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Compton-scattering cross sections of Si and Ge for CuKa radiation are determined by direct absolute
measure(anent of the intensity scattered from a single crystal. Parasitic components are eliminated by an
evacuated specimen chamber and by combined use of a scintillation counter and a Si(Li) solid-state
detector. The contribution of the thermal diffuse scattering is subtracted by a calculation based on

independently determined phonon frequecies. At large scattering angles the contribution of the Compton
scattering is separated directly by the Si(Li) detector. In the case of Si, a good agreement with the
Wailer-Hartree theory is obtained above sin8/X = 0.2 A '. The experimental values for Ge are
considerably larger than the theoretical ones, particularly at small scattering angles. To explain the

origin of these discrepancies theoretical calculations which allow for electron binding in the Compton
process and include the effects of the band structure of Ge crystal are needed.

I. INTRODUCTION

Theoretical calculations of the Compton-scat-
tering cross section are based on the assumption
that the energy of the incident quanta is much larg-
er than the binding energies of the electrons. In
the first rigorous quantum-mechanical treatment
by Wailer and Hartree, ' the cross section is ob-
tained by subtracting the coherent part and the for-
bidden transitions from the total free-atom scat-
tering cross section. The so-called impulse ap-
proximation (IA) was introduced for interpreta-
tion of the measured Doppler broadening of the
Compton line in terms of the one-electron wave
functions. This IA theory also treats the electrons
which are scattered as free rather than bound.

The theoretical understanding of the Compton
process in the case of bound electrons is at pres-
ent unsatisfactory. The validity of the approxima-
tions has been studied by model calculations, but
their nature has been too restrictive to allow con-
clusions about many-electron atoms in the range
where the energy of the incident quanta is com-
parable with the binding energies of the electrons.
From the practical point of view, an accurate
knowledge of the Compton intensity is essential
when the components of the total scattering are to
be separated. This situation is encountered in
most crystallographic studies, and it is the cen-
tral problem in a measurement of the diffuse scat-
tering.

There have been a few earlier attempts of direct
verification of the theoretical predictions, e.g. ,
Walker, and subsidiary measurements of the
Compton intensity have been made in connection
with diffuse-scattering experiments, e.g. , Buyers
and Smith. The general conclusion of these stud-
ies has been that the Wailer-Hartree values, as
calculated by Freeman, are valid also at the
wavelengths used in crystallography. In this paper

we report measurements on Si ~d Ge single crys-
tals, made with improved techniques. Si and Ge
were selected since they represented two essenti-
ally different cases in the Compton scattering.
Practical considerations also played a decisive
role in our choice: Cubo radiation does not ex-
cite interfering fluorescence, and the lattice dy-
namics of the two crystals are accurately known.

II. INTENSITY OF INELASTIC SCATTERING

Consider an arrangement where a monochromat-
ic x-ray beam hits a totally absorbing crystalline
specimen in a symmetrical-reflection geometry,
i.e. , the incident and detected rays make equal
angles & with the flat specimen surface. In addi-
tion to the elastic or Bragg scattering, the scat-
tered radiation consists of the inelastic Compton
and (almost elastic) thermal diffuse scattering
(TDS). If the incident x-ray photon flux is so, the
flux of the detected quanta is

(do/dA)c (do/dA)TDs
n = no AM oK~, —— +

where A is the solid angle subtended by the receiv-
ing slit and Mo is the number of atoms per unit
volume. The linear absorption coefficients for
the unmodified and Compton-modified scattering
are denoted by p, o and p, c, respectively. The scat-
tering cross sections per atom are, for the Comp-
ton process, (do/dA)c, and for the TDS, (do/
dA)Toe. K, is the ratio of the polarization factor
of the scattered radiation to that of the monochro-
mated primary beam. In the present case the ki-
nematic approximation is valid, and

K, = (1+Kcos 28)/(1+K),
where K is the polarization ratio of the primary
beam, E(o)/E(o).

In the following, the theoretical calculation of
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The scattering cross section of one free electron,
initially at rest in the laboratory frame, is given
by the well-known Klein-Nishina formula,

where ro ——e /mc is the classical electron radius
and fe is the incoherent scattering factor, while

w& and wz are the initial and final photon energies,
respectively (the superscript on w indicates the
special ease of the electron initially at rest). The
(unit) polarization vectors of the incident and scat-
tered waves are denoted by e& and ez, respectively.
As indicated in Eq. (2), the polarization factor
(ez ~ e») = »(1+Kcos 28). With this notation,

0 -11+» (1 —cos28)
mc

(4)

Equation (3) can be extended to the Z-electron
system of a free atom by considering the expres-
sion for fc. The nonrelativistic situation in the
case of large wq is summarized in the Waller-
Hartree expression, '

fvs = ~ -~ lfzz I' -~~ Ifz» I'
f k&f

where

(5)

(do/dA)e and (do/dA)rn(z is considered. Numerical
values for the TDS contribution are evaluated and
subtracted from the total experimental-scattering
cross section. The remainder is then compared
with the theoretical prediction for (dzz/dA)c. The
experimental details of determining n, np, A, and

K, are discussed in a separate section.

III. COMPTON CROSS SECTION

= ro clz (p zz ) dwd gp ~ ~ wg t~l
(10)

where the polarization factor (e, ~ e») is dropped.
Equation (10) is valid when the energy transfer,
w = wz -w», is small (w «mc ), and in that case
the relationship between pq and w is given by

Although Eq. (8) was derived for electrons whose
binding energy is negligible when compared with
the energy transferred by the photon, an allowance
is made for the electron binding in Eq. (10). The
cross section (d(z/dA)» is integrated from the one-
electron binding energy l cf I to an upper limit of
the incident photon energy wq. The final cross
section in the IA is obtained by summing over all
one-electron orbitals,

is the nonrelativistic Thompson cross section.
In the impulse approximation the one-dimension-

al Compton profile, Z&(p(z), for each one-electron
orbital j is obtained from the ground-state momen-
tum wave function X&(p) by

cfz(pzz) = 2zzfj
(

I xz(p) I'p dp (8)

The X&(p)'s, which are the Fourier transforms of
the direct space wave functions, are normalized by

4 f,
"

I xz(p) I'p'dp =1 . (8)

J&(pzz) is symmetrical about pzz=0, which corre-
sponds to an energy of w~ of the scattered quanta.
It is now possible to express the cross section in
the IA for the one-electron orbital j as an integral
over the Compton profile

Here Q is the x-ray scattering vector of magnitude
4zzsine/x, and the ()('s are the appropriate one-
electron wave functions. The third term in Eq.
(5) excludes the forbidden transitions from the
scattering cross section. Numerical values based
on Hartree-Fock wave functions have been pub-
lished by Freeman. In the nonrelativistic approx-
imation wz «me and wz/w»+w»/wz= 2 (=2.00043 in
the present case of wz = 8 keV) in Eq. (3). Because
the counter records the flux of quanta instead of
the flux of energy, Eq. (3) should be multiplied by
wz/w». Furthermore, since the polarization fac-
tor is included in Eq. (1), it is dropped from the
following expression for the Compton-scattering
cross section in the %aller-Hartree approxima-
tion

(12)

Each of the electron orbitals is normalized by

f".~&(po) dpc =1 (»)
in accordance with Eqs. (8) and (1).

The values of (do/dA)z» in electron units (ro ——1)
are tabulated by Currat, DeCicco, and Weiss for
several elements and for MoK~ and Curn radia-
tion. While the normalization (13) is justifiable
at large values of Q, it is not valid when Q is
small. Correspondingly, several authors have
preferred normalization according to Waller-
Hartree theory

f„Jz(po)dpzz ——1 fzz, - (14)

where

AH es' ea in order to take the contribution of the coherent
scattering into account. This considered in great-
er detail when the results on Ge are discussed.
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IV. TDS CROSS SECTION

~

G"'(g) ~'
d& m y i &y(q)

(15)

where E&(q) is the energy of the mode of angular
frequency &o&(q), and B is a vector of the recipro-
cal lattice. The vector r, defines the equilibrium
position of the 0th atom within its cell, for which
f2(Q) is the scattering factor, and e 2 is the
Debye-Wailer factor. The normalized wave am-
plitudes U~, (q) are defined by

n ff

Zm,
~
U,
' „(q)~'=Em, = m, (15)

where m~ is the mass of the kth atom.
The diamond-type lattice of Si and Ge is com-

posed of two equivalent interpenetrating face-cen-
tered cubic lattices. The positions of the two
atoms of a primitive unit cell are

r, = a(0, 0, 0) and r2=a(-,', —,', —,'),
where a is the lattice constant. Accordingly, there
are three acoustic- and three optical-phonon
branches. Equation (15) takes a particularly sim-
ple form when the scattering vector is along a
symmetry direction of the crystal. In that case
only the longitudinal phonons contribute to the one-
phonon TDS. When the corresponding wave ampli-
tudes are substituted, the following "structure fac-
tor" for the one-phonon TDS is obtained:

G(1&@) f(Q)e-N(1 + efB r2elo2(&)) (17)

The upper sign corresponds to the acoustic branch
and the lower one to the optical branch. The phase
of motion of atom (2), relative to atom (1), is de-
noted by y2(q). In the present case the measure-
ments were made in the vicinity of the Brillouin
zone boundaries in the [h, h, h] direction, or at

(h, h, f) = (2P+1)(-.', —.', —.'), (18)

where p is an integer. The corresponding values
of p&(q) are a &m for q = aq, respectively; q is
the maximum wave vector. At these points Eq.
(15) reduces to

One reason for selecting Ge and Si as objects of
measurement was that the intensity of the thermal
diffuse scattering is relatively low in both cases,
and that it can be calculated reliably from the dis-
persion curves determined by neutron diffraction.

A. One-phonon TDS

Following Cochran, ' the one-phonon scattering
cross section per primitive unit cell containing n
atoms can be written as

dot g
g~ gq ' p1 1

(19)

where the upper sign corresponds to the case p=1,
2 and the lower one to p = 0, 3.

B. Two-phonon TDS

The two-phonon intensity at Q is a sum of the
contributions from the phonon pairs (q', q —q') that
satisfy the diffraction condition B= Q+ q'+ (q —q').
The scattering cross section per primitive unit cell
is

(
ee "' ~0 '"

&g q'+;(q-q')
i I&- ~-i (&,'(Q)

dD 2Nm;, &,- &u, (q )~;(q —q )

G,~'(Q) = 2f,(Q) e e'exp([iB ~ r,][Q ~ U~ „(q)]

x[Q U', .(q q')]}, (2

where N is the number of unit cells in the crystal.
The numerical values were calculated by an ap-
proximate method, which is essentially the proce-
dure described by Walker as generalized to crys-
tals with more than one atom per primitive unit
ceQ. The contributions of the optical modes were
calculated by assigning constant frequencies (d&o
and co&o to the respective phonon branches. The
actual formulas are very cumbersome, and the
details of the calculation are given elsewhere. "

Lomer has studied the relative importance of
one-phonon and two-phonon scattering processes
in the total TDS intensity. On the basis of this cal-
culation it was concluded that in the present case
the higher-order contribution was negligible when
compared with the uncertainties in (do/d&) ' and
(do/d&) ', and it was accordingly ignored.

The relevant parameters used in evaluating the
TDS cross sections are given in Table I. They
are based mainly on the neutron diffraction mea-
surements by Brockhouse and lyengar, and Doll-
ing, and on a scattering factor measurement by
Jennings. As to Ge, a recent measurement by

20

Nilsson and Nelin ' at 80 'K suggests that some-
what narrower bounds can be assigned to the ex-
perimental co's than those given by Brockhouse and
lyengar. A slightly lower value (3.90&&10 sec ')
was adopted for ~„&(q ) in order to allow for the
effect of a relatively wide receiving slit. The re-
sulting cross sections, (do/dO)»2, in electron
units are given in Table II.

V. EXPERIMENTAL

Intensity measurements were made on large Ge
and Si single crystals that were cut perpendicular
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TABLE I. Parameters used in the evaluation of the
TDS cross sections for Si and Ge. OSCILI OSCOPE PRINTER CU ANODE

35 Icv/18'

Lattice parameter
Atomic weight
B(M =B sin28/X2)

f
gf I

&i)n
~~(qm)
(d z,o (q~)
fd To
LO
VTA

VLA

(A)

(A')

(1/cm)
(10i3 sec )

(10 sec )
(10 3 sec )
(10 3 sec+)

(km/h)
(km/h)

Si

5.4310
28. 086
0. 446

Ref. 15
0. 21

151.0
7, 15
7. 90
9, 47
9, 10
5, 20
8, 90

5. 6577
72. 59
0. 562

Ref. 15
—1.04
357. 0

3.90
4. 65
5. 40
5. 02
3. 00
5. 50

~From Ref. 16 as corrected for scattering (Ref. 17).
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FIG. 1. Schematic drawing of the experimental ar-
rangement.

to the [h, h, h] direction. The points of measure-
ment were selected around (2p+ 1)(-,', —,', —,') in recip-
rocal space, with p=0, 1, 2, and 3. The experi-
mental arrangement is shown schematically in
Fig. 1. The Cu-anode x-ray tube was operated at
35 kV, 18 mA, and K& radiation was selected by
a singly-bent graphite monochromator. The speci-
men was enclosed in a vacuum chamber, and the
collimators and shields were arranged in such a
way as to prevent parasitic scattering from rays
entering the receiving slit. The angular width of
the slit was determined by scanning it across a
pinhole x-ray beam; the slit length was measured
by rotating the slit through 90'. The effects of the
finite size of the receiving slit were corrected ac-
cording to Suortti and Jennings. 22

A block diagram of the measuring system is also
shown in Fig. 1. The actual determinations of Qp

and n [Eq. (1)] were made by a, scintillation count-
er (SC) connected to a single-channel-analyzer
system (SCA). The respective pulse-height distri-
bution was recorded simultaneously through a
multichannel analyzer (MCA). The actual energy
distribution of the received radiation was mea-
sured by a Si(Li) detector connected to the MCA.
In the case of Ge, this inspection revealed the
presence of strong GeK fluorescence in the de-
tected beam, which had been excited by the —,'z,

3X, and —,'z components of the primary beam. The
fluorescence was reduced to a tolerable level by
placing a Ni absorber in front of the diffracted
beam tunnel. The reflections of the &X component
at the zone boundaries were avoided by making the
measurements at several off-reflection positions
on both sides of the boundary; the actual value was
determined by interpolation. A comparison be-
tween the energy distributions as recorded by the
SC and the Si(Li) detector made it possible to sub-
tract the extraneous counts. The corrections were
—2. 8%, —0.7/0, —0.6%, and —0.6% for p=0, 1,
2, and 3, respectively.

The power of the primary beam was measured
by the SC and SCA, and the beam was attenuated by
calibrated Ni foils. The dead time was determined
by the method suggested by Chipman. It was
noted that the actual, total counting rate for a
strongly attenuated beam was determined largely
by the 3X and 4X harmonics for which the Ni foils
were relatively transparent.

At the highest point of measurement, p=3, it
was possible to separate the Compton intensity ex-
perimentally by using the Si(Li) detector. A sta-
tistically good measurement of the pulse-height
distribution of the combined Compton plus TDS
scattering was made. The response of the Si(Li)
detector to the practically monoenergetic TDS was

TABLE II. The experimental total cross sections and the calculated one-phonon and two-
phonon TDS cross sections for Si and Ge, given in electron units and for one atom.

2' 2' 2

(g~)0)

0. 32
1.52
2. 53
2. 46

(g~ )
(2 &

0. 00
0. 06
0. 30
0. 41

Si

(dn),
0, 32
1.58
2. 83
2 ~ 87

Total

1.28
6. 37
9 ~ 55

10.79

(dv)' i

1.46
10.02
15.56
12.24

0. 01
0. 65
2. 89
3.78

1.47
10.67
18.45
16.02

Total

3.98
17.54
28. 90
28. 22
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I

e.u /atom

10—

contribution were subtracted from the measured
total until the background level was reached but not
exceeded. The resulting shares of the Compton
scattering are (67 + 2)% and (44' 2)% for Si and Ge,
respectively. As seen in Figs. 2 and 3, these val-
ues are in excellent agreement with the cross sec-
tion obtained by subtracting the calculated TDS con-
tribution.

VI. RESULTS AND DISCUSSION

s(n e/X (~ "
) 0.5

FIG. 2. Comparison of the experimental (do/dQ)&
(circl.es) for Si with those in the Wailer-Hartree theory
(solid curve). The values f~2, as given by Freeman
(Ref. 6), have been multiplied by (co2/~~) . The dotted
curve gives the IA values calculated by Currat et al.
(Ref. 8). The open circle corresponds to the result of
an experimental separation of the Compton scattering
by the Si (Li) detector. Earlier results by Weinberg
(Ref. 24) are indicated by crosses. The experimental
error, which is mainly due to the assessed accuracy of
the theoretical or experimental. separation of the contri-
bution of the TDS is indicated by error bars or by the
size of the circle.

15—
e.u /atom

10

determined by measuring air scattering of the pri-
mary radiation at a low scattering angle. The
width of the resolution function [full width at half-
maximum (FWHM)] was 258 eV. As the Compton
shift at 28=111' (for Ge) was only 169 eV, the two
distributions overlapped considerably. Successive
multiples of a function with the shape of the TDS

The experimental Compton-scattering cross sec-
tions for Si and Ge are presented in Figs. 2 and 3
together with theoretical curves. Table III gives
the binding energies of the electrons and the aver-
age energy transfer to an electron at the various
scattering angles. In the case of Si, ut -w2 is
comparable to the binding energy is most cases,
and the measurement agrees with the Wailer-Har-
tree calculation within experimental error, when
sin8/X &0. 2 A . At low sin8/) the experimental
result (0.96 e.u. ) is about 50% less than the Wai-
ler-Hartree value and is in good agreement with
an earlier result (1.0 e.u. ) by Weinberg. The
K electrons of Ge are not excited at all, and the
binding energies of the eight L electrons are much
larger than se& —ao&,. for the rest of the electrons,
the situation is similar to that in Si. The experi-
mental points lie between the two theoretical
curves. However, the large values of the IA cal-
culation by Currat, DeCicco, and Weiss, which
exceed the Wailer-Hartree figures by as much as
a factor of 3, originate in adopting the normaliza-
tion condition of Eq. (13), which is not valid at
small values of sin8/X. When the weights given
by Eq. (14), which takes account of the coherent
scattering, are used, the IA curve coincides with
the Wailer -Hartree values.

The fact that the experimental values of (do/d&)c
for Ge are considerably higher than those predicted
by the Wailer-Hartree theory, particularly at small
values of Q, is interesting. A similar trend was
observed by Eisenberger and Platzman when they
carried out an exact calculation for hydrogenlike

TABLE III. The binding energies of the electrons in
free Si and Ge atoms, and the values of the average
transfer of energy (in eV) to an electron at the various
points of measurement. The energy of the incident pho-
tons in 8. 04 keV.

sin e/X (A ') 0.5

FIG. 3. Experimental results for Ge. The dotted
curve gives the IA values calculated by Currat et al,.
(Ref. 8). With the Wailer-Hartree normalization
[Eq. (14)], the IA values coincide with the Waller-
Hartree curve (solid line). For an explanation of further
details of the figure, see the caption to Fig. 2.

0
ZOg —202

Si

1839
149 —99

0 1 2 3

4 34 94 183

Ge

11 103
1414—1217

180-29

0 1 2 3

4 32 87 169
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free atoms. However, the main reason for the
departure from the Wailer-Hartree theory is pre-
sumably that the theoretical calculations are for
free atoms rather than for atoms in a solid. At
low Q the main contribution to (do/d&)c comes
from the valence electrons, whose energies are
affected by the crystal field. At (h, k, l) = (&, &, &)

the average energy transfer to an electron is about
4 eV, which is considerably larger than the mini-
mum energy gap of 0.7 eV between the valence and
conduction bands of Ge. This explains qualitatively
the observed high value of (do/d&)c=2. 51 at this
point.

The present findings suggest that the Waller-
Hartree values are valid when the energy transfer

tv' -wz is comparable with the binding energies
of the majority of the electrons. This seems to
apply even when EL, =4(w& -m&), which is the case
at (—,', —,', —,') in Si. When the energy transfer is very
small, the solid-state effects become important
and the theoretical calculations should include the
band structure of the crystal. Apart from provid-
ing a better understanding of the Compton process
at small energy transfer, this would be of impor-
tance to crystallographic studies. For, let us sup-
pose that the TDS intensity is to be determined in
a case similar to that at (-,', 2, 2) in Ge. Direct
subtraction of the Wailer-Hartree value of 1.0
from the total of 4.0 would yield a value of 3.0 for
(do/dA)»s, whereas the observed value is l.5.
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