function corresponding to the superposition of
two fields is the convolution of the I' functions of
each field.

Equation (14) shows that the polariton field ob-
tained at time t is the superposition of two fields
that we shall call field I and field II. Field I is a
Gaussian one, whose variance n, does not depend

upon time; it corresponds to polaritons existing
initially inside the crystal and which are not am-
plified by the TBM. Field II is a coherent one,
with a P function given by P„=b(a'. s —(ss(t)), it de-
scribes the signal, i.e. , the polaritons created
and amplified by the TBM. Therefore there is a
coherent signal since the very beginning of the in-
teraction; here is a noticeable advantage of the
TBM over a method using only one beam. This re-
sult is obtained because the vacuum fluctuations of
the LF beam are the only noise source for field
II' '; as soon as a& is replaced by z, the quantum
noise of this beam is neglected: it is then natural
for the signal to have only a coherent component.

Neglecting 4(d, we obtain from (14) the mean
number ((ss(t)) of created polaritons at time t:

(ns(f)) = ns + (4' (s(s(s/'Y i (I —e "' (15)

wher«( =(s((0) = i (s, l

' and ((s = (ss(0) = i (s I
'.

The expression (15) shows that the effect of
damping is a growth limitation of the intensity of
the coherent part of the signal. This coherent
component exists for any value of y; the maximum
number of polaritons created inside the crystal is
equal to 4K (s(ns/y; the larger is the damping the
smaller is this number which is also proportional
to the product of the intensities of the incident-
light beams.

We would like to emphasize the fact that the pre-
vious result is independent of the model chosen to
describe the damping of polaritons; this is due to
the fact that in the TBM the two beams are co-
herent and powerful enough to allow the replace-
ment of the product a, (t)as(t) by the complex quan-
tity (s((0)(ss (0). Within this approximation the
characteristic function, Eq. (12), will always be
the product of two independent quantities, one of
them describing the beat driven in the crystal by
the LF and HP beams. The I' function, which is
the Fourier transform of (12), will always be the
convolution of two I' functions, one of them ex-
pressing the existence of a coherent field in the
Glauber sense.

IV. CONCLUSION

One has to evaluate the function

g+i ~

as(t) = . (fs e"as(s) .
kg g f(so

Setting s = 4 + iy, we obtain

We have shown that, even in the case of damping,
the polaritons created by the TBM are immediately
coherent; this property of the polariton beam does
not depend upon the model chosen to describe the
losses. The unavoidable effect of damping due to lat-
tice anharmonicity limits the growthof the signal.

APPENDIX

( )
1 ' d, ,( (( (0) p u((ds) ((b((0)b, (0) K(s(as

+g++y —&~ 7+~3

with

i Ã;( i (I +n(+ (sg)

g + CO ] + COy —gC

in (1V) can be replaced by an integral:

p(&u() d~(,

Let us suppose that the energy levels of the phonon
reservoir are very closely spaced, the summation

where p(~& is the density of energy states of the
reservoir:
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+40 ya

I= -2p p((o, ) d(o, p((ui)
~00 ~40

(K((u „(o,) I '(1+n((u, ) +n ((o,)
440)

p + (dg + Ggy —zf
(18)

Here we have explicitly taken into account the fre-
quency dependence of K,&, 9&, nI. The limits of
integration have been taken froni — to + ~ since
the denominator is very weak if y+co&+co&=0.
Taking the new variables co'= mr&+~~ and co"= or&

—&u» (18) becomes

I= —p' f' [d(u'/(y+ (u' —i&)]A((o')

with

A((o') = f' p[-,'((u' —(o")]p[-,'((o'+(o")]

x ~K(&u, (d )~ {1+%[A((0 —(d )]

+ n[—,'((u'+ (o")]}d(u"

It is well known that

lim b —f~)- =6 — +i&6( ),1
6 wo x

6 standing for principal value, then

I= —p 6'{f' d(g'[A((o')/(y+(o')]}

—z~p'A(-y) . (20)

As long as the coupling remains ~~eak between
the polariton field and the reservoir, the function
to be integrated in (16) has only noticeable values
when y is near —Iu„which is the pole of (16) when
K,&

= 0. So y can be taken equal to —&oa in (20):

I—4(cr —

hazy

with

y = 2mp~A(&o, ),
a(u = —p'(p {f'„"d(u' [A((o')/((o' —(u, )]}.

Going back to (16) and using (21), it is easy to ob-
tain the functions u(t), v, &(t), and cv(t).
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