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The coherent-potential approximation (CPA) for vibrational systems is extended to include

force-constant changes as well as mass defects in alloys for which the force constants superimpose

linearly. Such a model is correct at both the low- and highwoncentration limits, and may be reasonable

for broad concentration ranges in some real systems, for example, in diatomic alloys like mixed alkali

halides. Results for one-dimensional systems with nearest-neighbor force constant and mass disorder

have the same over-all agreement with exact results as was previously found for CPA calculations for

mass defects only. Applications in three dimensions appear to be computationally feasible.

I. INTRODUCTION

Considerable progress in understanding the prop-
erties of substitutional alloys has been made re-
cently through the use of the coherent-potential ap-
proximation (CPA). As first described for phonons

by Taylor and electrons by Soven, the CPA is a
mean-field theory in which the random alloy is ap-
proximated by an effective medium. This medium

is chosen self-consistently such that the average
scattering from a single real atom in the other-
wise perfect effective crystal vanishes. Within the
confines of the single-site approximation, there
have been numerous applications and refinements
of the CPA for vibrational, electronic, "and

magnetic ' systems.
For both theoretical and computational reasoas,

it has proven difficult to go beyond the single-site
CPA to include either pair and higher cluster cor-
relations or off-diagonal randomness, that is, ran-
domness in phonon force constants or in electron-
transfer integrals connecting different sites. A

number of attempts have been made to include
correlations, which are known from exact machine
calculations ' to produce structure associated
with identifiable pairs, triplets, and larger clus-
ters. Butler has recently succeeded in repro-
ducing some of the detailed structure found in the

density of states of one-dimensional alloys by em-
bedding clusters self-consistently in a (super) peri-
odic effective medium.

To a first approximation, the effects of off-di-
agonal randomness are to shift and distort features
of the alloy spectrum, rather than to introduce a
great deal of additional fine structure. For pho-
nons, for example, force-constant changes may
shift local or resonant modes away from the fre-
quencies predicted by CPA mass-defect calcula-
tions; they may move a resonant mode out of the
in-band region, or a local mode back down into
the continuum. Shiba and Blackman et al. ' have

proposed methods to include off-diagonal random-
ness for electrons which are much like standard
CPA in using diagonal single-site averages, but
there is some question as to whether their ap-
proaches are wholly consistent with known low-con-
centration-limit results. 3~' 26

In this paper, we describe how the CPA may be
extended to include both force constant and mass
changes in vibrational systems for which a linear
superposition of forces is a good approximation.
In particular, the theory is applicable to diatomic
crystals with nearest-neighbor force-constant
changes. We make no effort to include clustering
effects, preferring instead to focus on the incor-
poration of force-constant changes.

It is by now well known that local force-constant
changes generally play an important role in deter-
mining the behavior of phonons around isolated de-
fects. Diatomic alloys of the form A, ,A,'B are
particularly well-suited for studies of the effects
of force-constant disorder, since correlations be-
tween the alloyed constituents A, A' are to some
extent buffered by the intervening stable constituent
B. Furthermore, there are only two nearest-
neighbor force constants (A-B, A'-B) to deal with,
rather than three as would be the case for a mon-
atomic A-A' alloy. However, our approach is not
limited to diatomic crystals, but also applies to
other systems whose force constants superimpose
linearly, for example, monatomic A-A' alloys in
which the A-A ' force constants are the average of
the A-A and A'-A' force constants. While it is
true that this is a special case, it should a1.so be
noted that real alloys do not have the simple Ham-
iltonians generally assumed, and that mappings of
the real-alloy problem onto models are common
practice.

We describe the theory in Sec. II. In Sec. III,
we show that for one-dimensional alloys, our re-
sults for the CPA with force-constant changes have
the same over-all agreement with exact calcula-
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tions as those of Taylor for mass defects. In Sec.
IV, we indicate how practical extensions to three
dimensions can be accomplished, and briefly sum-
marize our conclusions.

II, THEORY

—4'(lb, l"b")) ~ P(l "b",l'b'), (2)

where I is the unit matrix, Mb is the atomic mass
of b type atom-s, and 4 {lb, l'b') is the force-con-
stant matrix in the perfect crystal. When defects
are present, the Green's function G(lb, l'b } must
be determined from

I5(l, l')5(b, b')

{P (lb, l "b")—[M&, —M(lb)]&g I5(l, l")
r"b"

x5(b, b") —bC (lb, l"b")) ~ G(l b, l b ), (3)

where M(lb) is the mass of the atom at the site lb

in the imperfect crystal, and

64(lb& l'b') =4'(lb& l b') —4 (lb& l'b')

represents the changes in the force constants.
We treat the force-constant changes as a sum of

individual defect matrices,

AC (lb, l'b ) = Z &4 (Ib, l'b'; l;b;)
l gbg

(5)

where a@~(lb, l'b'; l,b, ) is the change in force con-
stants associated with the site l,b, , 5 is the type of
atom at l;b, [i.e. , 5 = 5 (l,b, ) ], and the summation
is over all sites in the crystal. If the atom at l;6;
is a host atom, 5=host, then the defect matrix for
this site vanishes, bQ (lb, l'5', l,l,) =0. Taylor'
properly points out that Eq. (5) represents a re-
strictive assumption. However, it is valid for any

system whose force constants superimpose linear-

To describe our approach, we will use notation
similar to that of Taylor' and will parallel his de-
velopment where possible. The time transform of
the (retarded) phonon Green's function 7 is defined
by

G(lb, l'b'; &u) = f d(t —t')e' " '

x(f/b)e(f —f') ([u(l, b; f),
u(l', b'; t') ])

where 8(t —f ) is the Heaviside step function, and

u(l, b; f) is the displacement of the atom at the site
b in the 1th unit cell at time t. For conciseness,
the frequency argument ~ will be suppressed in
subsequent equations.

In the harmonic approximation, the perfect-crys-
tal Green's function P(lb, l'b') satisfies the equa-
tion

I5(l, l')5(b, b') = 2 {M &u I5(l, l "}5(b,b")l"b"

ly, and it is also legitimate when the overlap of the
individual defect perturbations can be neglected.
It is therefore valid for either small or very large
defect concentrations c, that is, for c or 1 —c
small. We also expect Eq. (5) to be appropriate
over more extended concentration ranges for short-
range force-constant changes in polyatomic crys-
tals like mixed alkali halides.

As an example of a system whose force constants
superimpose linearly, consider a monatomic A-A'
alloy whose force constants satisfy

4'„„ (l l ') = C „„(E l ') = ' [&I„„(I l') + C „„ (l& l ') ]
(5)

Here C&„„.(l, l') is the force constant between an A
atom at the site 1 and an A' atom at the site /'. An
equivalent model for the electronic alloy problem
has been proposed by Schwartz ef al. M If n„.(l) has
the value 1 when there is an A' atom at site l and
0 otherwise, then the force constants in the alloy
differ from those of a pure A crystal by

~C(l, I') =-,' [C„,„.(l, l') —C„„(l,l')][n„.(l)+n„, (l') ] .
(I)

For this system, the individual defect matrices of
Eq. (5) are

—.
' (&„,„.«, l') —~„„{l,I') 1

&@'(l, l'; l,.) = x [5(l, l,.)+5(l', l,.) ], 5 =A'

0, 5=A

With the assumption of linear superposition for
the force constants, Eq. (3) for the Green's func-
tion can be written in the form

G(lb, l'b')

= P(lb, l'b') + 5 P(lb, lib')
l gb), 12'

~ 2 D (l~b~ lqbq& l (b ') G(lqbE& l b )
1

5

where the sum on /, b; is over all sites, and

D {lb,I'b'; l, b;) = Me'(l;b, )&o I5(l, l')5(b, b')5(l, l,)

x 5(b, b,)+ a4 (lb, l'b'; l;b. ,), (10)

e'(f, b, ) = [M, —M(l, b, ) ]/M,

The region in which the perturbation D {lb, l'b'; l,b;)
around the site E,b, may be nonzero will be called
the defect space.

We now introduce the CPA Green's function G
(lb, l'b'),

Q (lb, l'b') =P(lb, l'b')

+ Z P(lb, l~b~) ~ E(l~b~, l252)
lyby ~ lgbg

~ G (l2b2, l'b')

with the self-energy E(lb, l'b') to be determined
later by minimizing the difference between G and
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( G) at some level of approximation. in terms of
G rather than P, the equation for 6 before averag-
ing is

G(fb& l'b') =G (fb, l'b')+ Q Go(lb& l&b&)
l~b~ l2b2

r D (1 b„& & i&,&i& —E&. &„& &
&)

~ G(f252, l'b') (13)

We would like to recast this equation in a way that
allows us to separate out the scattering from at-
oms in the defect space around any potential defect
site and to set that scattering equal to zero on the
average by proper choice of the self-energy.

To do this, we first express the crystal periodic
self-energy function E as a sum of local self-en-
ergy matrices K associated with each site in the
crystal. Adopting for the present a compressed
notation in which L denotes ooth l and b, we can
without loss of generality write

E(L& L ') = Zi Z K(s, S'; L () 5(L, S+L&)5(L '& S'+ L &),

where S, S are site indices defined relative to L;.
Similarly, we rewrite the individual matrices de-
fined in Eq. (10) in the same form,

Q (I., L';L&) = Z D (S,s;L&)5(L& S+L()5(L'&S'+L&)
ss'

(15)
A scattering potential matrix around the site L;
can be defined by

V (S, S';L&) =D (S,S';I.;) —K(S, S';L&)
&

(16)

which depends on what type of atom 5 is at L;. In
terms of V, equation (13) becomes

G(L, L ') = G (L, L ) + Z Z G (L, S+ L,).
Li SS'

~ V (S,S'; L;) ~ G(s'+ L» L') . (17)

The t matrix for the sc"ttering from the potential
V is

T (S,S'; L&) = Z V (S, s&,'L;) ~ X (S»S'; L;)
Sg

(16)
where

X (S, S'; L;) =15(S,S') —Q G'(S, S,) V'(S„S';L,)
sg

(19)
We can now follow in the steps of Taylor's der-

ivation for mass defects. From equations (17)-
(19), a Green's function associated with the site L;
is defined by

G (S+L;,I '; L()

= Q X (S, s&, L;) ~ G(s&+L;, L')

=G (S+L»L')+ Z Z G (S+L; S&+L&g)
LigLi S1S2

~ V (S» Sa& LJ) ~ G(S2+ L~& L') . (20)

The average Green's function for the alloy can then
be determined by solving the equations

( G(L, L ') ) = G'(L, L ') + Z Z G (L, S+ L;)
6, L ~ Ss'

c'(I.,)T'(S, S'; L,)

'(G (s +L»L & «))»(I&,

(G (S+L»L';L;))»(g.&
=G (S+L»L')

+ + Z G (S+L,, S, +Lq)
ytLf~L S1S2

~ c"(I,,)T"(S„S„I.,)
~ (G"(Sa+ L)& L'& L)) )6(~ »(~ &

. (22)

Here c (L;) is the probability that there is an atom
of type 5 at L„and (G(L, L')) is the configura-
tional average of the Green's function. ()«~.& is
the c;onditional average when there is an atom of
type 5 at L;, and ()«~ »&» is the conditional av-i" j
erage for atoms of types 5 and y at the sites L, and

L&, respectively.
An approximation is now made which omits pair

and higher cluster correlations, and which leads
to a local self-energy K confined to the defect space
around I;. This approximation is to replace the
two-site conditional average in Eq. (22) by a single-
site average,

(G"(S+L)&L'& L~))«i, .&„(i, & =(G"(S+L)&L';L)))„(~.&
(23)

for L&4L, With th. is approximation, Eqs. (21) and
(22) form a closed system which can be solved to
give

(G(L, L')) =G (L, L')+ Z Z G (L, s&+L;)
s&, s2 ~ s3

~ T (S» S2; L;) ~ Y (S2, S3; L;)
~ ( G(se + L»L') ) (24)

where T(S, S'; L;) is the average t matrix in the de-
fect space around L;,

T(S,S';L;) = Z c (L;)T (S&S';L&)
& (25)

and Y(s, S'; L,) is defined in terms of G and T by

Y (S, S '; L &) =15(s, S') + Q G (S, S&) ~ T (Si& S '; L &)

We now set the average t matrix equal to zero
for each L;,

0 = Z c (L;)T (S,S '& L;) (27)

so that (G(L, L') ), the average Green's function
for the alloy, is equal to the CPA Green's function
Go(L, L'). Since T(s S '&L,)2is an averaged quan-
tity, it has the symmetry of the perfect lattice and
(27) therefore results in only one independent ma-
trix equation for each site in the unit cell. The lo-
cal self-energy matrix K(S, S'; L;) found by solving
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Eq. (27) is nonzero only if L, is a possible defect
site. Furthermore, K(S,S', L,) = 0 if S or S' lies
outside the defect space around L„where the de-
fect space comprises the set of sites defined by the
condition D 4 0. As is shown more explicitly in the
illustrative calculations of Sec. III, however, non-
zero values for K(S, S';L;) may be obtained for
combinations of S and S' within the defect space for
which the defect perturbation matrix D'(S, S'; L,)
itself vanishes.

For the case where defects of only one type may
be present at only one site in the unit cell, the
equation for the local self-energy matrix is derived
schematically as follows. From Eqs. (16), (18),
(19}and (2V), the condition to be satisfied for a
concentration c of defects is

0 = —c(K —D) [I+G (K —D)] —(1 —c)K(I+G K)
(28)

Here all quantities are matrices in the defect
space, and D now denotes the perturbation matrix
for a defect, D=D' . Using the identity

W(I+G W) =(I+WG ) W (29)

and performing some elementary algebra, we ob-
tain from Eq. (28)

0=K-cD+KGO(K —D) =K- cD+ (K-D)G K
(so)

which is of the same form as that found by Taylor
for mass defects.

We now restore our full notation for the case of
defects of one type at the site P in the unit cell.
Then if s denotes unit cells in the space of a defect
at OP, Eq. (30}for the local self-energy is

0=K(sb, s'b; ru) —cD(sb, s'b'; &u)

+ Z K(sb~ s,b&,
'

&u) ~ G ( bs, ~ s2ba, ~)

~ [K(saba, s 'b'; &u) —D(s2b2, s 'b', ~) ], (31)

where K(s b, s 'b; &u) = K(s b, s 'b '; 0P) and
D(s bs' 'b;&o)=D (sb, s b;Op).

The crystal periodic self-energy E(lb, l'b; &o)

which determines the CPA Green's function in Eq.
(12) is found from Eq. (14) as a sum of local self-
energy matrices,

E(lb, l b'; (a)) = E K(sb, s b &(g))6(l —l', s —s')
(32)

Equations (12), (31), and (32) must be solved self-
consistently to obtain the CPA self-energy and
Green's function.

It is easy to show that these equations reduce to
those of Taylor for the case of mass defects. The
defect space then reduces to the defect site itself
(s = 0, b = P), and Eq. (32) simplifies to

must satisfy

0 = E(ur) —cMeu I+ E(&u) ~ G (l, l; ur)

~ [E(m} —Me&@ I] (34)

Every atom in the defect space of the impurity at
OP therefore has a nonzero diagonal force constant
change. Furthermore,

D(sb, sb;&u) =D(sb, sb;&v =0)+Mse&o 6(s, 0)6(b, p)I

(s6)
is not independent of s, so that D(sb, s'b'; ar)
& D(s —s ', bb'; v) is not translationally invariant,
and from Eq. (31), neither is the local self-energy
K(sb, s'b'; &o). Since the full self-energy is deter-
mined as a sum of local contributions in Eq. (32),
E(lb, l'b'; ar) =E(l —l', bb'; m) does have the correct
behavior.

III. RESULTS IN ONE DIMENSION

In this section we present some illustrative re-
sults for one-dimensional alloys with nearest-
neighbor force constants. For both a monatomic
and a diatomic system, the separate and combined
effects of light-mass defects and increased force
constants are calculated in the CPA at several con-
centrations and compared with exact results ob-
tained by Monte Carlo calculations. 3~

For substitutional impurities which introduce
nearest-neighbor force-constant changes in either
a diatomic or monatomic linear chain, the local
equations (those confined to the space of the defect}
of Sec. II can be written as 3&&3 matrix equations
in which rows and columns are ordered by position
relative to the central site as —1, 0, 1. With this
convention, the defect perturbation in Eq. (31) is

D= —4 Macy +24

0

{37)

where 4 is the force-constant change, ' 4 &0 corre-
sponds to an increase in the force constant. From
general symmetry arguments, the local self-energy
matrix g is similar in form to D,

K(1, 1) K(0, 1) K(1, —1)

K= K(0, 1) K(0, 0) K(0, 1}

K(1, —1) K(0, 1) K(1, 1)

{38)

which is Taylor's equation (3.9).
In order to meet the requirements of translation-

al invariance, the force-constant changes in Eq.
(10) must be such that

D(sb, sb; &@ =0) = — Q D(sb, s'b'; u =0) . (35)

E((u) = E(lP, lP; (o}= K(OP, 0P; (u)

From Eqs. (10) and (32), the self-energy E(&o)

(33)
but K(0, 1)+ —K(1, 1}, in genera, l, and the 1, —1
element may have a nonzero value, corresponding
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0 = K —cD + K ~ Go ~ (K —D) (39)

to an effective next-nearest-ne~~hhor coup&~no be-
tween the atoms adjacent to the central site.

The Green's function G' and the crystal self-en-
ergy E have somewhat different matrix representa-
tions in the defect space for diatomic alloys than
they do for monatomic systems. For the diatomic
case, G and E have the same form as K in Eq.
(38), and from Eq. (32), the elements of g are
equal to those of K with the exception that E(1, 1)
= 2K(1, 1). For monatomic alloys, the diagonal el-
ements of G and E are equal; that is G (1, 1)
= G (0, 0) and E(1, 1) =E(0, 0), and the elements of
E are related to those of the local self-energy K
by E(0, 0) =E(0, 0) + 2K(1, 1), E(0, 1) = 2If'(0, 1), and
E(1, —1)=K(l, —1).

Since K has four distinct elements, the 3&3
equation for the local self-energy [cf. Eq. (31)],

provides a set of four complex nonlinear equations
which must be solved self-consistently to deter-
mine E from Eq. (32) and G from Eq. (12). The
variable metric method of Power. l was used to do
the calculations, and although it was more difficult
to find the roots of Eq. (39) for some frequencies
and concentrations than for others, no pathologies
were encountered in the solutions.

Figures 1-6 compare approximate CPA phonon
densities of states for model one-dimensional al-
loys with essentially exact results obtained by us-
ing the techniques of Dean. a The phonon density
of states for an alloy can be defined by

p((g~) = fm Q Tr (M(lb) G (Ib, fb; &a&) )
3msN

(40)

where s is the number of atoms in the unit cell and
N is the number of unit cells in the crystal. When
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FIG. 1. CPA (smooth curve) and exact results (histogram) for the phonon density of states of a monatomic alloy

A~ 4' with nearest-neighbor force-constant changes and mass differences. For the exact calculations, M&.=1.0,
c

M~, =0.5, @~=1.0, C ~.=1.5. For the CPA calculations, 4 =1.0, b, =0.25, and &=0.5.
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defects of one type only are present at one site P
in the unit cell, the configurational average in Eq.
(40) at that site can, in principle, be evaluated ex-
actly as

( M(fb) G(fb, ib; Lv} ) = bf"(p}( G (ip, 1p; u) })

+ M"(P}(G (fP, f13; (o}), (41)

where d and h denote defect and host atoms, re-
spectively. For the case of mass defects, the site
diagonal defect and host Green's functions, (G )
and (G""), in EIl. (41) can be related to the full
CPA Green's function in a straightforward fash-
ion, as discussed in Refs. (1) and (29). When off-
diagonal disorder is present, however, the rela-
tionship between (G' ), (G ), and G becomes less
straightforward. For our purposes, we have
found it sufficient to approximate the average,
(&G), in EIl. (40}by the product of- the averages,
(M) (G). The approximate CPA densities of
states plotted in Figures 1-6 are therefore ob-
tained from

v(s) ) = — hn Q Tr(bf(b}) G'(Ob, Ob; (u) . (42)
3s~

Figure 1 shows the approximate CPA phonon den-
sity of states determined from EIl. (42) for a mon-
atomic alloy, A, ,A,', with both mass difference
and force-constant changes. The smooth curves
are the CPA results, while the histograms are the
exact results obtained by using the techniques of
Dean for chains of 10000 atoms. The masses of
the two constituents are MA =1.0 and MA. =0. 5, and
the nearest-neighbor force constants for the exact
calculation are 4»=1.0, 4». =1.25, and 4„.„.
=1.5. Here and subsequently, the values given
for the force constants are the spring constants
for nearest-neighbor pairs of atoms; for example,
C „„=—C»(0, 1}for a pair of A-A neighbors. No-
tice that we have chosen force constants which su-
perimpose linearly, C„„.=(4„„+4„.„.}/2. The
mmcimum frequencies in the pure A and A' crystals
are 0 4 and 412, respectively. For the CPA calcu-
lations, the A crystal was used as the host mate-
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FIG. 2. CPA and exact densities of states for a mon-
atomic alloy with force-constant changes only: MA =MA.
=1.0, 4AA=1. 0, 4AA, =1.25, 4A, A, =1.5 {exact);
4 = 1.0, 6= 0, 25, e = 0 {CPA) .

FIG. 3. CPA and exact densities of states for a
monatomic alloy with mass changes only: MA =1.0,
MA' ' @'AA 4A'A' = 1.0 {exact); 4 = 1.0, b, = 0,
~=0. 5 {CIA).
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rial so the mass defect is &=0.5 and the force-
constant change is 6=0.25.

For dilute concentrations c of A' atoms, the
mass defect and the force-constant changes are
such that a local-mode band is produced. As the
concentration of A' atoms increases, this band in-
creases in width and merges with the in-band
modes around c =0.25. As the concentration in-
creases still further, the higher-frequency portion
of the spectrum is filled in, and the agreement be-
tween the CPA and the exact results improves as
the structure in the exact results diminishes in
magnitude. The agreement between the CPA and
the exact calculations is quite good over the fre-
quency range 0(~ (4 of the pure A crystal for all
concentrations. %'hile the CPA of course fails to
reproduce the fine structure at higher frequencies,
it does give a good average description of the spec-
trum, and counts the number of modes in each re-
gion correctly.

Figure 2 shows the density of states for an alloy
with the same force constants, but with no mass
difference, M„=M„.=1.0. For this case, the
maximum frequency of the pure A' crystal is v 6.
Although a local-mode band still splits off at the
lowest concentration shown, it is much closer to
the band edge, and it merges with the in-band
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modes more quickly. The structure in the exact
results is also somewhat smaller in magnitude,
and the agreement between the CPA and the exact
calculations is generally better than for the more
extreme case of Fig. 1.

Figure 3 compares the CPA and exact densities
of states when there are no force-constant changes,
but only mass differences: M„=1.0, M„.=0.5,
4»=4'», =4&.&. =1.0. Here the maximum pure A
frequency is v 8. Qualitatively, much the same be-
havior is observed as in the preceding example,
although the structure in the exact results dimin-
ishes less rapidly as the A' concentration in-
creases. Figures 1-3 show that the in-band pho-
non spectrum is relatively insensitive to force-
constant changes at modest concentrations of light
mass defects, while the local modes depend much
more strongly on the force-constant changes. Fur-
thermore, the combined effects of lighter masses
and stiffer springs may be to split off a local-mode
band which neither change can produce separately, ~

as is illustrated by the results for c =0.25 in Figs.
1-3.

Figures 4-6 compare the approximate CPA den-
sity of states determined from Eq. (42) with exact
results for a diatomic alloy, A, ,A,'B, with force-
constant changes and mass differences together and
separately. Chains of 20000 atoms were used for
the exact calculations. The masses of the constit-
uents are M~=2. 0, M~=1. 0, and M„=0.5 except
for Fig. 5, where M„=M„.=1.0. For Figs. 4 and

5, the force constants for the exact calculations
are 4» = 1.0 and 4„.~ = 1.5, and since the AB crys-
tal was used as the host, the force-constant
change for the CPA calculations is 6 =0.5. Figure
6 is for mass differences only, so there @»= 4'„.~
=1.0 and 4=0.

With the values chosen for the masses and force
constants, there is a gap in the spectrum of the
pure AB crystal, and a local-mode band splits off
above the AB optic-mode band as A' atoms are
added in. The increase in force constant and the
light mass defect cause this to happen separately,
so again their combined effect is more pronounced.
The CPA again is in good average agreement with
the exact calculations, and counts the modes in the
three bands seen at these concentrations correctly.

IV. DISCUSSION

For one-dimensional alloys with nearest-neigh-
bor force-constant differences as well as mass dis-
order, the local self-energy matrix K can be found

by solving a difficult but tractable set of four com-

plex nonlinear equations which follow quite directly
from Eq. (28). For three-dimensional systems,
slightly more effort is required to obtain a man-
ageable set of equations. Written as a single ma-
trix spanning the central site and its nearest neigh-
bors, K has dimensions 21X21, 39&&39, and 27x27
for NaCl, fcc, and bcc crystals, respectively, in
contrast to the 3x 3 found for the one-dimensional
case. However, these large matrices can be re-
duced in dimension by projection onto the irreduc-
ible representation of the (0„) point group. '

The 3&3 matrix equation encountered for one-
dimensional alloys can itself be further simplified
by a coordinate transformation, with results that
are instructive for cubic materials. If uo and u, ~

denote unit displacements along the chain for the
three atoms in the defect space, then the symme-
trized coordinates for the system are uo and (u, ,
+u, )/M2, and the even mode (u„—u, )/W2.
Transformation to these coordinates reduces the
3x 3 equation (39) to a 2x 2 and a 1 x1 equation.

For many alloys, a simple but reasonable first
approximation to include force-constant changes
would be to allow changes only in the nearest-
neighbor force constants along the nearest-neigh-
bor directions. For this case in cubic crystals,
Eq. (31) can be reduced to a, T,„(I'„)2x2 and
two, four, or three 1&&1 equations for the NaC1,
fcc, and bcc lattices, respectively. ~' The num-
ber of equations to be solved (6, 7, or 6) is not
very much larger than for the one-dimensional al-
loys. A more serious computational problem is
that of evaluating the real-space CPA Green's
function G (sb, s'b'; &) in three dimensions rather
than one. Work is now in progress toward includ-
ing force-constant changes in cubic crystals in this
approximation.

From the comparison between the extended CPA
and exact results for one-dimensional alloys pre-
sented in Sec. III, we can hope to obtain good
over-all agreement between theory and experiment
for the effects of force-constant changes in real
alloys, particularly for diatomic systems where
the underlying assumption of linear superposition
of the defect perturbations is most acceptable.
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