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Pseudogap of liquid Tl,Te
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Analysis of experimental curves for the electrical conductivity cr and thermopower S of Tl„Te,
alloys near the composition Tl,Te has yielded a quantitative description of the pseudogap. A model

expressed in terms of two bands with a negative temperature coe%cient for the band gap has been

fitted with panuneters which yield very good agreement with the experimental curves. The theoretical

expressions for S and cr are based on the difFusive mechanism for transport, according to which the

conductivity at a given energy cr(E) is proportional to the square of the density of states N(E). The
efFect of the mobility shoulder is to cut ofF cr(E) at the mobility edges. For the conduction band, it is

found that the density of states N, (E) is parabolic. The mobility edge E„ is within kT of the band

edge E,o, and is therefore not experimentally discernible. For the valence band, the results are more

ambiguous. A parabolic density of states N„(E) yields fairly accurate results, and we deduce a value

~0.20 eV for the distance of the mobility edge E „, from the band edge E „0, but there are some

uncertainties associated with both of these results. At T &770'K, the band gap becomes negative. In

accordance with Mott's observation that localized and nonlocalized states cannot overlap in energy, our

model takes cr(E)~I'N, (E)+N„(E)], and localized valence-band states become conducting when their

energies rise above the conduction-band mobility edge.

I. INTRODUCTION

The designation liquid semiconductor in itself
implies the occurrence of a band gap, or at least
a minimum in the density of states near the Fermi
energy, which is commonly called a pseudogap.
Yet there is very little experimental work which
has yielded quantitative information about the band

gaps of liquid semiconductors. This has been a
source of embarrassment for workers in this field,
and it also presents a challenging problem. The
purpose of this paper is to present an analysis of
existing transport data for thallium-tellurium al-
loys which has yielded a quantitative description
of the density of states in the vicinity of the pseudo-
gap which applies to compositions near Tl2Te.
This represents, we believe, the first complete
description of the pseudogap in a liquid semicon-
ductor. The results also provide new insights
about some features of pseudogaps which are of
general importance for disordered materials.

Me naturally looks to measurements of optical
absorption or reflection for information about the
band gap of semiconductors. There is very little
information of this sort for liquid semiconductors,
possibly because of experimental difficulties and
the limited information generated by data at high
temperatures. Tl- Te alloys have not been studied
optically. Liquid tellurium has been studied and
shows a slight indication of a minimum in the den-
s ity of states. ' The curve for the conductivity
versus frequency differs only by a factor of 2 be-
tween the maximum and minimum values. Much
clearer information is provided by absorption
curves for As&Se3, which have been measured both
in the liquid and vitreous phases. The distinct

absorption edge of the glass at low temperatures
shifts to longer wavelengths with reduced slopes
as the temperature is increased above the softening
point, which suggests a decrease in width and a
smearing of the pseudogap. Because the absorp-
tion follows a modified form of the Urbach rule
whose interpretation is open to question, it has
been difficult to make a precise interpretation
of these data. But a temperature coefficient for the
band gap of the liquid was determined to be —1.7
x 10 ' ep/'K, and this is in accord with the coeffi-
cient derived from the thermopower assuming am-
bipolar transport. '3 Points of interest about these
results, in relation to our work, are that there is
a large negative temperature coefficient of the
band gap (compared to crystalline solids), as is
common among chalcogenide glasses, and that the
band gap for liquid As2Se, seems to go to zero at
about 1000 'K. Another liquid semiconductor
which has been studied optically is CdTe. ' This
also shows evidence of a band gap with a strong
temperature dependence.

Transport measurements provide another pos-
sible source of information about the pseudogap.
In many binary alloys which are liquid semiconduc-
tors, the isotherms for the resistivity p have a
peak at a characteristic composition, and among
these the thermopower S frequently changes sign
near that composition. As an example of particular
interest, the isotherms of p and S are shown for
Tl„Te, „ in Fig. 1. The peak in p occurs at x= 3,
corresponding to a composition Tl2Te, which in-
dicates that the Fermi energy E~ is near the center
of the pseudogap at this composition. The sign and

magnitude of the thermopower indicates that E~ is
in the conduction band for thallium-rich alloys
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FIG. 1. Isotherms for the resistivity p and the thermopower $ of Tl-Te at temperatures 800 and 1000 K. (From Ref.
7. )

(x & —',), and for tellurium-rich alloys Ez is in the

valence band. Although analysis of the behavior
of p and S has yielded information about these two

bands, ' the existence of the pseudogap is indi-

cated only indirectly. In order to study the pseudo-

gap, one must examine data reflecting excitations
between the bands. Changes in slope of p(T) and

S(T) which are caused by such excitations at com-
position near Tl&Te have been noted in past
work. ' ' But quantitative examination of these
data has been inhibited in the past by the absence
of sufficient theoretical information about the elec-
tronic structure and transport behavior. This is
particularly needed since we must study small de-
viations in the form of these curves from the "ex-
trinsic" one which are caused by thermal excita-
tion of electron-hole pairs.

In recent years, important progress has been
made in understanding the electronic structure and

transport behavior of disordered systems, and this
has provided the needed tools for studying the

pseudogap of Tl,Te, as will be set forth in this
paper. We shall conclude this section by reviewing
briefly these concepts, and show in later sections
how our model for the pseudogap is derived.

The key element in the theory is the density-of-
states curve N(E), which contains a dip (the pseudo-

gap) between two maxima which correspond to the

valence and conduction bands, as shown in Fig.
2(a). This electronic structure can be regarded
as being generated from a metallic system as the
result of strong interactions between the ions and
the electrons. Alternatively, one can start with

covalently bound atoms in discrete molecules with

discrete energy levels, and these give rise to
bands as the result of broadening due to mutual
interactions. Both models arrive at the same den-
sity-of-states curve. It will be convenient for us

to use the latter point of view, since we describe

the pseudogap in terms of a two-band model. Thus
we conceive the density of states as arising from
two discrete bands which overlap as shown by the
dashed lines in Fig. 2(a).

For crystalline material, the band edge is usu-

ally parabolic, since it represents a simple mini-
mum of the energy in wave-vector space. This
result may also be reasonably expected in ma-
terials with long-range disorder in the absence of
potential fluctuations. Band tailing and distortion
of the band edge are believed to be caused by fluc-
tuations in potential, ' but the complexity of the
theory for band tailing discourages attempts at
making predictions of its magnitude and shape for
liquid semiconductors.

A second effect of the potential fluctuations is
that if N(E) in the pseudogap is low enough, there
will be a range of energy within which all the elec-
tronic states are localized, and beyond which the
electronic states extend throughout the volume, as
shown in Fig. 2(a). This phenomenon, called
Anderson localization, was deduced by Mott" by an

(a)
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FgG. 2. (a) Density of states N(E) and (b) conductivity
0.(E) in the pseudogap model. The states are localized
between energies E& and E2.
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extension of theoretical results obtained by Ander-
son. ' According to Mott's discussion the energy
at which the localization occurs, called the mo-
bility edge, depends primarily on the magnitude of
N(E), but this dependence is affected by the coor-
dination number and the character of the atomic
wave functions from which the final states are de-
rived. There has been considerable discussion and
incomplete agreement about the existence of the
mobility edge, and the nature of transport at en-
ergies in its vicinity. '

The localized states are expected to have a mo-
bility smaller than that of the extended states by
several orders of magnitude. This is because
transport is by hopping for localized states with
a characteristic frequency no larger than that of
the atomic vibrations (- 10' sec '). On the other
hand, the electrons in the extended states near the
transition energy are believed to move with a sim-
ilar mean free path of the order of the interatomic
distance, but with a characteristic frequency of the
order of E~/h, where E~ is the bandwidth, which
gives - 10"sec '. The resulting drop in mobility
for the localized states, first pointed out by
Cohen, ' has led to the name "mobility edge" for
the transition energy. As a result of the Anderson
transition, the conductivity considered as a func-
tion of energy, o(E), has a shape indicated in Fig.
2(b). For many liquid semiconductors, and cer-
tainly in the case of T12Te, the large value of kT
compared to the distance between the mobility
edges, together with the relatively low conductivity
of the localized states, ensure that transport will
be predominantly due to carriers thermally excited
to the extended states near the mobility edges.
Consequently, it will be a good approximation to
assume that o(E) = 0 between the mobility edges.

Above the mobility edges, transport is believed
to proceed in the extended states with a mean free
path equal to the interatomic distance. Mott has
developed a model" for this in which the electron
wave function is scattered incoherently within this
distance, with the result that

II. MONOPOLAR TRANSPORT IN THE CONDUCTION

BAND FOR THALLIUM-RICH COMPOSITIONS

A. Extrinsic behavior

In previous work ' the behavior of cr and S as a
function of x (the composition parameter in

Tl„Te, ,) and to a lesser extent as a function of T
was explained in terms of a model ~here a con-
stant density of electrons no is generated by com-
plete ionization of Tl atoms n excess of the com-
position Tl2Te. In the absence of an appropriate
theory of transport, conventional transport theory
was used which is predicated on a long mean free
path. But it is easy to recast the results in terms
of the theory for diffusive transport [Eq. (1)].

Qne can derive the electrical conductivity and
the thermopower from o(E) by the formulas"

(2)

""o(E) sf E —E~
e -„v 8E kT

where f is the Fermi-Dirac distribution function:

Cutler and Field (CF)' found that if o(E) is taken
to be proportional to E", the predicted relation be-
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o(E)=A[N(E)],
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where A is a constant. A more detailed derivation
for this "diffusive" mechanism is provided in a
paper by Hindley. '8 The validity of the theory for
diffusive transport is strongly supported by NMR
studies of liquid semiconductors by Warren. '~

This work also supports Mott's estimate that the
diffusive mechanism provides an appropriate de-
scription for extended states when 0.(E) & 2500
A ~cm '. We shall use Eq. (1) with a mobility
shoulder cutoff as our basic equation for examin-
ing the transport behavior of Tl- Te alloys.

l I
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FIG. 3. Comparison of theoretical curves vrith exper-
imental data for lna vs S at T= 800'K. The heavy line is
for y =d ln0g')/d lnE = 1, and the light lines are for y = ~

and y. (From Ref. 5. )
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tween o and S at constant T(= 800 'K) as the elec-
tron density is varied is obeyed very well for r = 1.
Figure 3 shows a comparison of experimental
points with theoretical curves with r= —,', 1, and

In the context of the theory for diffusive trans-
port [Eq. (1)] and the expected occurrence of a
mobility shoulder, this result shows that (a) the
density of states for the conduction band N, (E) is
parabolic, so that we can write

N, (E ) = C „(E—E,o)
' (4)

and (b) the mobility edge E„is close to the edge
E,p and band tailing is negligible on a scale deter-
mined by kT (- 0. 07 eV). Consequently, our model
for transport in the conduction band, in current
terms, is derived by substituting Eqs. (1) and (4)
into Eqs. (2) and (3), and setting the lower limits
to the integrals at E,o (which we assume to be the
same as E„).

This results in a single-band extrinsic solution
for transport which can be expressed in terms of
Fermi-Dirac integrals E„($):

o =AC„kTFO($),

S = —(k/e)[2E (&)/+o(&) —&l,

(5)

(6)

where

and

$ = (E~ —E,o)/kT (7)
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FIG. 4. Experimental curves (heavy lines) for o.(T) at
various compositions of Tl„Te& „are compared to theory
(light lines) for a constant electron density. The composi-
tions are labeled by the values of 100&, and the values for
the theoretical curves are enclosed in parentheses.
(From Ref. 5. )

F„(t')= „, dx.
-o e" '+1 (8)

The heavy curve (r = 1) in Fig. 3 corresponds to
the theoretical curve obtained by eliminating ( be-
tween Eqs. (5) and (6), and setting AC„k=0. 2275
(n cm K) '.

The value of $ is determined by the electron den-
sity n through the formula

fN, (E)dE = C„(kT) Fqp(f) (9)n=
& ~cp

When the electron density is governed by the charge
density of Tl ions, it is given by the formula

no= 3z(x —, )N, ,
— (10)

where N, is the atom density (2. 7x10 cm ) and
z is the charge of the Tl ions. In CF, the value
of z was found erroneously to be 3; the correct
value is 1. ' By comparison with experiment of
the theoretical curve from Eqs. (6), (9), and (10)
for the dependence of S on x at T = 800'K, de-
scribed in CF, one arrives at a value of C„= 1.49
~ 10 eP cm . This corresponds to an effec-
tive-mass ratio m f/m = 1. 68 if a particle-in-the-
box model is used to arrive at C„ in Eq. (4).

B. Effect of electron-hole excitations on n

Equations (5), (6), and (9) predict the effect of
temperature on 0 and S for a given value of n. If
n is assumed to be independent of T and equal to
the value no derived from the composition [Kq.
(10)], a series of theoretical curves is obtained
for S and o for different compositions. These
are compared with experiment in Fig. 4 and 5.
It is seen that there are deviations which increase
in magnitude with increasing T and as x approaches
the intrinsic value 3. The deviations are in the
direction expected if electron-hole excitations
occur.

A surprising feature of these results is the fact
that the deviations for v and S are similar in rel-
ative magnitude for a given T and x. If there is
bipolar (ambipolar) transport with electrons (sub-
script n) and holes (subscript P) having comparable
mobilities so that 40„-v~, then for a relatively
small density of electron-hole pairs where Ao/o
—= cr~/o, the corresponding change in S is given by
AS/S = (o~/o)(S~ —S„)/S. Since (S~ —S„)/S can be
expected to be large compared to 1, one expects
AS/S to be considerably larger than n. o/o.

A likely explanation is that the distance of the
mobility edge from the band edge in the valence
band is greater than it is for the conduction band.
Although we have concluded that E,y E p&kT, this
may not be so for E„p E I. In such a situation,
most of the holes of the electron-hole pairs would
be in localized states, so that cr~- 0, whereas the
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Eg varies linearly with T, so we write

Eg =Egp-EgiT. (14)
7638

70.80:—7I.97g—
— -49.5B

72.54+
70.79 Then, using the Maxwell-Boltzmann approximation

for (~ (which requires that $~& —4), Eq. (12) be-
cornes

S
(yv/dog)

-120 —6

700 900
T ('K)

IOOO IIOO I200

thermally excited electrons are in extended states
above E„. As a consequence, the change on o and
S with T would reflect transport entirely in the
conduction band, so that v and S continue to be
described by Eqs. (5) and (6), but n in Eq. (9) var-
ies with T. A test of this hypothesis consists in
making a comparison of o and S as in Fig. 3, but
now using data at all temperatures instead of only
T= 800 K, and plotting log, o (800 o/T) instead of
log~oo [see Eq. (5)]. When this was done, we in-
deed found that most of the points lie in the vicinity
of the theoretical curve. The exceptions are for
data which were measured at unusually high tern-
peratures (& 900 'K) where bipolar transport can
be expected in spite of a deep mobility edge in the
valence band.

In view of this, it seems to be a good approxima-
tion to ignore the contribution of the valence band
to the electrical conductivity. This permits us to
use the experimental values of o(T) at each com-
position to infer n(T) at each composition by use
of Eqs. (5) and (9), and then to infer from this the
hole density P(T)=n(T)-no. Let us suppose that
the valence band is also parabolic, so that we can
write

N„(E)= Cq( E„-oE)'i .

Then, in analogy with Eq. (9),

P = (1 f)N„(E)dE= C~(kT-)o~ F,go($~), (12)

where

&o= (E.o- Ez)/k T. (13)

Since E„p is smaller than E,p by the band gap Eg,
$~= —$ —Eo/kT It is reasonable . to assume that

FIG. 5. Experimental curves (heavy lines) for S(T) for
various compositions of Tl„Te& „, in comparison with the-
ory (light lines) for a constant electron density. The com-
positions are labeled by 100x. The values on the right-
hand side of the figure refer to the theoretical curves.
(From Ref. 5. )

p=C~(-,' v m )(kT)' 'exp(- $+Eo, /k-Eoo/kT) .
(15)

The procedure for analyzing the deviations be-
tween the experimental curves for o(T) in Fig. 5

and the theoretical curves based on n = n p was as
follows. For a given composition of Tl,Te, „ in a
range of temperature where the deviations were
appreciable, Eq. (5) and (9), together with the pre-
viously stated values of AC„k and C„, were used
to calculate $ and n vs T. An estimate of np was
made based on the values at the lowest T, and then
a plot was made of Inf~ vs T ', where

(n —no) e'
f'

( ,'W~)C-„(kT)'7'.

According to Eq. (15), this should yield a straight
line with a slope equal to —Eoo/k and an intercept
equal to (C~/C„)e «7'.

This was done for all available data from this
laboratory for which there is appreciable deviation
between the o(T) curves and the theoretical curves
for constant n. In addition, we used some relative-
ly precise curves obtained by doping Tl„Te, „with
x= 0. 6686 with various amounts of indium, making
use of the previously established fact that indium
atoms provide —', as many electrons as do thal-
lium. ' Since the analysis depends on a small dif-
ference between large numbers, the original ex-
perimental points were used so as to avoid spuri-
ous effects caused by smoothing curves. In order
to minimize the effect of an arbitrary choice of
n„ the points for relatively small values of n —n,
were ignored. For four compositions with x very
close to 3, where thermal excitations were visible
at relatively low temperatures, straight lines were
obtained with Egp =0.6 eV. In the remaining com-
positions, with increasing values of np, straight-
line plots were obtained with slopes corresponding
to considerably lower values of Egp %'e show in

Fig. 6 several curves from both categories.
On examining the intercepts for the curves with

slopes corresponding to Qgp=0 6 eV it became
evident that if CJC„& 1, Eo, must be of such a
magnitude that the band gap becomes negative in

the experimental range. This accounts for the
second group of curves with lom activation ener-
gies; P and g~ are large enough so that the Max-
mell-Boltzmann approximation is not valid, and
interpretation of the plots of lnfp vs T ' in terms
of Eq. (15) is inappropriate.

Using an average of the values obtained from the
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10

this factor, we must consider that according to
Eq. (1), cr(E) is proportional to the square of the
total density of states, so that o(E) is larger for
the overlapping region than the sum of the contri-
butions of the individual bands, as is shown in
Fig. 7(d).
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I I

0.8 0.9 1.0 Ll L2 l.3 1.4
1000/T ( K )

=0 for E &E,o. (16)

C. Overlapping band model

%e are now able to generate a model for trans-
port which includes the thermal effects on o, but
which still assumes monopolar transport (trans-
port by holes at E &E„,is ignored). According to
this model, N(E) is taken tobe equal to the sum of
N, and N„given by Eqs. (4) and (11). When thss
is introduced into Eq. (I), the result is

o(E)=AC„(E —E,o) for E &E„p,

=A[C„(E— E«) +2 C„Cp(E -E«)'t
x(E„,-E)"'+C,' (E»-E)] for E«&E &E„„

FIG. 6. Several curves for lnf& vs 7 ~. The numbers
refer to the composition in at. % Tl except for the one
marked In, which is 0.99-at. % indium added to an alloy
containing 66. 86-at. % Tl.

slopes of the four curves in the first category, we
arrive at a value of EG p= 0. 58+ 0. 02 eV. In order
to determine E~ at any temperature it is necessary
to know also E~, . The intercepts would yield this
number only if C~/C„ is specified. Assuming a
free-electron effective mass in the valence band
leads to a value of E&, which suggests that Ec; = 0
at T =800'K. On examining the f~ curves in the
second category, it was observed that several of
them indeed had sharp breaks near this tempera-
ture. The curve marked 0. 99 In in Fig. 6 is the
most precise of these, and the break occurs at
770'K. These observations provide a more direct
means for determining Egg ~ Taking '7'70'K as the
temperature at which E~ = 0 together with E~p= 0. 58
eV, yields Et-, = 7. 5&&10 eV'K.

The increases in n -n p reflected in the f~ curves
in the second group are rather large. The fact
that they occur for the most part at temperatures
above 770 K, for which E p&E p and at composi-
tions in which E~ &E„suggests the reason for this.
Although the states in the valence band at energies
below E,p are likely to be localized when the band

gap is positive, this cannot continue to be true
when they overlap the conduction band, if we are
to believe the arguments of Mott. " This means
that for T &770 K there will be an increase in the
density of occupied nonlocalized states which is
due to previously nonconducting states of the val-
ence band which are now above E,&( E,o). This
is illustrated in Figs. 7(a) and 7(b). In addition to

As noted earlier, there is a cross term 2N, N„ in
addition to the valence-band contribution N„when
the bands overlap.

On substituting Eq. (16) into Eq. (2), the result
ls

a=AC„kT[FO'($)+ 2(Cq/C„) F„i(g, xo)

+ (C~/C „)F,2(f„xo)], (17)

where xo is a new parameter equal to —Eo/kT.
The new definite integrals are

0

Bx
(18)

Xp BfF = — (x -x) —dx.x2 p

(a) (b)

EG~0 4 fE) EGcO

Ec)
~~ EcO ~

Ecf

&fE)

(c)

FIG. 7. Two-band-model density of states for a (a)
positive and (b) negative band gap. The localized states
are indicated by hatching. The corresponding curves for
a(E) are shown in (c) and (d). The part above the dashed
line in (d) is due to the cross-term X~0 in [N(E)] .
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Substituting Eq. (16) into Eq. (3) gives

where

—k [2F,—)Fo+ 2(C,/C„) F„+(Cf/C„') F„]
e F,+ 2(C~/C„)F„+ (C~/C„)oF„o

(20)

r Xp

F,)(xo, 5) = — —(x —$)x'~'(xo- x)'~'dx,
&Q

(21)
"o sf

Fso(xo &) = — —(x- &)(xo-x)dx.
8x (22)

The definite integrals F„g, F„p, F g, and F,& are
conveniently evaluated for given values of xp and $

by means of a computer subroutine. [This is also
more practical than using tables for the Fermi-
Dirac integrals in Eq. (8). ]

$ is now determined by the condition n —P = up

which yields

no= C„(kT)'~ [F,&o(() —(C~/C„)F»o(xo g)] (23)-

1000

600-

600—

400

(ohen cm}

500
T. SL

200

100
I

0.9 I.O l. l l.2 (.3 t.4
Iooo/T ('K )

FIG. 8. Comparison of theoretical curves for theover-
lapping band model with experiment for 0.(T). The com-
positions are in at. % Tl and are followed by letters in
some cases (K, K, I.) to indicate specific runs. Those
compositions followed by In are the equivalent composi-
tions in terms of Tl for a 66.86-at. 'fo Tl alloy doped with
indium. The monopolar theoretical curves are solid lines
marked by small arrows, and have their compositions
listed on the left-hand side; the dashed curves indicate
the corrections for bipolar transport assuming that E,
=0.20 eV and 0&& =0.040 (0 cm 'K) '.

It is seen that in addition to the previously deter-
mined parameters AC„&, C„, E&p, and Ez&, one
must specify one further parameter which we have
written as C~/C„. This was determined by making
computations for arbitrary values of C~/C„, and
choosing one which gave the best fit to o(T) for a
single sample (x= 0. 6808). The computations them-
selves were carried out by specifying the compo-
sition, which determines no [Eq. (10)], and using
a computer program to find a value of $ at each
temperature which was consistent with Eq. (23).
Then the computer program calculated a and S ac-
cording to Eqs. (17) and (20).

Our procedure for determining C~/C„ led to a
value 0. 42. The other parameters are C„= 1.49
&10 eV"' ' cm ', E«= 0. 58 eV, Ec, ,=7. 5&&10

eV/'K, and, initially, ACok= 0. 2275 (0 cm 'K) ~.

With these parameters, theoretical model curves
for o(T) and S(T) were calculated for various com-
positions. A further improvement in the fit was
made by adjusting all of the v(T) curves downward
by 10%, which corresponds to adjusting AC„k to
0. 206 (0 cm 'K) '. This reflects the fact that the
original value was determined at 800'K, which is
high enough for a small amount of electron-hole
excitation to occur. The theoretical curves for
o(T) (solid lines marked by small arrows) are com-
pared with experimental curves in Fig. 8. The
agreement is, for the most part, within the prob-
able experimental errors. There are some small
systematic discrepancies remaining which will be
discussed later.

The calculated S(T) curves (solid lines) are com-
pared with experimental points in Fig. 9. The im-
provement over the extrinsic curves in Fig. 4 is
striking. There are small deviations for x = 0. 668
which can be accounted for by a small amount of
bipolar transport. It is to be noted that our choices
of parameters were based entirely on analysis of the
the o(T) curves (aside from the choice of C„, which
sets the composition scale). The large number of
parameters which were used might be suspected
of providing a fit of data for o(T) which is unrelated
to the veracity of the model, but this cannot be so
for S(T). Actually, we believe that the wide range
of T and x, and consequently the large range of
experimental behavior which is covered, as well
as the theoretical basis, also argues against this
skeptical interpretation for the o(T, x) results

The results shown in Figs. 8 and 9 show that the
overlapping band model provides a good description
of o and S as a function of T in the range 0. 67 &x
& o. 70, and corrections for bipolar transport de-
scribed in Sec. III cause a further improvement.
It may be worthwhile to comment here on some
tacit assumptions made in the use of the constants
in Eqs. (1), (4), (11), and (14). A, C„, and C~
are in principle all possible functions of the com-
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FIG. 10. Experimental o.(T) curves for compositions
x + 3 The solid lines indicate the matched empirical
curve cr&(T), with the Hashed extensions to indicate the
regions where o.(T) rises above the empirical curve be-
cause of thermal excitations. The compositions are
indicated in terms of 100'. The curves marked K are
from Ref. 22, and the rest are from this laboratory.

appreciable deviations from the extrinsic behavior.
Figure IQ shows a number of these curves as well
as some at compositions where only the extrinsic
behavior occurs. As noted in an earlier paper,
the extrinsic curves for log, po vs T ' fall very ac-
curately on a common curve. For the present pur-
pose, this is best expressed by the empirical func-
tion

is converted into E„p-E„. Since we know the ex-
trinsic conductivity o~(x, T), we pick a single tem-
perature (1000'K) and plot E„o-E~ vs o&. By com-
paring this with a series of theoretical curves de-
rived from a mobility shoulder model for 0 vs
E p Eg for various values of E, , we arrive finally
at an estimate of the correct value of E, .

The first problem is to infer 0„ from cr- o~.
Since 0 —0~ is equal to 40~+ v„, we cannot separate
the contribution of 4o& without using a complex
procedure requiring introduction at an early stage
of a model for conduction in the valence band. But
since the number of electrons responsible for o„
is equal to the number of holes responsible for b,a~, it
is a fair approximation to assume that O„and b e~
are in a fixed ratio, so that 0„ is some fraction of
cr- 0~. We assume that this fraction is —,'.

The next step is to infer E~ —E~. The tempera-
ture range in which cr —o~ is large is mainly in the
vicinity of 1000 'K, where the bands overlap ap-
preciably. The use of Eq. (17) to infer $ from o„
would require complicated calculations not justi-
fied because of the other approximations. There-
fore we ignore the overlapping band contributions
for the present purpose and use instead Eq. (5).
In Fig. 11 some representative curves are plotted
for E,p-E~ vs T obtained in this way.

It is interesting to note that the points tend to
lie oh a straight line with the same slope -EG, as
the band gap. This is somewhat surprising since
one would expect E„p-E„to change with tempera-
ture as well as E,p-E„p. We shall discuss this
point later. For the present purpose, we use a
straight-line plot with a slope -Egg only in order
to interpolate (or extrapolate, in one case) and de-
termine the value of E„-E~at T = 1000'K for each
composition. Then, using the previously deter-
mined dependence of EG on T, we subtract E,p E„p

o&= o,(1000/T)~' e (24)

By fitting this curve at each composition to the ex-
perimental curve at the low-temperature end where
electron-hole excitations are small, we determine
a value of the constant o., and then calculate o- 0~
vs T from the original data points. For this pur-
pose, we have used data at x &0. 60 from this lab-
oratory '~' ' and also data reported by Kazandzhan
gt gi

Let us first outline briefly the path to be followed.
We infer from o —o~, at least approximately, the
contribution v„due to the electrons in the conduc-
tion band. Then the transport equations of Sec. II
are used to derive from this the distance of the
Fermi energy E~ from the conduction band edge
E p, With the known dependence of Ez on T, this

0.3

oz —~o
E 0-E'.

F
(IV)

O. l

60

66

700 800 900
T (.K)

IOOO I IOO

FIG. 11. Some curves for E~o-E+vs T deduced from
o. -a& for various compositions, indicated in terms of
100&.
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= —0. 173 eV in each case to obtain E~-E~. These
data are divided by kT (=0.0862 eV) and are plot-
ted as f„ in Fig. 12 with the corresponding values
of Log, oo~ as the ordinate.

We can now compare these results with a theo-
retical curve for Logo as a function of E„,-E~ de-
rived from a simple model for o(E), assuming
again a parabolic density of states with the conduc-
tivity cut off for E &E

o(E)= 0 for E &E„,

o(E) =A~C'(E„o —E) for E &E».

On substituting this into Eq. (2), one obtains

(25)

a~=AbC pkT F~(g~, x,). (26)

F~ is a truncated Fermi-Dirac function of $~ [Eq.
(13)] and of x, , which is equal to (E„o E„,)/kT-:

F~()~, x,) = — x —dx8f
XC

(27)

We have plotted o~ vs (~ in Fig. 12 for several
values of x, . In doing this we set the constant
A~C'k = 0. 072 (™~) '. (We shall refer to this
constant as o». ), which seems to provide the best
fit with the experimental points. The vertical po-
sitions of the theoretical curves are insensitive to
x, at large values of $~, so that the points at Q
&4 essentially determine the value of v». Most of
the points at lower values of $~ lie near the curve
for x, = 3. The lowest point deviates considerably.
But since this composition is very close to intrinsic
it is likely that o~ was set too high in this case
when fitting the experimental data to Eq. (24). The
value x, = 3 corresponds to E, = 0. 26 eV.

Let us now consider the approximations which
were used in the foregoing analysis. First, the
ratio P= o„/(o- o') is not likely to be equal to —,

' nor
to be constant. However, the values of E,o- E&
are in a range where the Maxwell-Boltzmann ap-
proximation to Eq. (5) is nearly valid, so that a
change 5Ln(t) results in a, change in E,O-Ez of the
order kTDLng. Thus an error in Q by a factor of
2 would cause a shift in E,O-E~ of less than kT,
and a moderate change in (t) with T would cause a
small change in this quantity. Since it seems very
likely that ft) will be within the range 4 —1, we ex-
pect relatively small errors in E,o- Ez, less than
-0.05 eV.

Another approximation was to ignore the changes
in o(E) of the conduction band due to band overlap.
Because we are nearly in the Maxwell-Boltzmann
range for Eq. (5), E,o

—Er can be expressed as
kT ln (or/o„), where or is an average of o(E) main-

ly within a, distance kT of the band edge. o~ would
be larger than what was assumed by roughly a fac-
tor of 2, so that E,o- E~ would be too small by
roughly 0. 05 eV. Since approximately the same
temperature range was used in each of the curves
in Fig. 11, they would all be displaced by approxi-
mately the same amount. If the factor Q in the
preceding paragraph is greater than ~, which is
what we expect, these errors would tend to cancel.
(Since both errors are proportional to T, there
will also be an error in the slope. We discuss this
factor below. )

As mentioned earlier, the straight line plots in

Fig. 11 with the slope -E~, is used in our analysis
essentially to determine the dependence of Ecp
—EF on composition at a fixed T, which informa-
tion is used in the subsequent analysis. However,
the fact that d(E,o Ez)/d-T agrees with dEo/dT
which implies that E~-E~ is independent of tem-
perature, and this deserves some comment. Over
the temperature range which is used in Fig. 9, o~
changes by a factor 1.4. By using our theoretical
curve described by Eq. (27) with x, = 3, we can
infer from this the change in E„o-E~ over this
temperature range (-800-1000'K). The result
depends somewhat on the composition, but it cor-
responds roughly to d(E„o-Ez)/dT=-+ 3. 5x 10 '
eV/'K. SinceEo, =7. 5~10 eV/'K, onewould
therefore expect that d(E,o E~)/dT =-——4x 10 4

eV/'K. The approximations of ignoring the over-

400
I

300

0
Iooo

(ohm cm) i

200

2 3
(&vo E&)l kT

FIG. 12. Experimentally deduced values of 0& vs (& at
1000'K are compared with theoretical curves based on
Eq. (26), with A&C&k set at 0.072 (0 cm 'K), and with
integral values of xc from 1 to 4. Sources of data are
Ref. 8 (CM), Ref. 21 (MF), and Ref. 22 (KAZ).
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rraSa (k/e) AaCqkT --[F a(x', , )a) —)aFa(x,', ha)]

(28)
where

-8
F,a= x(x —gs) dx.

xs
C

ex (29)

x,' is the same as (E„t E„o)/kT with the except-ion
that when T is high enough so that E„~ is greater

lapping band effect and assuming fII) = 2, discussed
in the preceding paragraph, could decrease the
slope, but only by an amount of the order of A or
& 1X 10 s eV/'K, so that this is not enough to ac-
count for the discrepancy. We emphasize that the
dependence of E,O-E~ on T entered only in a very
minor way into the method used for arriving at the
value of E, . But the lack of self-consistency of the
final result is something to be concerned about.

Let us finally consider the magnitude of e»
(=AsCaak) derived from Fig. 12. This value 0. 072
(Acm 'K) ' differs from the value 0. 040 (Acm'K) '
inferred from the analysis in Sec. II. A simple
interpretation is that Aa/A has the value 1.8, rath-
er than unity assumed in Sec. II. Values for the
constant A in Eq. (1) which differ by such a factor
for the two bands is quite consistent with the basic
theory, and could be the result of a smaller co-
ordination number for the valence-band wave func-
tions. But a complication arises in the choice of
a suitable constant for the overlapping band region,
if one wanted to make a consistent model; we shall
discuss this problem later. An alternative inter-
pretation is that A is the same but C~ is larger.
Such an effect can be expected if N„(E) is not truly
parabolic, but increases more rapidly than the one-
half power of E„o-E. The analysis of this section
deals with a situation where E~ is well within the
valence band, whereas in Sec. II E„ is generally
above E„o. Thus our arbitrary parabolic band
model would project a different value of C& depend-
ing on the position of E~. This sort of distortion
from a parabolic shape is also a reasonable possi-
bility.

B. Bipolar transport for x & f
The added contributions to c and S in the n-type

region due to holes provide small corrections to
the results of Sec. II, but factors considered in the
preceding paragraph cause complications in cal-
culating them. Let us consider first the simplest
procedure, which is to use the parameter for cr»
deduced in Sec. II, and calculate the bipolar cor-
rection using only the estimate of the mobility edge
E„,obtained in Sec. IIIA.

The bipolar thermopower is S, = (trS+ oaS,)/
(tr+ hara), where S and tr are given by Eqs. (20) and

(17), respectively. From Eqs. (3) and (25),

l000

800-

-I
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300—

0.8 0.9 I.O I. I l.2
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I

l.3 I.4

FIG. 13. Comparison of theoretical curves of o(T) with
experimental points (circles) from data of Ref. 22. Curve
A is the monopolar result, with the dashed extensions of
high- and low-T parts to emphasize the inflection. The
remaining curves include bipolar corrections with the
following parameters: Curve 8 has 0&~ =0.040 (Q cm 'K)
and E,=0.20 eV. Curves C, D, and E have api. =
(0 cm 'K) with E, =0.26, 0.17, and 0 eV, respectively.

than E,o, E„, is replaced by E,o in order to avoid
counting twice the region of tr(E) where E,o&E &E„,.
(Note that this correction is accurate only if As =A. )
Similarly, the bipolar electrical conductivity is
tr, = o+ aa t where tra is given by Eq. (28) with the
argument x', instead of x, .

These corrections were calculated for E,= 0. 2

eV, and with tr» equal to 0. 040 (0 cm K) ' as de-
termined in Sec. II. The bipolar curves for a and
S are shown in Figs. 8 and 9 as dashed lines. As
one would expect, the correction becomes small
as x departs from the value 3 . At the lowest thal-
lium concentration, x= 0. 668, S changes appreci-
ably, and the theoretical curve comes into good
agreement with experiment. We point out, how-

ever, that the bipolar corrections, which are rath-
er small on the whole, would not be much larger
if we were to let E, = 0 rather than 0. 2 eV. That
is, for 0 and S at x &3, the fact that there is a mo-
bility shoulder in the valence band has little visi-
ble effect for this value of 0».

The most sensitive composition for examination
of the accuracy of our bipolar model is at x exactly
equal to 3 . Some rather precise and detailed data
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for &r(T) have been reported at this composition
(T12Te) by Kazandzhan et al. ' which are in agree-
ment with less detailed curves determined at our
own and other laboratories. These data are shown
in Fig. 13, together with our theoretical curves
derived from the overlapping band model for both
the monopolar (curve A} and bipolar (curve B}cal-
culation described above. It is seen that the mono-
polar result is in substantial agreement with ex-
periment (within 2Fk), and the bipolar result re-
moves a large part of this small discrepancy. The
fact that the intrinsic curve with its strong tempera-
ture dependence is quite different in character
from the largely extrinsic curves in Fig. 8 again
makes it unlikely that the success of our model is
merely caused by curve fitting with a large enough
number of parameters.

Another interesting thing about the results in
Fig. 13 is that both the theoretical and experi-
mental curves show a distinct inflection and change
in slope near T-900 K. This is emphasized by
dashed extensions of the low- and high-tempera-
ture sections of curve A. This mainly reflects the
effect of the overlapping band on a(E) which occurs
for T & 770 K. Such an inflection occurs, although
somewhat reduced, even if we assume no mobility
shoulder (E,= 0), so that its presence does not
prove the existence of a mobility shoulder.

It is possible to compute bipolar corrections as-
suming that o»-—0. 072 (0 cm 'K) as inferred from
the analysis of Sec. III A, instead of 0. 040 (II cm

K) '. There is in this case an ambiguity about the
contribution of the overlapping states when E„&
exceeds E,o at high temperatures, but this is a
small effect added to a small correction. If we
make this calculation, using E, = 0. 26 eV, the re-
sulting curve C is practically identical to curve B
in Fig. 13, running slightly higher at high tempera-
tures. Since this value for E, is not a precise one,
it makes sense to consider what value gives best
agreement with the experimental points. A value
of E,= 0. 1'7 eV matches the experimental points at
low T, but runs somewhat higher at high T, as
shown in Fig. 13 by curve D. We show also (curve
E) the result assuming E,= 0, which differs signif-
icantly from the experimental curve.

Of course, the use of a larger value of A~ for the
bipolar correction is inconsistent with use of Eq.
(16) for the electron contribution to c(E). It would
be desirable to examine a consistent solution for
cr and S when A WA~. It is not obvious what is the
correct expression for A in Eq. (1}for overlapping
bands when it has different values for the separate
bands. But it seems reasonable and it is also
mathematically convenient to use the geometric
mean for the cross term 2N„N, . Thus we modify
Eq. (16) for the overlapping band region (E,o &E

&E„o) by replacing A by A~ for the third term, and

by (A~A)'~2 for the second term. This has the ef-
fect of replacing the factors (C~/C„) by (C~/C„)
x(A~/A„)'~ in Eq. (17) for o and Eq. (20) for S.
But the factor (CJC„}in Eq. (23), which deter-
mines the Fermi energy, remains the same. The
reader will recall that a value (C~/C„) = 0. 42 pro-
vided the best fit of the theoretical curves in the
original monopolar calculation. Replacing this in
Eq. (17) and (20) by 0. 59, as implied by a ratio
A~/A = 1.8, would destroy the good agreement be-
tween theory and experiment which is shown in

Figs. 8 and 9 for x & & . The o curves increase too
rapidly at high T, and the magnitude of S would
fall significantly below the experimental curves.
One might hope to compensate for this by also
changing the value of the independently disposable
parameter C~/C„ in Eq. (23). But it turns out that
the results are very weakly dependent on this pa-
rameter, and one cannot get agreement with ex-
periment for (CJC„)(A~/A„)'~ = 0. 59 for any phys-
ically reasonable value of CJC„. The fact that
one cannot arrive at a self-consistent model for
the electron contribution when the hole contribution
has a value determined by c»= 0. 72 (0 cm 'K)
supports the interpretation that N„(E} is not para-
bolic.

Let us now consider S(T) for x = —', . Kazandzhan
et a/. report a curve shown in Fig. 14, which
saturates at high T at - —45 p, V/'K. Curves have
also been obtained in our laboratory for near-in-
trinsic compositions which differ at lower T but
also tend to saturate at the same value at high
temperatures. One of these is also shown in Fig.
14. Since the behavior of S at lower T is extremely
sensitive to small deviations from the intrinsic
composition, we may take the high-T limit to be
the more significant experimental result.

The theoretical curves for x= & are very sensi-
tive to the bipolar contribution. The monopolar
curve (A in Fig. 14) differs considerably from the
experimental ones. Curve B which includes a bi-
polar correction based on o»= 0. 040 (II cm 'K) ~

and E, = 0. 20 eV [corresponding to curve B for o(T)
in Fig. 13] is a considerable improvement, and
saturates at - —80 pV/'K. Curves C, D, and E
are for c» = 0. 072 (0 cm 'K) ' with E, = 0. 26, 0. 17,
and 0 eV, respectively [corresponding to curves
C, D, and E for o(T} in Fig. 14]. Here the sat-
uration value is - —55 p, V/ K, which is rather
good agreement with experiment. We should note,
however, that these bipolar corrections to S, which
gives the better result for x= &, gives a poorer
result for x = 0. 668 than the one shown in Fig. 9.

To summarize the rather involved discussion in
this section, a mobility shoulder analysis of the
thermal excitations on o(T) for near-intrinsic p-
type compositions leads to an estimate for the po-
sition of the mobility edge E, which is several
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times larger than kT. It also leads to a conduc-
tivity parameter o» for the valence band which is
nearly twice as large as the one deduced in Sec.
II. Inclusion of bipolar effects materially im-
proves the agreement with experiment for S and o
at x = 3 and x = 0. 668. However, one cannot arrive
at a form of o(E) for E &E,o in the overlapping band
domain which is consistent with the results of the
mobility shoulder analysis without destroying the
agreement with experiment for compositions more
highly doped with thallium.

IV. DISCUSSION

The model which we have developed for trans-
port in Tl-rich compositions still has several lim-
itations worth noting. First, it fails to describe
correctly thermal excitation effects which appar-
ently occur for x &0. 71, particularly in the depen-
dence of S on T. We have noted in an earlier
paper~ that S (T) deviates from a behavior expected
for constant electron density (S o- T) when x & 0. 76.
Because E~ remains high compared to E„~ in the
experimental temperature range for x & 0. 70, the
overlapping band model does not predict an appre-
ciable change from the constant electron density
result. This cannot be overcome by moderate
changes in the parameters of the model.

Of course, it is too much to expect some aspects
of our model, such as the density-of-states curve,
to continue to be correct as the composition is
changed drastically and the Fermi energy rises
well into the conduction band. But this could not
account for the discrepancy, which relates to the
effect of temperature. The most likely cause, we

think, is the dissociation of a small fraction of the
Tl- Te bonds. Near the composition Tl&Te, the
conduction band is expected to be generated pri-
marily from antibonding orbitals of Tl- Te bonds.
If the conduction band were a tight-binding band
generated entirely from these antibond orbitals,
there would be no binding energy when this band
is filled, and the binding energy would decrease
as the Fermi energy increases. The conduction
band is not a tight-binding band; it includes and
is generated in part from other orbitals, including
those of the extra Tl atoms. This becomes in-
creasingly true at higher energies in the band and
as the thallium concentration increases. It is
reasonable, nonetheless, to expect an increasing
fraction of the Tl- Te bonds to dissociate at high T
as E„increases with increasing x. But at the
same time, the ratio of T12Te molecules to excess
Tl atoms decreases, so that at some plaint the ef-
fect of bond dissociation in increasing the electron
density should become submerged by the high elec-
tron density due to the Tl atoms. This ratio drops

below one when x exceeds 0. 75, and this happens
to be also the point at which thermal excitations
cease to be visible.

There are several other discrepancies which

may be attributed to deviations of the valence-band
density of states from the parabolic shape assumed
in our model. The theoretical curves for cr(T) lev-
el off and tend to increase as T decreases below
770'K, for x &0. 675. Gn the other hand, there is
a tendency for the experimental curves to decrease
slightly in this range. This suggests that thepe is
some tailing of the valence band with the result
that there is still some band overlap for T & 770'K.
We have discussed in Sec. III evidence of a distor-
tion of the valence band from a parabolic shape,
as indicated by values of C~ which differ for dif-
ferent ranges of E~. Band tailing and distortion
from a parabolic shape deeper in the valence band
are apt to go together. '

Another way to resolve discrepancies which
seem to require different values of C~ for different
composition ranges is to drop or diminish the
second term 2N, N„ in the quadratic expression
for [X(E)]2 [Eq. (16)]. This might be justified
theoretically if the states of the two bands differ
greatly in character, so that they do not mix
strongly when the bands overlap. Such a hypothesis
would permit the use of a larger ratio of CJC„
in fitting the high-T parts of the monopolar a(T)
curves in thallium-rich compositions, and would

perhaps yield better agreement with results de-
rived for compositions at x & 3 . It would be pos-
sible to extend the model to include either of the

-50
0 ~ ~ ~ ~ o

(yV/dog)

'-IOO

l50

700 800 900
v(m )

1000 IIOO

FIG. 14. Comparison of theoretical curves of $'(g) with
experiment for x= 3. The data marked KAZ are from
Ref. 22. Those marked MF, from Ref. 21, are for an
alloy at x = O. 665 to which a small amount of indium was
added. The parameters for theoretical curves A, B, C,
D, and E are described in Fig. 13.
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above explanations. However, the discrepancies
to be accounted for are small and additional pa-
rameters would need to be introduced, so that
such an effort does not seem to be warranted at
the present time.

Experimental evidence for the occurrence of
mobility shoulders in amorphous solids has been
the subject of considerable interest because of
theoretical disagreements' about their nature. It
is a matter of interest then to examine the extent
to which our results prove the existence of a mo-
bility edge in Tl-Te. As already noted, we have
evidence that it is not far enough from the band
edge to be visible in the conduction band. Evidence
for its occurrence in the valence band falls into
three categories which we shall discuss in turn.

First, we used the putative existence of a deep
mobility edge to justify a monopolar analysis of the
thermal excitations in compositions x &-, in Sec.
II 8. However, the model ultimately derived shows
that the main thermal effect arises from the in-
crease in [N(E}j for conducting states which oc-
curs when T &770'K, and the maximum possible
contribution due to states at energies below E,o is
relatively small.

The second piece of evidence is the analysis of
the thermal excitations for x & 3, which led to the
comparison with theoretical curves for a mobility
edge shown in Fig. 12. The comgarison of theory
and experiment seems to provide distinct evidence
of a mobility edge. But this conclusion is marred
by the occurrence of some inconsistencies which
we have discussed in Sec. III. Probably the most
disturbing element here is the evidence that the
valence band may deviate from a parabolic shape.
The deviation is in a direction which would cause
a steeper slope of the theoretical curve for E,= 0
in Fig. 12 which would lead to better agreement
with the experimental curve. So without examining
specific models for a nonparabolic band edge we
cannot be sure that the observed slope requires the
existence of a mobility edge.

The third source of inference about the mobility
edge consists in the comparison of the bipolar
curves with experiment for compositions at or
near x= 3, since the magnitude of E, enters into
the bipolar corrections. We show in Figs. 8 and
9 bipolar curves calculated with o»= 0. 040 (0cm
'K) ' and E,= O. 2 eV. If they are calculated in-
stead with E, = 0, the results are practically the
same, so that this leads to no conclusion about the
mobility edge. The reason for this insensitivity
is the small value of o» relative to AC„k. We also
examined the bipolar effect for o»= 0. 072 (II cm
'K}, as suggested by the mobility-edge analysis.
In this case, there is greater sensitivity to the
value of E, . A zero value for E, causes the theo-
retical curve (E) for o(T) in Fig. 13 to be appreci-

ably higher than the experimental curve at low T
(- 30}0), whereas values of 0. 17 eV (curve D) and
0. 26 eV (curve C) are in better agreement. With
regard to S(T}, the limiting high-T value of S for
x = 3 is independent of E„but the low-temperature
part of the curve is strongly affected, with lower
values causing saturation to occur at lower tem-
perature. Curves C, D, and E in Fig. 14 are
roughly cnnsistent with experimental curves at low
T because of sensitivity of the latter to composition.

Taking these various considerations together, we
conclude that there is considerable evidence for
a mobility edge at E, = 0. 2 eV, but it is not con-
clusive.

Our conclusions about the positions of the mo-
bility edges in relation to o(E) are consistent with
Mott's discussions of the subject. He has esti-
mated that o(E) at the mobility edge should be o,- 100-200 (II cm) ', depending on the character of
the wave functions and the coordination number.
For the conduction band, our value of AC „k leads
to o,- 160 (II cm) ' at a distance kT above the band
edge. Thus our conclusion that E~& —E~0z kT
agrees with Mott's estimate. Because of the low
value of CJC„, the Mott estimate requires a deep-
er mobility edge for the valence band, and indeed
the value of o» derived in Sec. III A leads to o(E„&)
= 206 (II cm) ' for E,= 0. 26 eV.

It is worth emphasizing here the general impli-
cations of the fact that the distances of the mobil-
ity edges from the band edges are not likely to be
equal in any disordered material. As noted pre-
viously by Mott and Davis, this makes it unlikely
that bipolar transport will occur for intrinsic ma-
terials, and also on one of the two sides of the in-
trinsic composition. This fact, which has been
overlooked in a number of recent gapers, has
greater impact in amorphous solids than in liquids
because of the small value of kT.

In summary, we have developed a model for the
pseudogap, expressed in terms of two bands with
a temperature-dependent band gap, which succeeds
in very large measure in accounting for the tem-
perature dependence of S and 0 for Tl„Te& „ in the
composition range 0.667 + x & 0.70. In terms of this
model, the band gap has a large negative tempera-
ture coefficient (Eo~ 7. 5x 10 4 eV/-'K) and it be-
comes negative for T &770 K. These results are
similar to those deduced for liquid As&Se3 ~

carrying out this analysis, we have made fruitful
use of the concepts developed by Mott regarding
the nature of diffusive transport in relation to the
density of states. The possible occurrence of mo-
bility edges has been examined, and we find evi-
dence that it is small in the conduction band (E„
—E,Q&kT}, and derived a rough value for the va-
lence band (E„0—E„~-0. 2 eV). But the evidence
for the latter is ambiguous.
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