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Exciton states of diamond and zinc-blende semiconductors in a high magnetic field are investigated

taking into full account the degeneracy and anisotropy of the valence bands. An improved version of
the adiabatic method introduced by Rees is derived and generalized for arbitrary orientation of the
field. Simple one-dimensional adiabatic H~mi&toniaiis which describe the motion component parallel to
the magnetic field are obtained. The introduction of a suitable set of Gaussian basis functions is shown
to provide exact analytical expressions for the adiabatic-potentials matrix elements. A very accurate
procedure is used to diagon~b~z the Hmi&tonians for the various states. Results are obtained for H
parallel to the f001] and [110) directions and for several materials. The range of validity of the present
adiabatic approach is discussed, and the theoretical results are compared to experiment.

I. INTRODUCTION

In the last two decades a considerable amount
of experimental and theoretical effort has been
devoted to the investigation of the electronic states
of solids in the presence of an external magnetic
field. ' In particular, the magnetoabsorption of
semiconductors has received great attention be-
cause it can provide very important information
about the electronic band structure of these ma-
terials. ~ However, it has become more and more
evident that the various simplifications commonly
introduced in the theoretical literature fail to re-
produce quantitatively the experimental data, and
that a meaningful interpretation of magnetoabsorp-
tion experiments is very difficult because of the
presence of both the complicated valence-band
structure and the electron-hole Coulomb interac-
tion. s In fact, it was realized very early that the
wealth of the observed structure showing a great
number of absorption peaks, unevenly spaced and
of different intensities, is a consequence of the
complexity of the valence bands. 4

The theoretical problem of the Landau levels of
cubic semiconductors was first satisfactorily
treated by Kohn and Luttinger' and their solution
was later refined by several investigators. This
Landau-level analysis, although successful in the
interpretation of cyclotron-resonance experiments,
is not adequate to describe magnetoabsorption near
the fundamental edge. This is clearly shown by
the measurements of Edwards and Lazazzera on
the direct edge of Ge, ' where the evident nonlinear
dependence of the peak positions on magnetic field
is indirect contrastwith the predictions of the Lan-
dau-level theory. In addition, the fact that the lowest
peak extrapolates, as the magnetic field H-O, to
the energy of the direct-exciton ground state is a

definite indication of the importance of the elec-
tron-hole Coulomb interaction.

This aspect was theoretically supported by the
pioneering work of Elliott and Loudoa 11 who
treated the case of simple parabolic bands in the
high-field limit. They concluded that, associated
with each Landau level, there is an exciton series
and that the most important absorption peaks in the
magnetoabsorption spectrum correspond to the
transitions to these exciton levels, with interband
Landau absorption as an insignificant shoulder.
This work stimulated several theoretical efforts'
aiming both at the extension of the original approach
to the whole range of magnetic fields and at the
testing of the validity of the adiabatic method used
by Elliott and Loudon. In particular, the work by
Baldereschi and Bassani" provided the first ac-
curate calculation of the four lowest even-parity
states for all values of the magnetic field. These
calculations account for some qualitative features
of the observed magnetoabsorption spectra, such
as the nonlinearity of the lowest peaks; however,
their common feature and limitation is that they
assume simple parabolic bands, so that they pre-
dict a simple and polarization-independent spec-
trum. These features are in sharp contrast with
the experimental observation of Johnson and Fani
of a different diamagnetic shift of the ground ex-
citon state of GaSb for light polarization parallel
or perpendicular to the field, and with the com-
plicated fine structure observed by Johnson' in
Ge and InSb. It is therefore evident that any the-
ory, aiming at a detailed quantitative interpreta-
tion of magnetoabsorption experiments and at an
unambiguous determination of band parameters,
must incorporate simultaneously the electron-hole
Coulomb interaction and the complicated band
structure.
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The impossibility to work out a unified theoret-
ical treatment, valid for all fields, for the case
of simple bands, clearly discourages any such
attempt for the realistic case of degenerate and
anisotropic bands. The difficulty of the problem
lies in the simultaneous presence of the Coulomb
attraction and of the localization along the magnetic
field lines. When one of the two effects is domi-
nant, it is possible to consider the other as a per-
turbation and to include it by a suitable approxi-
mation. Recently, we have shown~a that, in the
low-field region, where the cyclotron energy is
small compared to the Coulomb binding energy of
the exciton, a second-order perturbation treat-
ment reproduces the salient features of the ob-
served spectra. In fact, the diamagnetic shift
was shown to be the sum of two contributions; the
first one corresponding to the familiar hydrogenic
result, ~' and the second one depending on the an-
isotropy of the bands, which is different for the
various light polarizations relative to the field.
The quantitative agreement with the available ex-
perimental data for GaAs and GaSb' wa, s quite
encouraging, thus pointing out the effectiveness
of the inclusion of the realistic band structure.
The perturbation treatment, however, is limited
for most semiconductors20 to a small range of
magnetic fields; from the experimental point of
view, on the other hand, the high-magnetic-field
region is the most frequently investigated, and,
due to the wealth of clearly resolved fine struc-
ture, obviously provides the ideal ground for a
detailed comparison between theory and experi-
ment. In this region the magnetic localization
predominates over the Coulomb interaction and
the adiabatic method, introduced for the case of
simple bands by Elliott and Loudon, " is an excel-
lent approach. "

The extension of the adiabatic method to the
realistic case of cubic semiconductors was first
considered by Zhilich 3 and by Bees.2'~' In the
analysis by Zhilich, ~ the matrix corresponding to
the Landau problem, (i.e. , without electron-hole
interaction) is diagonalized first, and the Coulomb
interaction is then averaged over the previously
obtained Landau wave function. This procedure,
therefore, neglects completely the admixture
among Landau levels, with the same quantum
numbers, belonging to different "ladders, " which
is important for several exciton states. Further-
more, a complicated and approximate method of
solution is used to solve the resulting one-dimen-
sional Schroding'er equation. Rees, on the other
hand, includes the Coulomb interaction before
performing the diagonalization, thus correctly
including, in principle, the admixture of Landau
levels. His analysis was originally worked out
for the acceptor problem and later applied to

excitons. " For the latter case, however, his
approach is invalid, owing to the use of an incor-
rect effective-mass Hamiltonian for the relative
electron-hole motion, as discussed in Sec. II. In
addition, the method was not pushed to its full
potentiality to provide accurate numerical results,
due to approximations to the adiabatic potentials
and to the use of oversimplified and unrealistic
variational trial functions. Rees's work, however,
is important in that it introduces a formalism most
convenient for this problem.

In a recent letter, we proposed an improved
version of the adiabatic method as applied to the
case of cubic semiconductors, which provided the
first quantitative interpretation of the fine struc-
ture observed in high-resolution measurements of
magnetoabsorption in Ge." It is the purpose of
the present paper to describe in detail this method
and to provide extensive numerical results for
several materials for which experimental data are
available.

In Sec. II we formulate the problem, briefly
outline the method, and give the adiabatic Hamil-
tonians for the relevant exciton states. The analy-
sis is carried out for the [001] and the [110]direc-
tions of the magnetic field. In Sec. III the selec-
tion rules for optical transitions from the ground
state are obtained and briefly discussed. A Gauss-
ian basis set is introduced in Sec. IV, and the
analytical expressions of the matrix elements of
the adiabatic potentials are given. In Sec. V the
numerical solution of the eigenvalue problem is
discussed and results for several materials are
obtained and compared with available experimental
data. In Sec. VI we summarize the main results
of the present investigation and discuss possible
future extensions.

II. FORMULATION OF THE PROBLEM: THE ADIABATIC
APPROACH

In the presence of an external magnetic field H

the wave function for a direct exciton at rest in
the crystal can be written~'

where V is the volume of the crystal, Q, , (r, ) and

@„(r„)are the Bloch function of the ith conduction
and the jth valence band at the I' point, respective-
ly, and r, and r„denote the electron and the hole
position, respectively.

The summation over i, in the case of interest
here, i.e. , in cubic semiconductors, includes two
terms corresponding to spin up or down in the
conduction band; the sum over j includes four
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X,„g=EP, (2)

where, using the gauge A= —,'(H&&r),

$C,„=K, —iV+ H~r -R„ iV + H~r28' 2hc

2

(3)

terms corresponding to the upper multiplet of the
spin-orbit-split valence band. The index n labels
all the quantum numbers associated with the rela-
tive electron-hole motion. The functions g„„(r),
where r = r, —r„, satisfy the effective-mass equa-
tion:

equations; however, states with up or down con-
duction-band spin are uncoupled, since we neglect,
in Eq. (3), the electron-hole exchange coupling
whose effect is negligible in comparison with the
Coulomb and magnetic terms, and the system
splits into two four-by-four systems. K, is the
conduction-band Hamiltonian and K„ is the valence-
band Hamiltonian. It is important to point out, in
Eq. (3), that the gradient operator appears with
different sign in the electron and in the hole Hamil-
tonian, thus giving rise to terms linear in H.
These terms, which are very important for the
case of degenerate bands, were omitted by Rees.
The explicit expressions for the conduction and
valence-band Hamiltonians are

A is the vector potential describing the field H,
and & is the static dielectric constant. Since P„;,.
(i 1, 2=; j=l, ~ ~ ~, 4) is an eight-component wave
function, Eq. (2) is an eight-by-eight system of

2

Jt, (k)= k +g*o H
2 pn.

and2

(4)

2

-K„(k)= (y, +-; yz)-,
' kz —yz(k'J z+ k„J,+ O'J, ) —2yz((k„, k }(J„J}+(k„kg(J„JQ (+k„kj(J„Jg)

PBQ

I

xJ H———q(J, H, + J,H, + J,H, ), (5)

(A, B}= ', (AB+ BA) . — (6)

where y„y2, y3, rc, and q are the five valence-
band parameters introduced by Luttinger. In
Eq. (4), w, is the conduction-band effective mass
and p,* the effective magnetic moment of the con-
duction band; in Eq. (5) mo is the free-electron
mass, J„, J„and J, are the 4x4 angular-momen-
tum matrices corresponding to a spin--,' state, and,
following Luttinger, we define

(; 0

0 1

1 0 0

—,'W3 0

0 0 ol
0 0

It is important to note that the change of sign of
the gradient operator in K„ implies also a sign
inversion for the terms containing ~ and q. The
choice of the convenient representation for the
angular-momentum matrices is suggested by the
direction of the magnetic field; in practice it is
always convenient to choose a representation for
which the component of J along the magnetic field
is diagonal.

Let us first consider the case inwhich the mag-
netic field is along a cubic axis, for instance, the
z axis. %e then assume

0 2 0

0 0 3

K = i V + —(H && r)2c
and the following mass parameters:

(10)

The explicit expression for the effective-mass
Hamiltonian (3) is easily obtained using Eqs. (4)-
(9) and is very complicated, consisting of two four-
by-four operator matrices, which differ only in
the sign of the conduction-band spin term.

It is convenient to introduce the operator

l
--,'~3i z 0

0 --,'~3z 0

»i o
= yi/»~o

1/p& = rz/&&o

1/pz = 2J 3 yz/mo,

1 1—= —(rg+ rz),
Hlg OZQ

(11)

(12)

(13)

(14)
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1 1
(~g —ra),

mg mp

1 1 1
+ 7

mq mp

and to adopt effective units, i.e. , to assume

$08 8 E'

0 2g2~2 0 ~ 2 (2O)

1 1 1
+ I

m~ m~

as units of energy and length, respectively, and to
introduce the "reduced field*'

1 1 y2+y3
p 2 mo

1 1 y3-y2
2 mp

y= effH/2pocRO.

The explicit expression of the four-by-four
Hamiltonian matrices is

(2i)

uuu (p„+P2) + (1 - 2 up ui)P,

+y ~-~ (xP„-yP, )

—-uuL(3&+ q q)
)no

+ —~r (.~'+y') + u'r-—1 u 2 2 2 2

4 u r

~3up K& ~3» K2 -i —()K P,u
u2

0

~(P.'+ P'„)+ (& + 2u oui)P.""

ex

~~uo K2 3 uo K2
us

+y ~-~ (~P, -yP„)2u
mp

+ ~(K+ t g)
nl p

+ —~y (~ +y )+ u'y ——2 2

4 u' r

0

~(P,'+ P'„)+ (&+2ugui)P.'
(22)

i~K P+ 4

0

0

—i ~K,P4
. u

+ y ~—,(xP„-yP„)
2up
mg

—uuL(K+-,' q)
mp

+ —~r (~ +y ) + u'r ——2 2 2

4 ul r

duo Ka ~3uo K2

K — K

~(P.'+P,')+ (& —2ugu )P,'

+ y ~ — (xP, - yP„)
2up

mf,

+ ~(3K+/ q)
mp

+ —~ r (x'+y')+ u'r ——2 2 2
4 u r

In Eq. (22), the + stpn corresponds to the two
possible orientations of the conduction-band spin;
the operators + and K are defined as follows:

K, =K, +iK, . (23)

It is important to point out that Eq. (22) contains
in all the diagonal elements a term proportional
to L, —= xP, -yP„, which was omitted by Rees.24

An exact solution of the Schrodinger equation for
the Hamiltonian (22) is obviously out of the ques-
tion. Since we are interested in the high-field
region, i.e. , y»1, we will approach the problem

using the adiabatic method. Before considering
its application to the case of the complicated band
structure, we briefly outline the method as ap-
plied in a simple-band case.

It is well known that a free electron in a strong
magnetic field tends to move along the field lines
and it is confined to a shallow cylinder, whose
radius is p = y

" . When y»1, the localization
due to the field is greater than that due to the Cou-
lomb attraction, so that the effect of the latter is
mainly in the field direction. One can therefore
say that the very rapid x-y motion is insensitive
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to the presence of the Coulomb field and that the
slow z-component motion is determined by a po-
tential which is the average of the Coulomb inter-
action over the very rapid x-y motion. In the
absence of Coulomb interaction the eigenfunctions
of the Landau problem are2

Following the analysis introduced by Rees, the
adiabatic method for the degenerate-band case
consists of replacing in (29) the plane waves
a, e(~~' with the functions h, (z) (i = 1, 4), that is, in
writing

Here

h (x y z) (2(()-1/2 e())zs(l(l )-1/2

&&cite Ill -((/4))'o L I(l(( 2)
2

n

= (2(() "'e' ""
~
n, l ) . (24)

h, (z)l n„ l &

h (z)~n, l+2)
&„„x,y, z =

h, (z) n„ l+I&

h(z)ln 1+3&

(31)

p = (x'+ y')"', y = tan '(y/x), (25) with the normalization condition

I.„' (x) is the generalized Laguerre polynomial, z~

and N„, is a normalization constant given by

n(n+ I ll )!
nl (j. q)g)+1

X 2P I
(2s)

Following the physical argument outline above,
one replaces (2w) '"e"~' by a function h„«which
satisfies a one-dimensional Schrodinger equation
whose potential is given by the average of the Cou-
lomb potential over the x-y motion, that is

(32)

In E(I. (31) it is understood that, whenever one of
the a; is zero (see Appendix A), the corresponding
h, (z) is also vanishing. Therefore, for any given
n and l quantum numbers, there will be as many
exciton series as interacting Landau levels.

The functions h;(z) satisfy a system of coupied
differential equations in which the potentials are
the average of the Coulomb potential over the x-y
motto'n, that is,

with

V„,(z) =(n, l~
~
n, I & . (2s)

a, e' "~n~, l)

nl k~

a, e" ~n„i+I&

aq e" '
~
nq, l+ 3)

In the case of degenerate bands, the solution of
the Landau problem is known exactly if the small
term proportional to p.,' are neglected in the off-
diagonal elements of the Hamiitonian (22). In fact,
these terms are very small because for all cubic
semiconductors with direct exciton spectra the
values of y = —', (yz+ ys) are very large in comparison
to 5 = —,'(y~ —yz). In this case the Landau eigen-
functions are conveniently expressed by

V„, (z) =
& n„ l,. I I(n, l, )

—2(n () "dxx'"'e "[I, "'(r)j
(n, + Il, t)( () (2y/y+")'"

(34)

In order to investigate the effect of the Hamil-
tonian (22) on the function (31), we must determine
the action of the operators K„K on the states
I(n, l&:

K, ~n, l)=(2y) n ~n —1, l+1), l&0 (35)

K+
~
n, l ) = (2y)'"(n —l)'"

~
n, l + 1 ), l & 0 (36)

K ~n, l)=(2y)" (n+1)" ~n+I, l —1), l&0 (3V)

l)=(2y) (n —l+1) ~n, l —1), l ~0 (38)

(K„+K„)~n, l)=y(2n 21++1)~n, l), l&0 (39)

with (Kg + Ky)
~

n& I) = y(2n+ I)
~
n, l &, l &0. (40)

(30)

and where the four quantum numbers n1, n2, n3, n4
are expressed in terms of a single quantum num-
ber n by simple relations which are listed in Ap-
pendix A.

After straightforward but tedious calculations one
obtains the adiabatic Hamiltonians for the z corn-
ponent of the motion, which are different for the
various values of the quantum number l. As shown
in Sec. III, the only states of interest for optical
experiments are those with l= —3, -2, —1, or O.
The adiabatic Hamiltonian for E=O is:
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y ~(n++2) —~(3'+ f q)
p,

2
mp

*P + (1 2&p/P1)P, + V„~p(Z)

2~3 y ~(n + 2)1/2 (n + 3)1/2 -2( y)""" (" )'"p
P2

z

+ex

ZW3y ~(n+2)"'(n+ 3)'"

~(2 y)
1/2 ~+ ( + 3 )

1/2p
4

y, (n+$)+ (ff+-,' q)
I/. mp

-4 ", *p" +(1+2',p/p, ,)P',

+ V„, 2(~)

—z(Zy)'" ~(n+1)'"P
P2 I

y ~( +$) - ~(g+- q)
2p,

nip

2p
+ (~ + 2 pp / pl)

h

+ V„,(2)

2&3 —9(n+ 1)" (n+ 2)"'

(2y)1/2 ~& (n + 1)1/2p
P2

2 &3 y ~~ (n + 1)1/2 (n + 2)1/2

P

y ~(n+&)+~(3~+ ~4 q)
Zp

mp

+ (& —2vp/u1) p,'+ V„,, 3(2)

(41)

(a) For l= —1:

&ii = y (n+ ~+) — (3ii+ Q q) +
2Po &o 2Po

mp h

+ (1 2iio/ui-)P'. + V., -i(z), (42)

Z„=y 2,o(n++)+ ' (ii+!q) — o ~ p, *
p.

' Z
mo n

+ (1+2&o/iii)P, + V„z i(z),

X„=y —,(n+, ) — (~+-, q)~i-*2 pp ~ po
Pl p

+(1+2iioliii)P.'+ V. o(z), (44)

X„=y o(n++)+ "' (3~+Qq)-
PR p h

+(1 —2i o/~i)P!+ V., o(z). (45)

(43)

(b) For f= —2:

&ii= y '(n+-, ) — "' (3'+ P q)+2~o 3 ~o 4Po
mo P2h

+ (1 —2 go/IJ, ,)P,'+ V„,(z),

R„=y, (n+-, )+ ii-(~+-, q)+ P+2~p
tnp

+ (1+2@,/ p )P'. + V„, ,(z),

+(1+2uo/y )P,'+ V„, ,(z), (4

(45)

(47)

The adiabatic Hamiltonians for l = —1, —2, —3,
differ from the Hamiltonian for l = 0 only in the
diagonal elements, the off-diagonal terms being
unchanged. We therefore have to specify only the
diagonal elements which are:

PBp h

+(1-2uo/iii)P!+ V., i(z) . (4p)

(c) For l= —3:

X„=y '(n+-,') — ' (3~+ ~4q)+ '~ P+2Po 1 j[Lo 6P p

P1l p h

+(1 -2ii, /p. ,)P,'+ V„, ,(z), (50)

X» = y -, (n+ -,) + (ii+ -, q)-2I[Lp, P.p, 2P, o

Vl p Plh

+ (1+2ii / i)iP, + V„ i(z),

+(1+2&o/iii)P, + V„o(z),

&«=y "'(n+ l)+ ' (3~+'f q)+ &'I
P. Pl p )

+(1 —2 iso/ii, )P,'+ V„, o(z) . (53)

Equations (42)-(45), (46)-(49), (50)-(53), «-
gether with the off-diagonal elements in Eq. (41),
allow one to write the adiabatic Hamiltonians for
all states of interest, when the magnetic field is
parallel to the cubic [001] axis.

The above analysis can be extended to an arbi-
trary direction of the magnetic field. We now

briefly outline this procedure for the case in which
H is parallel to the [110]direction which is of con-
siderable experimental interest. Let us consider
Eq. (3) together with (4) and (5), which provide
the Hamiltonian of the problem for an arbitrary
direction of the field. When H is parallel to [110],
it is convenient to choose a new coordinate frame
(u, i:, ut) defined by the transformation:
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K„= (K +K„),
1

v2

K, = (K~ —K„),
1

v2

(54)

(55)

(56)

so that the w direction is along the field. It is easy
to show that one gets:

2
—Z„(K) = [(yz+ —', y2)~2K —y(K„J„+K„J~+K~ J„)I—2y ((K„,K)(J„J,)+(K„,K H J~ Jwf+(K+~K)(Jw~ Js I)

0

+5[K„J„+K+~+KJ„+2((K„K)IJ„J) [K,K-)(J,J j—[K K )[J Jd)l—

qH [Jw + J J,+ 2Ju (Ju,Jw) ] ~ (57)

As it was to be expected, ~8 Eqs. (57) and (5) are
formally identical but for the terms in 5 and q.
In order to give an explicit expression to (57) we
must select a specific representation of the angu-
lar-momentum matrices. It is convenient to
choose for J„,J„,J the expressions given for
J„,J„J„respectively, in Eqs. (7)-(9); this cor-

responds to a canonical tr'ansformation on the
Hamiltonian. The explicit expression of (57) thus
obtained can be written as the sum of two parts,
one not containing 5 or q terms which is very
similar to (22), except for having different mass
parameters; and the second one, which reflects
the cubic symmetry of the crystal, and is given by:

3 p,——"()[K'+ K' + 3K']
u lo s

d

—6~ qy
mo

—~ [K2-3K2-2(K.K ]]4 P,d

3v3 p,~qy
4 mo

—iav 3 ~K,K„

-X„(K)=

H. c ~

H. c.

1 p,—~ [7(K'„+K'.)+K'„]
2 P,d

5 p
2 mo

1 p—~[7(K +K )+K ]

~ qy2 mp

saWS ~ K,K.

~]K -3K, -2(K,K j]4 &6

3v 3 ~p,+ ~qy
mo

(58)

H. c ~ H. c.

3—~[K2+K2 + 3K2]

mo

In Eq. (58), K, and K are, in analogy with (23), ever, a simple rotation by 4m in the u-v plane gives

K, =K„~iK„. (59) K„+3K„=2(K„.+ K„.)+ (1/2i)(K, —K ), (60)
In order to consider the effect of (58), we remind
that for all materials of interest, 5 is much small-
er than y and q is very small. Therefore, Eq. (58)
can be considered as a perturbation and included
to first order. It is important to point out that Ka

and K~ appea. r in the diagonal elements of (58) with

different coefficients, so that the diagonal elements
of the total Hamiltonian have different mass param-
eters in front of the K~ and K~ operators. How-

K'+K'=4(K' +K' ) —(3/2i)(K'-K') (61)

The first term on the right-hand side of Eqs. (60)
and (61) has just the effect of redefining the mass
parameters in the diagonal matrix element of 3C,„.
The eigenstates of the operator so obtained are un-
affected by the —,'w rotation (except for a phase fac-
tor, which, of course, is immaterial). Therefore



1740 M. A LTA RE LLI AND N. O. LIP A RI

we use the states In, I) in terms of unrotated co-
ordinates as our basis set. The second term on
the right-hand side of Eqs. (60) and (61) does not
contribute to first-order perturbation theory and
can therefore be ignored.

The direction M was chosen to be parallel to the
external field, so that the corresponding motion
component can be decoupled from the motion in the
u-v plane by the same adiabatic procedure used
for the [001] direction. The method of solution of
the adiabatic Hamiltonians for the [001] and [110]
directions of the magnetic field will be given in

Sec. IV.

III. SELECTION RULES

In Sec. II we obtained the adiabatic Hamiltonians
for the exciton states with / ranging from —3 to 0.
Clearly these are not all the possible states, but

they are the only ones which can be created by one
quantum absorption. In fact it is well knowne that,
for an exciton state to be optically allowed, the
matrix element

(62)

must not vanish. Since the electron-hole exchange
interaction has been neglected, the states with
conduction-band spin up or down, are uncoupled
and (62) reduces to

In order for an optical transition to be dipole
allowed it is therefore necessary that the jth com-
ponent of the envelope functions be nonzero at the
origin (i. e. , I, = 0) and that its correspondent
Bloch edge functions be symmetry allowed. Since
the four quantum numbers appearing in the en-
velope function are given by l, l+2, (+1, and /+3,
respectively [see Eq. (31)], it is necessary that I
be ranging from —3 to 0. Furthermore, for that
component of the envelope function with l,- =0, the
term in brackets in (62) must be dipole allowed,

and this latter requirement specifies the light-
polarization condition. The evaluation of $&(0) is
easily accomplished by remarking that~9

I 11~ i (0)

for /,. =0, so that

After straightforward considerations, one obtains
the selection and intensity rules listed in Table I.

It is useful to recall at this point that in the
present analysis we have assumed the same effec-
tive-mass Hamiltonian for both diamond and zinc-
blende lattices, i. e. , we have neglected, for the
latter case, the very small linear terms (odd under
inversion). This means that the eigenstates have
a well-defined parity, so that the over-all exciton
envelope function must also have definite parity,
since the Bloch edge functions for conduction and
valence bands are, respectively, odd and even.
Therefore, all components of the envelope function
must be of the same parity; for optically allowed
states, which are the ones of interest here, each
component must be even, because, as shown earli-
er, one of them must be nonvanishing at the origin.

It is convenient at this point, in order to make
the comparison with the results of other authors
easier, to establish the connection between our
representation, involving the quantum numbers n
and l, and the one used in Refs. 4 and 7 and
based on one-dimensional harmonic-oscillator
wave functions. To this aim, one must remark
that the decoupling of the a' and b' set of levels '

is valid only at K, =0, and therefore is no longer
possible in the presence of the one-dimensional
effective Coulomb interaction, when K, is not a
good quantum number. For every z and l value
one obtains one, two, three or four exciton series
(see Appendix A and Sec. II), which are associated
with the Landau edges specified in Table II, in the
notation of Refs. 4 and 7. In the table, c(n) (n
= 0, 1, 2, . . .) denotes the nth level in the conduction-
band ladder with spin up or down.

TABLE I. Selection and intensity rules for optical transitions in the 0, po-
larization for Faraday configuration, and in the 7(. polarization in the Voigt con-
figuration. The conduction-band spin characterizing the final state of an al-
lowed transition is given, as well as a relative intensity factor.

l=0

l= —2

Spin
0~

Intensity

yy I k)(0) I

—,y I h, (o) I'

Forbidden

Forbidden

Spin Intensity

Forbidden

Forbidden

-'y I hp(o) I

&~ I a, (0) I
'

Spin Intens ity

Forbidden

Forbidden
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3

Landau edges

b (O) -c(O)

b'(1) —c(1)
a'(0) —cO)

b'(2) —c(2)
b (2) —c(2)
a+(1) —c(2)

b'(3) —c(3)
b (3) —c(3)
a'(2) —c(3)
a (2) —c(3)

b'(1) —c(0)
a (o) -c(o)
b'(2) —c(1)
b (2) —c(1)
a'(1) —c(1)

b'(3) —c(2)
b-(3) —c(2)
a'(2) —c(2)
a (2) —c(2)

b'(2) —c(0)
b-(2) —c(O)
a'(1) —c(0)

b'(3) —c(1)
b-(3) —c(1)
a'(2) —c(1)
a (2) —c(1)

b'(3) —c(0)
b-(» —c(O)
a'(2) —c(0)
a (2) —c(0)

TABLE II. Correspondence between the notation used
in the text and the Landau-level labeling of Ref. 4. The
conduction-band ladders are jointly labeled c(n) Q =0, 1,
2, ~ ~ ~ ), the P* term in Eq. (22) (see text).

used is enlarged. The choice of a set of functions
is dictated by the physics of the problem and by
the simplicity of the Hamiltonian matrix elements.
In the present work, we adopt a Gaussian basis
set because it conveniently compromises between
both features outlined above.

The exciton envelope functions consist of four
components, which, as discussed in Sec. III, must
be of even parity. This means that the h, (z) must
be even (odd) if l,. is even (odd), so that the expan-
sions are

N

h, (z) =Z c„e /' if l, is even,
j=1
N

h&(z) =E c&/ze ~/' if l, is odd.
j=1

(64)

(65)

S.'= dze' &' j'=p ~m
ij ( )1/2 ) (65)

Let us now discuss the choice of the parameters N
and o,. (j=1, . . ., N) in Eqs. (64) and (65). The
dimension of the basis set N is determined so as
to ensure convergence of the eigenvalues and will
be discussed in detail later, when numerical results
are displayed. The smallest and largest of the

z, 's are chosen in such a way as largely to en-
compass all reasonable values for the extension
of the wave function in the z direction; the other
o j's are chosen in geometric progression between
the two extreme values. This latter criterion is
not critical and any reasonable distribution of the
~j's will be acceptable.

In practice, the problem is reduced to the cal-
culation of the overlap and Hamiltonian matrix
elements in the nonorthogonal basis set. Since
the basis set includes both even- and odd-parity
functions, there are two types of overlap matrix
elements; for even functions:

IV. METHOD OF SOLUTION

In Sec. II the adiabatic Hamiltonians appearing
in the one-dimensional Schrodinger equation for
the motion along the field were derived. An exact
solution of such systems of four coupled differential
equations, involving very complicated effective
potentials, is clearly out of question. One must
therefore resort to numerical methods. We choose
to adopt here a method which is of widespread use,
for example, in band-structure and molecular
calculations; that is, we expand the unknown wave
function in terms of a known set of functions. This
amounts to transforming the differential problem
into a secular determinant for the coefficients of
the expansion. The above procedure is exact when

the set is complete; in practice, since complete-
ness is achieved only by an infinite set, the use of
a finite basis always implies an approximation,
which can be made better and better, as the set

and, for odd functions:

WmS-= dzz e' f' j" =
2( ~ ~ )3/2 (66)

The matrix elements of the operators appearing
in the adiabatic Hamiltonians (except the adiabatic
potentials) involve the following integrals:

+a d3

ya M 3
-Oi;g~ d I -g g&i

dz ' ' (a, +a)
pa

(66)

(69)

The adiabatic potentials, given by Eq. (34), are
very complicated expressions, which, in previous
treatments of the problem, were always approxi-
mated by simple analytical forms or by numerical
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interpolation. " In the present treatment one needs
only the matrix elements of the potentials in the
Gaussian basis set. In Appendix B it is shown that,
by involved calculations, it is possible to obtain
exact analytical expressions for these quantities
in terms of elementary functions. It is important
to note that, in the present approach we have
avoided the difficulties of calculating the adiabatic
potentials, because all one needs are their matrix
elements and these we calculate exactly in very
simple form.

The eigenvalues are obtained by solving, for
each l and n, the determinantal equation:

IIH —Es II
=0 (k m=1 ~ ~ . , 4N). (70)

Here S~ is a block diagonal matrix given by

S,.'j 0 0 O

0 S~J 0 0 (. .
)

where the upper (lower) sign corresponds to even
(odd) l. The matrix H„„ is dependent on l (and also
on n}; it is obtained by replacing every element of
(41) (or the similar adiabatic Hamiltonians for
other l's or field directions) by an N&&N matrix,
whose entries are given by its matrix elements in
the basis set. For convenience we write, as an
example, the l =0 matrix for the field a.long [001]
and [110]:

y~(1) S+ ~ E(1)P+

+ Vn1 o;ij

yC„S',,

y I/2D„M

yC„S';j

yA (2) S+ + B(2 pn ij

+ Vn

y D„Mj

yA'"S-. . + B"'P-..
n ij ij

+ V„

—y Dn 2Mi;

yC„1S;j

(vl)

0 1/2—y Dn 2M;
yA (4) S- + B(1)P-

+ Vn4, 3;ij

In Eq. (71), for H Ii [001]:

++2 — 3K+ g +P, ~ 72
Plo

A„= 2po —+ ——
I

(n+~o) — (S~+ Qq)+ g*,1 3 1 t ~o
2 pe p ozp

(a0)

E"'= I —2p, o/p, , (73)

A"' = '(n++)+ "' (a+-,'q) —4

(74)

g&s)
I

&o( g) Po
(

i
)

o

(va)

3 1E'" =1 —2p, oI
—+ ——

&@1 2 Pe

~n = 2&o i + (~+ rq)
1 3 1 ~o

p, 2 pe»p
1 3

4 p
Ply 2 Pe

(al)

(a2)

Po/4s ~
(va) 8 =1+2poI +—(2) ( 1 3 1

2 ~e
(as}

A'„+ = ( o+n+z) + a(3~+ P q) — + p. ~6~o
»o Vl Q

(77) A„= 2po —,———I- (~+ ~q)(3) 1 3 1 & go
2 &e i »o

C„=2v 3 ~( +2)'"(n+3)'"
p,

D =W~~(n+3)"'
n

p

and, for HI) [110]:

(va)

(vo}

t'1 3 1-2l,
I
—,———~ P*,

]imh 2 &e

A'„"= 2go —+ ——+ ' (3~+~4q)4 1 3 1 po

(a4)
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1 3 1&—6 go +
Ply, 2 Pg)

(85)

~p, 1 ~p. (86)

(87)

Similar expressions are easily obtained for all the
other values of l.

V. NUMERICAL RESULTS

Before proceeding to the computation of exciton
spectra of real semiconductors in a high magnetic
field, it is necessary to test the method described
in Sec. III in a simpler case, for which numerical
results have been obtained in independent investi-
gations. The comparison will determine the con-
vergence and the accuracy of the eigenvalues ob-
tained here, thus allowing a meaningful quantita-
tive comparison of the results with experimental
data. This is accomplished by performing a test
computation of the exciton levels in the simple
hydrogenic model, which has been extensively
treated, particularly in the high-field region, by
Baldereschi and Bassani. '~ Since in this model
every exciton series is associated with a single
Landau level, it is convenient to express the re-
sults in terms of the binding energy of an exciton
with respect to the corresponding Landau edge.

Our first aim is to determine the number N of
terms in the expansions (64) and (65) which are
necessary to obtain stable and accurate eigenvalues
%e therefore compute the binding energies of the
ground and lower three excited states of the series
associated with the n = 0, I = 0 Landau edge (Table

III). As it was to be expected, the convergence is
more rapid for the lowest levels. In fact, the
ground and the first excited states are stable, to
an accuracy well beyond the experimental resolu-
tion, when N is about ten. The higher levels ap-
proach stability for larger values of ¹ in practice
/=15 represents a convenient choice, since the
energy eigenvalues are very accurate and the size
of the determinantal equation (70) can be easily
handled by any modest computer facility; this is
the value that is used to obtain all the results re-
ported hereafter. It is interesting to remark that,
before reaching stability, the eigenvalues may not
converge monotonically with N. This is not in vio-
lation of the variation principle, but is a ccnse-
quence of the particular criterion used to select
the basis set. In fact, going from N to N+1 does
not simply mean adding a new function to the pre-
vious basis set, but corresponds to creating an
entirely new set. The amplitude of the resulting
oscillations, however, decreases rapidly with N,
so that the accuracy of the eigenvalues is not af-

BB

2.76
0.384

EL

2.54
0.375

Present calculation

2. 57
0.378

TABLE IV. Binding energy (in effective rydbergs) of
the ground and first excited states of the n= 0, 1=0 series
of a hydrogenic exciton as a function of the reduced field

Second column: theoretical values computed by Bal-
dereschi and Bassani (Ref. 31) with an improved adiabatic
scheme. Third cotumn: theoretical values computed in
Ref. 31 with the method of Ref. 11. The last column
shows the results of the present investigation.

TABLE QI. Binding energy (in effective rydbergs) of
the ground and tower three excited states of the series
n=0, E=0 of a hydrogenic exciton computed with the pres-
ent method, with a number N of terms in the expansion
(see text). The reduced field p is equal to 20.

10

20

30

3.48
0.413

4.42
0.442

5.08
0.461

3.31
0.408

4.27
0.439

4.94
0.458

3.34
0.411

4.30
0.444

4.97
0.461

N Ep E) E2

40 5.61
0.472

5.47
0.469

5.49
0.474

5
6
7
8
9

10
11
12
13
14
15
16
17
18

4.233 40
4.209 59
4, 285 16
3.292 53
4.296 83
4.298 30
3.298 46
4. 298 60
4.298 61
4.298 62
4.298 62
4.298 62
4.298 62
4.298 62

0.296 83
0.440 49
0.426 87
0.431 96
0.441 85
0.443 76
0.443 76
0.443 86
0.444 00
0.444 03
0.444 03
0.444 03
0.444 03
0.444 03

0.046 46
0.148 28
0.13957
0.138 54
0.149 92
0.157 88
0.159 66
0. 159 77
0. 15975
0. 159 79
0.159 84
0.159 86
0.159 87
0.159 88

—55.440 74
-6.0984
—0.828 31
—0.601 49

0.060 81
0.078 54
0.081 28
0.081 53
0.081 45
0.081 43
0.081 47
0.081 52
0.081 55
0.081 57

50

60

70

80

90

100

6.05
0.481

6.44
0.488

6.81
0.494

7.14
0.499

7.41
0.503

7.69
0.508

5.91
0.478

6.30
0.485

6.64
0.491

6.93
0.496

7.22
0.500

7.48
0.504

5 Q3

0.483

6.31
0.490

G. 65
0.497

6.96
0.502

7.24
0.506

7.49
0.510
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TABLE V. Binding energy {in effective rydbergs) of
the ground states of the n=0, 1, 2, and l = 0 series of
hydrogenic exciton as a function of the reduced field y.
In the second column is the theoretical computation by
Baldereschi and Bassani (Ref. 31). The last column
shows the results of the present investigation.

270-
In Sb
HII [~IO

265 —
K II H
m' PQLA

10

20

2.76
1.77
1.43

3.48
2.32
1.88

4.42
2. 98
2. 47

Present calculation

2. 57
1.80
1.49

3.34
2.34
1.95

4.30
3.04
2.53

255—

~ 250—
hJ

245—

240—

235 I

20 40

I
y

25
H (kG)

I

60

I

50

80

30

40

50

60

70

80

90

100

5.08
3.49
2.86

5.61
3.88
3.17

6.05
4.19
3.43

6.44
4.47
3.58

6.81
4.72
3.88

7.14
4.94
4. 08

7.41
5.09
4.25

7.69
5.29
4.41

4.97
3.53
2.94

5.49
3.91
3.27

5.93
4.24
3.55

6.31
4, 52
3.79

6.65
4.77
4.01

6.96
5.00
4.20

7.24
5.21
4.38

7.49
5.40
4 54

FIG. 1. Energy of the ground and first excited states
of the lowest three exciton series of InSb allowed in the
n polarization, as a function of the magnetic field. Here
the gap is 235 eV and the band parameters are from Ref.
34. The X labels indicate excited states.

fected.
Let us now compare the numerical results for

the hydrogenic excitons obtained by the present
method with those of other investigators. In Table
IV, the results of Baldereschi and Bassanie' ob-
tained with an improved adiabatic method' and with
the method of Elliott and Loudon are reproduced.
It is clear, by comparing the last two columns,
that the present results, obtained without approxi-
mating the adiabatic potentials, are more accurate
than those obtained using the method of Elliott and
Loudon. The results shown in column II are ob-
tained by including the effect of higher Landau lev-
els. '5 A comparison with the last column shows,
however, that the extra effect due to this coupling
improves the ground-state energies by only a few
percent, and is negligible for excited states. In
Table V the same conclusion is shown to hold for

TABLE VI. Experimental and theoretical transition energies for InSb, H =39.1 kG, H ll [110], n polariza-
tion. All energies are in meV. In the first column the experimental results of Ref. 19 are given; in the
second the relative exciton states are labeled by the quantum numbers n and l, the order number of the ex-
citon series for given n and l, the number of the exciton level within the series, and the orientation of the
conduction-band spin. Theoretical energy levels are computed with E~ =235 meV and band parameters of:
(a) Ref. 34, (b) Ref. 7, (c) Ref. 35, (d) Ref. 33. Theoretical intensities in the last column are in arbitrary
units.

Expt.
energies

244. 5
246. 3
247. 3
254. 2
255, 5
257. 5

Assignment
(n, l, k, i, spin)

(-1,-2, 1,1, &)

(-1,-2, 1,2, &)

(-1,-2, 1,3, I)
(-2, -1,1, 1, &)

{-1,-2, 2, 1, ~)
(-2, -1,1,2, )}

Theor.
energies (a)

244. 5
246. 8
247. 0
254, 6
255. 6
257.2

Theo r.
energies (5}

244. 6
246. 9
247. 1
255. 0
254. 5
257. 6

Theor.
energies (c)

244. 8
247. 1
247. 3
256. 0
253.0
257. 6

Theor.
energies (d)

244. 4
246. 8
247. 0
255. 0
255. 0
257. 6

Theor.
intensity

1.02
0.022
0. 002
1.31
0.001
0.03
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TABLE VII. Comparison of the present theory with the data of Ref. 19 for
Ge, H=72 kG, HtI [110]and 7( polarization. The notation for the exciton levels
is the same as in Table VI, and the Landau edges contributing to the exciton
series are given in the notation of Roth et al. , Ref. 4. The value of the ener-
gy gap is 889 meU.

Level
(n, l, k, i, spin)

(-1,—2, 1,1, $)

(-2, -1,1, 1, i)

(-1,—2, 1,2, t)

{-2,-1,1,2, i)

(-1,—2, 2, 1, ))

(-1,—2, 2, 2, t)

Landau edges

b '(2) c'(0)
b-(2) c'(0)
a'(1)c'(0)

b'(1)c {0)
a'(0) c (0)

b'(2) c'(0)
b (2)c'(0)
a'(1)c'(o)

b'(1)c (0)
a'(0)c {0)

b' (2)c'(0)
b (2)c'(0)
a'(1)c'(0)

b'(2) c'{0)
b (2)c'(0)
a'(1)c'(0)

Theoretical
intensities

(arbitrary units)

0.71

0.84

0.02

0.03

0.01

0.002

Energy
(meV)

896.2

897.3

900.3

901.7

906.7

907.4

Expt.
{me V)

896.0

897.5

900.5

901.5

905.7

907.0

excitons originating from higher Landau levels.
The preceding analysis has shown that it is pos-

sible to obtain very accurate eigenvalues, and we
therefore proceed to investigate exciton levels of
real semiconductors. Our attention will be focused
on those materials for which detailed experimental
information is available, such as InSb and Ge, '
or for which there has been recent experimental
interest. 2~

For InSb, several sets of band parameters have
been obtained from the interpretation of different
experiments~ or from theoretical calculations. ~~

The use of the various sets of parameters obviously
leads to different theoretical exciton spectra, and
their comparison with the high-resolution data of
Johnson~9 is very useful in providing a good cri-
terion of discrimination among them. In practice,
the relative position of two of the observed peaks
is critically dependent on the valence-band parame-
ters and only the set of parameters given by
Zwerdling et al.~ reproduces the order and the
energy splitting of the observed structures. In
Table VI, the theoretical spectrum obtained using
these parameters is compared with the experimen-
tal data by Johnson at H=39 kG, 8 tl [110], and m

polarization. The results obtained with alternative
sets of parameters are also listed to illustrate the
argument given above concerning the relative posi-
tion of the (-2, —1, 1, 1, 0) and (-1, —2, 2, 1, t)
levels. It is important to notice that the assign-
ment of these two structures is quite unambiguous

since their intensities are very different. The
over-all correspondence between the calculated
and the observed spectra is good, except for the
relative positions and intensities of the second
and third peaks, for which the assignment is not as
unambiguous as that of the remaining structure.
The agreement between theory and experiment can
be very likely improved by fitting the band parame-
ters to the present data rather than using the sets
independently proposed by other investigators. In
Fig. 1 the fan chart for Ingb, with H II [110]showing
the ground and first excited states of the three
lowest series allowed in the m polarization, com-
puted using the parameters of Ref. 34, is displayed.

Another semiconductor for which detailed ex-
perimental data are available is germanium. '
This is one of the most widely investigated materi-
als, and very accurate valence-band parameters
were determined by cyclotron resonance. In a
recent letter, ~e it was shown that the agreement
between theory and experiment is good. The com-
parison for H=72 kG, H !)[110],and r polarization
is reproduced in Table VII. In Figs. 2 and 3, the
ground and first excited states for the two lowest
exciton series allowed in a, and 0 polarization,
respectively, are plotted as a function of the mag-
netic field.

It is interesting to consider, besides the eigen-
values, the behavior of the envelope functions of
the exciton states, since they contain information
about the intensity of the transitions (see Table I),
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FIG. 2. Energy of the ground and first excited states
of the lowest two exciton series of Ge in 0, polarization
as a function of the magnetic field. Here the gap is 889
meV and the X labels excited states.

0.06—
/

the extension of the wave functions in the di-
rection of the field, and the amount of mixing be-
tween the four band-edge functions in the exciton
state. In Fig. 4 the h, (z) components ot the en-
velope functions for the ground state of the lowest
l = —2 series are shown. Note that, as expected,
the localization increases with increasing magnetic
field.

Very recently, the exciton states of GaAs in low

and intermediate magnetic fields were investigated
by Dingle. ~~ An interesting motivation for the in-
vestigation of this material is the disagreement of
various experimental and theoretical determinations
of the valence-band parameters, and particularly

0.02

0
0 I 2

z (e f fective Bohr radii)

I 590
I I

Ga As H II [I IO]

~ POLARIZATION

FIG. 4. z-dependent components h&(z) (i=1,2, 3) of the
ground state of the lowest l =-2, pg=-1 exciton series in
germanium for two values of the magnetic field. z is in
effective Bohr radii. Notice the different ordinate scale.
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FIG. 3. Energy of the ground and first excited states
of the lowest two exciton series of Ge in the 0 polariza-
tion as a function of the magnetic field. Here the gap is
889 meV and the X labels excited states.

FIG. 5. "Fan" chart of the ground and first excited
states of the three lowest exciton series of GaAs allowed
in the m polarization. The gap is 1520 meV and the band
parameters are those of Ref. 33. X labels the excited
states.
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of the parameter K.~ In Fig. 5 a fan chart for
states allowed in the m polarization is shown, using
the theoretical parameters of Ref. 33. The ex-
tension of experimental measurement to higher
fields would indeed provide additional information

very useful for a more precise determination of
band parameters.

VI. SUMMARY AND CONCLUSIONS

In the present paper we have described a simple
method suitable for the computation of extensive
excitonic spectra of diamond and zinc-blende semi-
conductors in a high magnetic field, taking into full
account the degeneracy and anisotropy of the va-
lence bands. The adiabatic approach has been used
to decouple the motion components parallel and

perpendicular to the magnetic field, and no further
approximations have been introduced in the theory.
The matrix elements of the adiabatic potentials
have been calculated analytically and expressed in
terms of elementary functions. The method is
therefore a simple and accurate procedure to ob-
tain extensive exciton spectra in the high-field re-
gion and to analyze magnetoabsorption data of
semiconductors.

The comparison of the present theory with the
high-resolution data in Ge has shown that, when

the band parameters are known with good accuracy,
the computed transition energies and intensities
are in good agreement with experiment. This sug-
gests that, for other materials, the comparison
of experiment with spectra computed with different
sets of band parameters can be useful in discrim-
inating among them, and the discussion of the data
for InSb has proven that this is indeed the case.

Since the present results are encouraging, it is
worthwhile to point out possible lines of future
applications and progress. The main motivation
for this work was to provide a detailed analysis
of magnetoabsorption experiments useful in pro-
viding a more accurate determination of band

parameters. In the future the method, used in
connection with accurate experimental data, could
be applied as a best fitting procedure, rather than

simply as a test on independently obtained sets of
parameters.

The theoretical analysis described above was
formulated for diamond and zinc-blende semi-
conductors whose bands were described in the
Kohn-Luttinger scheme. ' In some narrow-gap
materials it may be important to include more
correctly the coupling between valence and con-
duction bands; a good starting point could be the
Landau-level theory of Pidgeon and Brown. ~ Fur-
thermore, the investigation of semiconductors
with different crystal structures can be approached
with essentially the same technique after modify-

ing the symmetry of the effective-mass Hamilto-
nian.
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n4
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(iii) If l = —2:

ng =n+1

,gz =n+1

ns= n+1

(A l. 4)

The authors are indebted to Professor A. Bal-
dereschi for illuminating discussions and for pro-
viding them with unpublished results. They are
also grateful to Professor D. L. Dexter for dis-
cussions and for a critical reading of the manu-

script; one of them (M. A. ) is indebted to Pro-
fessor Dexter for his continuing encouragement
and support.

APPENDIX A

The relations between the four quantum num-

bers n&, n2, ne, and n4 can be obtained from the
Hamiltonian



1748 M. ALTARE LLI AND N. 0. LIPARI

n4 n

where

(a) n= —1 and a4=0, or

(b) n=0, 1, 2, . . . .

obtains:

(82. 3)

nr 20

[V„,]$, = -2 („,( $(),
dPP'" e '[I;"(P)]'

t + 40 e»(a +up)c2
x dz (2ply+2')'" '

(iv) lf l= —3:

ny =n2 =n3=n4=n

where

n=0) 1) 2, . . . . (Al. 5)

The integral over z gives37

e-(0j+og)c2

[2 / ~ z ]21/2 ~ +o(aP) 1

where

(82.4)

APPENDIX B: MATRIX ELEMENTS OF THE ADIABATIC
POTENTIALS

The adiabatic potential V„,(z) defined by Eq.
(33), is given by

I f ~ot"' 'fc!"(~)l'

a = (42, + cd)/ y (82. 6)

n! ~0

[V„,]„.= —2 '
I

I'! dP

(82. 6)where

and K0 is a modified Bessel function. Equation
(82. 3) then becomes

x 1/[2p/y+2 ]"j . (82. 1)
s=1 —a,

[v„,l, , = e 1' V„,(z) e ~' dz if l is even,Q g2 af .L2

We are interested in the matrix elements of the
adiabatic potentials between functions of the
Gaussian basis set. These matrix elements are of
two different types according to the parity of l,
l. e.

(82. 7)

so that the calculation of the matrix elements
(82.2) reduces to the evaluation of the Laplace
transform of the product of a polynomial and the
modified Bessel function K0. Therefore all the
matrix elements (82. 2) can be expressed in
terms of integrals of the type

~0

I = dpe 'p Ko(ap),
0

and
(82.2)

[V„,];1= ze ~' V„,(z)ze &' dz if f is odd.0f '4 Cg

which can be written in terms of a single hyper-
geometric function3

(82. 2')
Let us consider first the even l matrix element
(82.2). Substituting (82. 1) into (82. 2) and invert-
ing the order of the integrations over p and z, one

1/2

(82.7')
where F is Euler's I' function. For n=0 (82. 7 )
reduces to an elementary function since

F(-2', —,'; —',; —,'(1 - s/a)) =

are sin [—,'(1 —s/a) ]'"
[2(1 --s/a) ]'"

in[[2(s/a —1)] + [2(s/a+1)] )
[ (,/. ,)] n

(82. 8)

For n &0, the following recursion relation applies:

4n -1
F(2& 29n+2t 2X)

4 2 [(1 x)F(29 2yn 2%x)4nx

+ (2x —l)F(-'„-'„.n+-'„x)] .
(82.8)

one finds:

[V„],, = -2I„
[V,o]„.= — Io —4I1 — I2 i

[Vzo];z = —2Io+ 8I1 —10I2+ 4I2 —2I4 li

(82. 1la)

(82. 11b)

(82. 11c)
Furthermore, the following relation holds

F(2, 2,
'

2,
' 2(1 —s/a)) = [2(l + s/a)] ~2 . (82. 10)

[Voo];1 = —2Io+ 12I1 —24I2+ QI2 —
2 I4+ Io —QI2,

(82. lid)
Equation (82.9) together with Eqs. (82.8) and
(82. 10) allows one to express all I„'s in terms of
elementary functions. After lengthy calculations

[Voa]o = —I2 ~

[V12]11= —3I, + 2I2 ,'I, . —

(82. lie)
(82. 11f)
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J = J dpe s'p [K&(ap) —Ko(ap)],

where m ~ 2. We then obtain

(82. 13)

x "s (m t)s m+1J F(- —,', s, m+-,'; —,'(1 -s/a))
2a 1'(m+ ') m

The matrix elements (82.2 ) involve an integral
over z which is easily shown to be

( EX ]+0' )g
p

2

p.us = e "[Ks(ap) —Ko(ap)].i2W'r+ j
(82. 12)

In analogy to the procedure used for even /'s, the
matrix elements (82. 2 ) can be expanded in terms
of integrals of the type

It can be shown that ~

F(+ —,', —;—,'; x) = (1 —x)'"' (82. 17)

Expression (82.15), together with (82. 16),
(82.17), and (82.8) allows one to express all J 's
in terms of elementary functions. After lengthy
calculations one finds

For the m =2 case, (82. 15) involves

F(- l, s; l; «) = (2/4«) [sF(s, —.; —.*;x)

+ —,'(1 —x)F(-,', -'„-*„x)

—(1 —«)F(- —,', -'„-,', x)] . (82. 16)

—F(,', —,'; m-+-,'; —,'(1 —s/a))
~
. (82. 14)

i
The hypergeometric function F(s, s, m+ s, s(1 —s/
a)) has been already reduced to elementary func-
tions in the treatment of the even l's. The follow-
ing recursion relation holds2:

2
Posh; = ——Js

—1
Ãsslo=

~
(4 s-4Js+ Js)

(82. 18a)

(82. 18b)

2

E( -„-„m+-„x-)= 4, 1
[(1 —x)F( -„-„.m ——-,; x)3 ~ 3 4~ —1 y 3 ~

—1
[Ps,l„= (6Js —12Js+8Js —2J, +~s Jo),

(82. 18c)
+ (2x —1)E(-—,', —,'; m + —,'; x)] .

(82. 15)
—1

[los]a =
2 Js ~

3y
(82. 18d)
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