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Calc»~ted properties of the N, defect in sodium I~de~
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A self~nsistent-field molecular-orbital calculation was performed for the '0 ground state of an N,
molecule ion embedded in an array of point ions simulating the sodium azide lattice. The equilibrium
internuclear separation for N, was deteraiined to be 2.17 a.u. The crystal-field splitting of the ground
state and the equilibrium orientation of N, in the monoclinic phase (a-NaN3) were calculated using an
expansion of the crystal potential of a-NaN, together with wave functions calculated for the
rhombohedral phase (P-NaN3). Results of the calculation are compared with properties of N, inferred
from ESR spectra by Gelerinter and Silsbee (GS). The orientational energy of the N, quadrupole
moment in the crystal 6eld is minimum for a tilt angle of 4.67', in excellent agreement with
experiment, but the sense of rotation is reversed. The splitting of the partially occupied 1m'~ level,
which GS attribute to Jahn-Teller distortion, is explained here instead by the monoclinic structure of
a-NaN„and has the value h, = 366 cm '. The predicted 3cr, —lm energy separation is h,

' = 68 800
cm '. These values are in reasonable agreement with the measurements of GS, as are calculated values
of the dipole-dipole contribution to the hyperfine tensor: A, „=—8.19 G, A „=+ 15.71 G, and
A„= —7.56 G.

I. INTRODUCTION

Color centers in the alkali azides and alkaline-
earth azides have been of interest for some time,
since the corresponding defects are thought to be
involved in photolysis and thermal decomposi-
tion. ' Among the defects produced by ionizing
radiation which have been identified by electron-
spin resonance is an N2 molecular ion trapped at
an anion site in potassium azide (KN, ), 8' sodium
azide (NaN, ),

' '" and barium azide (BaN~). ' In

KN3, this N2 defect has been tentatively correlated
with a prominent optical absorption band at 565
nm. "

Gelerinter and Silsbee (GS)' found it necessary
to measure the ESR spectrum of N& in NaN3 at
liquid-helium temperature, because of very short
spin-lattice relaxation time. They interpreted
their results in terms of the rhombohedral NaN3
crystal structure established by Hendricks and
Pauling' in 1925. The space group is DM, with
the rhombohedral unit cell shown in Fig. 1. The
point symmetry at the anion site, Bed, is high
enough to preserve the degeneracy of the II~ ground
state of Nz . Nevertheless, GS infer from the ESR
spectrum that the orbital degeneracy is split by
500 cm, and that the Nz ion is tilted 4. 6 with
respect to the crystal c axis. These effects they
attribute to Jahn- Teller distortion.

In 1963, it was discovered by Miller and King, "
and independently by Pringle and Noakes, ' that

NaN3 undergoes a second-order phase transition
at room temperature (- 19 'C) and that the struc-
ture is monoclinic at lower temperatures. The
nature of the distortion of the pseudorhombohedral
unit cell is shown in Fig. 2. The monoclinic phase
has been investigated in detail by Parsons and
Yoffe, and by Pringle and Noakes who designate
it o-NaN, to distinguish it from the rhombohedral

o No+
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FIG. 1. Rhombohedral unit cell of P-NaN3 (high-tem-
perature phase) .
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FIG. 2. Pseudorhombohedral unit cell of e-NaN3 Oow-

temperature phase). Also shown are the cations associ-
ated with a conventional, base-centered-monoclinic unit

cell.

phase p-NaN3. The space group of o-NaN, is C~,
and the point symmetry at the azide site is C».
Evidently the observations of GS need to be re-
interpreted in terms of the monoclinic structure
of o,-NaNB. The crystals grow as thin platelets
with the c axis perpendicular to the large face.
This large face remains perpendicular to the x
axis in Fig. 2 after cooling through the phase
transition; thus the 4. 6 tilt of the N2 ion ob-
served by GS is presumably mith respect to the
x axis. Both the tilt and the splitting of orbital
degeneracy may well be explained by the phase
transition, rather than by Jahn- Teller distortion,
as Gelerinter' has subsequently suggested.

The object of the present investigation is to veri-
fy the model of an N~ ion in an anion site by ac-
counting quantitatively for some of its observed
properties, and, in particular, to test the fore-
going conjecture. This object is accomplished by
combining an ab initio molecular orbital calcula-
tion in a simulated crystalline environment, pre-
sented in Sec. II, mith crystal-field calculations,
Sec. III. Spin-Hamiltonian parameters are de-
rived in Sec. IV, and compared with experiment in
Sec. V. The results and conclusions are summa-
rized in Sec. VI.

II. MOLECULAR ORBITAL CALCULATIONS

Self- cons istent- field molec ular- orbital calcula-
tions mere performed for the II~ ground state of

Nz by the Hartree-Fock-Roothaan open-shell pro-
cedure. The CDC 6600 version of the PQLYATOM

system of computer programs was employed for
these calculations. A general description of this
system of programs, which utilizes a Gaussian
basis, may be found in the paper by Csizmadia
et al. ,

' and in the documentation of the PGLYATQM

system available through the Quantum Chemistry
Program Exchange.

The basis set for the present calculation mas
chosen as follows: Huzinaga's (9s, 5P) basis for
the nitrogen atom was supplemented by a d-type
Gaussian function, whose orbital exponent $ was
varied to minimize the energy of N~ at the experi-
mental internuclear separation, R = 2. 068 a. u. The
total energy obtained with the optimum value,
$ = 1, was —108.969 hartree, which compares very
favorably with the value —108. 970 hartree obtained
by Nesbet, thus establishing confidence in the
basis set. This (9s, 5P, ld) basis was subsequently
employed in the N2 calculation.

In order to ensure a reasonable equilibrium in-
ternuclear separation, it was considered essential
to simulate the crystalline environment of the mole-
cule ion. This was accomplished by constructing
an array of point ions representing the P-NaN3
crystal structure. Only integral charges were
employed; i. e. , the azide ion was represented by
a single point ion, with charge —e, at the central
N position. The lattice contained 238 ions. The

N2 ion mas placed at the central azide-ion site,
symmetrically disposed with respect to the central
N position, and with the same orientation as the
missing azide ion. This representation of the
crystalline environment mas thought to be adequate
for the purposes of stabilizing the molecule ion and
computing molecular orbitals; a more realistic
model is presented in Sec. III in connection with
crystal-field calculations.

The ground configuration of N2 is 10, 1o„2cr~ 2v„
lm „3v~ le~. In p-NaN3, with the N~ ion oriented
parallel to the c axis, the two 1m, orbitals are de-
generate, so the ambiguity was resolved by as-
signing a fractional occupancy of 0. 5 to each orbit-
al, in accordance with the open-shell procedure. '
The internuclear separation R was varied to mini-
mize the total energy, which is plotted as a function
of R in Fig. 3. It can be seen from this curve
that the equilibrium internuclear separation is
R = 2. 17 a. u.

The one-electron energies corresponding to the
equilibrium internuclear separation are shown
schematically in Fig. 4, and are listed in Table I,
together with the total electronic energy. (It should
be noted that the energies shown in Fig. 3 and
Table I incorporate an additive constant deter-
mined by the arbitrary specification of the size
of the point-ion lattice used in these calculations.
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08 TABLE I. One-electron and total energies for N2 in
P-NaN3, calculated for the equilibrium internuclear sep-
aration, 2.17 a.u.

O

0.4.
LL
IJJz
4J

0.2-

0-

I

I.6 2.0 2.4
INTERNUCLEAR SEPARATION (a.u. )

2.8

Orbital

1jig
3(Tg

2g

2gg

10„
10'g

Energy (hartree)

—0.1145
—0.3908
—0.4338
—0.6071
—1.2001

—15.4354
—15.4377

—133,9527

FIG. 3. Potential curve for N2 in P-NaN3.

However, relative energies are significant for a
given lattice. ) The corresponding wave functions
were used to calculate molecular properties, which

are presented in Table II. Quadrupole moments

Q~; are given both for the entire molecule ion, in-
cluding nuclei, and for the 1m~ orbitals alone. The
corresponding electronic operators are permuta-
tions of ——,(3x —r ). The coordinate system is
chosen such that the z axis coincides with the
molecular axis, and the origin is at the center of
the molecule. In addition, the y axis has been
chosen to coincide with the twofold symmetry axis
of the crystal field. Also shown are electric field
gradients F&;, which are expectation values of
permutations of (3x —r )/r, for the 1II, orbitals
only; here, the origin is at one nucleus. These
molecular properties are used in the calculation
of spin-Hamiltonian parameters.

III. CRYSTAL-FIELD CALCULATIONS

The crystal-field splitting of the degeneracy of
the 1m~ orbitals requires a more precise deter-

mination of the crystal potential than is needed
for wave functions and equilibrium internuclear
separation. For this purpose, the point-ion po-
tential was refined to incorporate the substantial
quadrupole moment of the azide ion. We chose to
represent the azide ion by a linear array of three
point ions, separated by 1. 17 A, with charges of
0. 714e assigned to the central ion and —0.857e
assigned to each end ion. The resulting potential
was expanded about the center of the anion vacancy
in the form (in hartree)

V(r)=-Q Q e,„r'r,"(e, y),
I =0 N=-I

where

(3. 1)

(3f
O S +

(3.3)

Here Q is the charge on ion e whose polar co-
ordinates with respect to the vacancy center are
r, 8 and Q„, and Ff(e, &f&) is a spherical harmonic.
Each term in EIl. (3. 1), which is valid within the
first spherical shell of ions, is a solution of the
Laplace equation. The coefficients e~„are con-
strained by symmetry; only combinations of spheri-
cal harmonics which transform as bases for the
identity representation of the crystallographic

3a
2 0'„

TABLE II. Calculated properties of N2 in P-NaN3.
Quadrupole moments Q and electric-field gradients E a.re
in atomic units, and are referred to the coordinate axes
shown in Fig. 5.

2 CTg

I cr—I55—
I cr

17I~
17I~
Total
(including

nuclei)

1.7375
—0.2373

2. 0057

—0.2373
1.7375
2. 0057

-1.5002
—1.5002
—4.0013

FIG. 4. Orbital-energy-level diagram for N2 in a-NaN3.
—0.5715 +1.0914 —0.5199
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with the molecular axis, and the z axis with that
of Fig. 2 (i.e. , the twofold symmetry axis of the
crystal field). In calculating molecular wave func-
tions and properties, however, the z axis was
chosen to coincide with the molecular axis in or-
der to conform to prior usage; this hasbeen done
in Table II. In addition, the y axis has been chosen
to coincide with the twofold symmetry axis of the
crystal field, as shown in Fig. 5.

The quadrupole moments q2„defined by Eq. (3.4)
are then related to the quadrupole moments Q&;
of Table II by

Na

N

and

&2o=(5/4&)"'Q„,

&a,»= 0.

~i..~= (5/2«)"'(Q, —Q..) .

(3. 5a)

(3. 5b)

(3. 5c)

FIG. 5. Orientation of the N2 ion in an azide-ion va-
cancy in e-NaN3.

point group at the anion site can contribute. The
infinite lattice sums in Eq. (3. 2) were evaluated
by the method of Nijboer and DeWette.

The crystal potential was treated by first-order
perturbation theory, using the wave functions cal-
culated for P-NaN3 as unperturbed functions. Of

course, the total energy already contains a con-
tribution of the simulated P-NaN3 lattice; it is not
necessary to subtract this off, however, since we
are interested only in changes in energy with elec-
tronic state and orientation. The energy of the
molecule ion in the crystal potential is given by

J
Z= 2 2 (-I)"e,uq, ~e'"', (3. 3)

J=0 N= L

where Q is the angle through which the molecule
ion is tilted from the x axis toward the y axis
(see Fig. 2), and q» is a multipole moment of the
molecular charge distribution defined by

tan 2$O = —Im (e 22)/Re(e zq). (3. 7)

It follows from Eqs. (3. 6) and (3. I) that the dif-
ference in energy between the two 1m, orbitals,
n[=E(lw„) —E(lv,„)], is given in terms of the dif-
ference in quadrupole moments 5Q by

&= (5/4v) 5Q[e2o+ —', Re(e22)/cos2$o], (3. 8)

where

5Q -=Q~, (lv~, ) —Q„(lv~„)= Q„,(1m~„) —Q„„(lv~,). (3. 9)

The quantitative results of these crystal-field
calculations are presented in Sec. V.

IV. HYPERFINE INTERACTIONS

The potential expansion coefficients e», calculated
with reference to the coordinate axes shown in Fig.
2, are listed in Table III. Note that, by symmetry,
ez, »= 0 and ez, 2=e2, 2. It then follows from Eqs.
(3. 3) and (3. 5) that the energy of orientation is
given by

E= (5/4v)'~ emoQ„+ (5/6v)'~ (Q„-Q„„)

&& [Re(e32) cos2$ —Im(e 3,) sin2&] . (3. 6)

Since Q„-Q„„ is negative for both components of
the degenerate ground state, the equilibrium ori-
entation Qo is given by

4»-=—Z(g, , r Yf (8, Q)gi) (3.4) The Hamiltonian for the magnetic hyperfine in-
teraction of an electron with one of the nuclei is

The sum in Eq. (3. 4) is over all occupied molecu-
lar spin orbitals g&. Only multipole moments with
even L are nonvanishing. Because of the com-
pactness of the molecular wave functions, it is an
adequate approximation to retain only the quadru-
pole terms in Eq. (3.3), (The L = 0 term is just an
additive constant which may be disregarded. )

It was assumed in Eq. (3. 3) that the multipole
moments of Eq. (3.4) are defined with respect to
a set of axes chosen such that the x axis coincides

0
+1
+2

e2@

—0.010460
0
0.015876g i0. 0026057

TABLE III. Expansion coefficients of the crystal po-
tential in atomic units, defined by Eq. (3.2).
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&&..= —4g. ~& u N(1/&) &0 l~ '14), (4 5)

where 6 is the splitting between the 1m~ levels.

V. RESULTS

Gelerinter and Silsbee (GS)' were able to infer
a number of properties of the N& defect in NaN,
from its ESR spectrum. They established the
angle through which the N2 ion is tilted with re-
spect to the x axis in Fig. 2 (i.e. , with respect
to the direction perpendicular to the crystal face).
The departures of the g values from the free-elec-
tron value were interpreted in terms of the split-
ting b of the 1m, levels and the separation 4' of
the 3o~ and 1m~ levels, using a value for the spin-
orbit coupling constant derived by extrapolation
from an isoelectronic sequence. Finally, they
measured the principal values of the hyperfine
tensor A. All of these data are summarized in

Table IV.
The theoretical equilibrium orientation was de-

termined from Eq. (3. 7) and Table III. The cal-

I ~ (I —s) 3(I ~ r) (r s) 8m
H, =2g„w II ', ~ —I s5( ))r r

(4. 1)
where p, ~ is the Bohr magneton; g„E is the nuclear
magnetic moment in nuclear magnetons p.„; l and
s are the electron orbital and spin angular mo-

menta, respectively; I is the nuclear spin; and r
is measured from the nucleus. The corresponding
term in the spin Hamiltonian has the form

~,=I A s, (4. 2}

where, by symmetry, the hyperfine tensor A is
diagonal in the chosen coordinate system.

The Fermi contact term [the last term on the
right-hand side in Eq. (4. 1)j contributes an iso-
tropic hyperfine interaction given by

A.= is. i e u& (3 v) 14(o) 1;
this contribution appears to vanish because the un-

paired spin is assigned to a 1~~ orbital, which has
a node at the internuclear line. In reality, the con-
tact term makes a significant contribution via core
polarization, but the present treatment is inade-

quate to deal with it; one requires either configura-
tion mixing or unrestricted Hartree-Fock (differ-
ent orbitals for different spine}.

The contribution of the dipole-dipole interaction
to the anisotropic hyperfine interaction is

=2g &s &~(41(3r'r —& I)/+ 14), (4 4)

whose components are simply proportional to the
electric-field gradients listed in Table II.

Finally, the term in Eq. (4. 1) involving 1 con-
tributes to the hyperfine tensor in second-order
perturbation theory, in combination with the spin-
orbit interaction Q, s„giving

TABLE IV. Comparison of calculated properties of N2

in NaN& with those inferred from ESR spectra.

Property

4o

+I

A~
As

A

Theory

4.67'
366 cm '

68800 cm
—8.19 G
15.71 G

—7.56 G
—3.19 G

20.71 G
—9.56 G

Experiment~

4 6
500 cm

45 000 cm

—3.9y0. 5 G
23.5y0. 5 G
—11~2 G

E. Gelerinter and R. H. Silsbee, J. Chem. Phys. 45,
1703 (1966).

culated tilt angle, $, =4.67', is in almost exact
agreement with the measured value. Theoretically,
the N~ ion is tilted as shown in Fig. 5, in the same
sense and by nearly the same amount as the long
axis of the pseudorhombohedral unit cell. Note
that Eq. (3. 7) involves only the crystal field and

not the quadrupole moments; accordingly, any
prolate spheroid would be tilted through the same
angle, including the azide ion. Actually, the azide
ion is tilted much more than the Nz ion, presum-
ably because of steric constraints.

The crystal-field splitting 4 was determined
from Eq. (3. 8), and the 3@~ —Iv~ energy difference
6' from the one-electron energies in Table I.
These quantities are compared with experiment
in Table IV. The crystal-field calculation also
confirms that the le~, orbital lies lower in energy
than the 1m,„, in agreement with GS.

The dipole-dipole contribution to the anisotropic
hyperfine interaction was calculated from Eq. (4. 4)
and the electric-field gradients of Table II for the
1m~, orbital. The corresponding hyperfine con-
stants are listed in Table IV. These values cannot
be compared directly with experiment, however,
because the measured values contain both isotropic
and orbital contributions. The orbital contribution,
Eq. (4. 5), was not calculated. However, one can
infer an approximate value from experiment. It is
evident from the form of the wave function that the
dipole-dipole interaction is dominated by the P,
atomic orbital centered on the nucleus in question,
and accordingly, its contributions to A„„and A„
should be nearly equal; this surmise is supported
by the calculation. Accordingly, the orbital con-
tribution to A„must be about —7 G; this estimate
agrees well with the value calculated by GS from a
simple approximate wave function, —56. The
same assumption allows one to infer an isotropic
contribution of + 5 G, since the dipole-dipole part
is traceless. These inferred contributions have
been included in the theoretical values in Table IV,
to permit direct comparison with experiment.
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VI. DISCUSSION

The calculated ground-state properties of N~
in NaN, are generally in good agreement with mea-
sured properties, as can be seen from Table IV.

The agreement of calculated and measured angles
through which the Nz ion is tilted is impressive.
However, there is some ambiguity about the ex-
perimentally determined direction in which the
Na ion is tilted, and we are uncertain as to whether
there is a discrepancy between theory and experi-
ment. Gelerinter appears to agree with our con-
clusion that the ion is tilted in the same sense in
which the planes are sheared, as shown in Fig. 5.
On the other hand, the description of GS suggests
that the tilt is in the opposite sense. Experimen-
tally, the sense of rotation was established indirect-
ly from a comparison of the intensities of both ESR
spectra and x-ray reflections of a twinned crystal.
We are unable to assess the reliability of such a
determination, but would like to suggest that it is
at least subject to misinterpretation.

The energy intervals 4 and 4' appear to be in

satisfactory agreement with values inferred from
ESR spectra. Note that GS allow a 5tP/p error in
the determination of 4'. The discrepancy in ~
could be related to the fact that the lattice param-
eters for e-NaN3 which were used here were
established at a temperature between —90 and
—100 C, ' whereas the ESR measurements were
made at liquid He temperature. A significant in-
crease in monoclinic distortion is expected as the
temperature is reduced below —100 C, and con-
sequently the crystal-field splitting d should be
larger than calculated.

The calculated dipole-dipole contribution to the
hyperfine tensor is consistent with measured val-
ues. It remains to calculate orbital and isotropic
contributions.

The results of the present calculation support
the model of an N& molecular ion in an anion va-
cancy, but the observed crystal-field splitting is
explained in terms of a low-temperature phase
transition, as suggested by Gelerinter, ' rather
than the Jahn- Teller distortion proposed by GS.
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