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Theoretical calculations of the mobility in the thermally oxidized silicon surface-inversion layer for

two4imensional electron-lattice scattering at high surface electric field are presented for the low- and

high-temperature cases. It is found that the effective deformation potential associated with lattice

scattering of the inversion-layer electron is not necessaily constant for strongly inverted surfaces, i.e.,
the deformation potential will be surface-electric-field dependent when the electron channel density

varies significantly over a lattice constant. In the high-temperature case, it is found that the calculated

electron mobility is the same as that calculated by Kawaji if the deformation potential is assumed

constant. In the low-temperature high-surface-electric-field case, the electron mobihty is proportional to
Es" (assuming the deformation potential to be constant) and Es '" for a simple model of the lattice

potential. The calculated results are extended to include different surface orientations and their effect on

the occupancy of higher subbands due to the nonequivalence of the valleys. The comparisons of
theoretical results with experimental measurements are made.

I. INTRODUCTION

It is well known that the strong surface electric
fields associated with the surface inversion layer
of an oxidized semiconductor surface can quantize
the motion of the carriers in a direction perpendic-
ular to the surface. Shubnikov-de Haas oscilla-
tions in a two-dimensional electron gas in the
(100}surfaces of a P-type silicon substrate, in-
verted by an electric field normal to the surface,
were first observed by Fowler, Fang, Howard, and
Stiles. ' In their experiment the Shubnikov-de Haas
oscillations were observed only at very low tem-
peratures and high gate voltages, ' at higher tem-
peratures or low surface fields, the quantization
may be smeared out by thermal fluctuations of the
carriers, scattering of the carriers or inhomoge-
neities.

Transport properties in the thermally oxidized
semiconductors have been extensively studied, both
experimentally and theoretically, in recent
years. Stern and Howard' calculated the sur-
face mobility using the model of quantized elec-
trons in a direction normal to the surface and Cou-
lomb scattering of the electrons by charged impu-
rities near the Sio~-Si interface. This model was
particularly successful in explaining experimental
observation, especially at low temperatures and

moderately strong fields. There have been a num-
ber of more detailed and elaborate impurity-scat-
tering calculations in recent years; however, they
all contain the same general features: The mobil-
ity at low temperature increases with the surface
fields in the high-field region. Fang and Fowler
point out that, at high temperatures, lattice scat-
tering may be the most important scattering mech-
anism to intepret their experimental measurement

of the temperature dependence of the surface mo-
bility, while surface-impurity scattering might be
the dominate scattering mechanism at low surface
electric fields. In any event, it seems clear that
surface-impurity scattering cannot explain the ex-
perimental observation of a rapid decrease in the
surface mobility at high surface electric fields.
Kawaji proposed a two-dimensional electron-pho-
non scattering theory to intepret the experimental
observations of electron surface concentration,
mobility, and its temperature dependence. How-
ever, the magnitude of the mobility calculated by
Kawaji turned out to be significantly larger than
that experimentally measured if the bulk value of
deformation potential was used. It has been argued
that a change in the magnitude of the deformation
potential from the bulk value is physically unjusti-
fied. In this paper we show that at very high sur-
face electric field the deformation potential is not
a constant and could be larger than the bulk value
if the electrons are quantized in a layer only a few

lattice constants thick. Some recently published
papers "on the two-dimensional lattice scatter-
ing gave essentially the same conclusions for the
room-temperature case.

In Sec. II, we will outline the basic equation
which describes the scattering of electrons by pho-
nons for the quantized-two-dimensional-gas model.
It is shown that the deformation potential for a two-
dimensional gas is not a constant but surface-elec-
tric-field dependent for very high surface electric
field. In Sec. IQ, we calculate the scattering rate
for two-dimensional electron-lattice scattering and
then calculate the surface mobility for the high-
and low-temperature cases. We then extend the
calculations by considering the effect of surface
orientation and their effect on the higher subband
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occupation due to the nonequivalent valleys with
respect to surface orientations. In Sec. IV, the
calculated results will be compared to the avail-
able experimental data.

II. BASIC EQUATIONS

where m3 is the effective mass perpendicular to
the surface and fII5(z) is the surface potential. The
boundary conditions that $„(z) must satisfy are
$„(z)=0 at z =0 and ~. If P(z) is assumed to be a
linear potential

(„(z)=KAi(a(z -z„) )

8n = (I'/2m )'" [,' vez (n-+ -') ]"' (4)

where Ai(z) is the Airy function, K is the normal-
ization factor and has the value K= n/Ai (- az„),
n =(2m' eE,/p ), z„=8„/eE„n is the quantum
number, and 8„ is the energy of the quantized elec-
tronic subband. The total energy of the wave func-
tion P(x, y, z) is

@2k2 @2k2 g 2k2&(k)=;+ ', +&.= n +~.
m1 m2 mll

(6)

where m,*, = (mnmzn)~~ is the effective mass in the
x-y plane.

The total number of electrons in the inversion
layer is given by

iV„,= (m"„njvk )kzT g ln(1+e' & n' z ), (6)
n

where n„ is the number of equivalent valleys at the
surface. The surface electric field is related to the
surface charge and the charge of the depletion lay-
er through the equation.

In the effective-mass approximation, the elec-
tronic wave function for the nth subband may be
written

y(x, y, z) = g„(z)e"'e"'n"'"n"

where k„and k, are the electron wave vectors in
the plane parallel to the Si02-Si interface and are
measured from the conduction-band edge. P de-
pends only on k„and k, and is zero if the effective-
mass tensor is diagonal. $„(z) is the envelope
wave function that satisfies the equation

d2t„(z) 2m~+,' [8„+ey(z)]t„(z)=0

N„,+Nn, = K,eg, /e (7)

Finally, the Fermi energy may be related to the
surface field through Eqs. (6) and (7):

E = N ~ ""),' TE)1 e'~ ~' )). ))))
Z ~ '~ ~n-2

where

v'(r) = Z u„~ Vv(r —1„) (12)

to first order in the displacement. Using the ape-
riodic potential as a perturbation, the scattering
probability is found to be proportional to the square
of the matrix element (m k lv'Im, k), where

(m ', k'
~

v
'

~
m, k) = —Z c e "'n e '" '*

g .(z)
n

xa ~ Vv(r —1„)$„( )ze'" *d r, (1'3)

where k=k jt„+k,a„x=xa„+yd„j is the wave vec-
tor of the lattice wave with polarization 0, and c is
a constant. In Eq. (13) we have assumed the ef-
fective-mass tensor to be diagonal, i.e. , P = 0. If
we assume the origin of the coordinate system to
be on the surface of the SiO2-Si interface and write
1„=1„„+l„,a„ the matrix element in Eq. (12) may
be simplified in the usual way. We first sum over
the components of the lattice vector l„which are
parallel to the surface, yielding the 5 function.
That is,

We now turn to the subject of the scattering of
the conduction electrons by lattice waves. Perhaps
the simplest model for electron-phonon interaction
is through the "rigid-ion" model. ' The potential
of the perfect crystal is the sum of the ionic poten-
tials, i.e. ,

v, (r) = Z v(r —1„) (9)

where r is the point of observation and 1„ is the nth
lattice vector. If the ionic potential is fixed rigidly
to the ion, a displacement of the nth ion by an
amount un will produce a potential,

v(r) = Q v(r —1„-u„) (so)
n

If we write the lattice potential of the vibrating sys-
tem as the sum of the periodic (perfect-crystal) po-
tential and an aperiodic part we obtain a potential,

v(r) = v, (r)+ v'(r)

{m', k'~v'~m, k) = pe"" "'n)) Q t dz d xe" '* ] .(z)t' {z)a ~ Vv(r —l„,a,)e n nn

~nfl „0 uo, it
ng "0 cell

=)ia ~ (k-'K') c'Q
'ns ~O

dz g .{z) t' (z)e "n'nn v(r —l„,a,) —Q i dz
'ng "o

&& ) d'x]„,(z) ] (z)e'"n'nn'a, 6((t-f'-g„K„)—
""'H

(14)
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where K„ is the component of the reciprocal-lattice
vector parallel to the surface Sio~-Si interface,
and c' is a constant obtained by integrating by
parts and evaluating v(r) at the limits of the unit
cell.

Even without knowing in detail the form of ( (z}
or v(r) we can make several observations: (i) Un-
like electron-phonon scattering in the bulk, both
longitudinal and transverse phonons can participate
in the scattering, even in the N process (i.e. ,
K = 0). (ii) Lattice momentum is not conserved in
general. (iii) The effective deformation potential
is surface-field dependent [i.e. , through $„(z) if
the summation is over only a few lattice constants].
(iv) There is mixing of the m, m ' subbands due to
the presence of phonons.

Each of the points listed above could lead to an
effective deformation potential larger than the bulk
value, which would be obtained when f„(z) extends
many lattice constants into the bulk of the semicon-
ductor or for the high-order subbands.

As a specific example we will assume the linear
surface potential and the potential v(r) to be the 5

function, i.e. ,

v(r) = h 5(x) 5(y) 5(z)

where 80 is a constant. For a bulk semiconductor
this potential gives a matrix element io ~ (R —(t }$0,
assuming the electronic wave function to be
e' ". For simplicity, let us evaluate this simple
example for the wave vector q parallel to 0 and in
the g-y plane. Then,

(m'O'Iv'Im, k)= jg ~ (k —k')go/ dz
inc

xh. (z) (.(z)5(z-f„.)

=fo ~ (%-K') S, Z (,(l ) ( (l„.)
Ilc (15)

If $ extends over many lattice constants, the sum-
mation over E can be converted to an integral and
the bulk value of deformation potential will be ob-
tained. In this case only intrasubband scattering
is possible. However, if g extends only over a
few lattice constants the bulk value is not obtained.
After substitution of Eq. (3) into Eq. (15}, we see
that the effective deformation potential is propor-
tional to E", I (i. e. , to a) for this mode. A sim-
ilar calculation for the longitudinal mode normal to
the SiOI-Si interface yields a deformation potential

proportional to E~~z (i.e. , to az), for the case
where $ extends over only a few lattice constants.
While the field dependence of the deformation po-
tential will change with the form or v(r) and g (z),
it seems reasonable to assume the deformation po-
tential proportional to E, where P is some power
to be determined from experiments.

The calculation given above is only intended as

an illustration of the effect of the surface electric
field on the deformation potential. Not only have
we used a crude model for v(r), but the rigid-ion
model itself is unrealistic. However, this model
has proved successful in explaining the important
features of lattice scattering in the bulk of solids.
The exact dependence of the deformation potential
on surface field and its magnitude can only be ob-
tained from experimental measurements. We now

proceed to evaluate the effect of lattice scattering
on the mobility by simply assuming the existence
of a deformation potential.

III. QUANTIZED ELECTRON INTERACTION
WITH LATTICE WAVE

In this section we assume the conduction elec-
trons to have classical free-electron motion in the
x-y plane (parallel to the Si02-Si interface) and
that the phonon normal to the plane simply causes
mixing of the subbands. Even though the lattice
wave is a three-dimensional wave, the scattering
of the quantized conduction electrons will be con-
fined to two dimensions. We also assume the pho-
non distribution to be undisturbed by the electron
scattering. The scattering rate of two-dimensional
electrons may be written in a similar way to the
three dimensional case, ' i.e. ,

=—Q ( I
((t, n; lf+v

'
I

'K+ q, n- )
I

'5 (Sile,-+ he)-)

xf((t+q)[1 -f(&)]+ l(k, n —if v'I& —q na)
I

x 5(h-„—6;;—g~;)f(E —q) [1 —f('E) ]

—
f
(k —q, n;+ 1

I
v '

I
(~, n;) I

'(8;;—g;+ @co;)

xf(f) [1 f(k —q)] —
I
(&+q n~ —1 fv'I& n-.) I'

x 5(@i;,—8, —h(u", )f(R) [1 f(K+ q-)]), (15)

where k, q are the transverse components of the
electron wave vector and lattice wave vector, re-
spectively (i.e. , the ~~ symbol has been sup-
pressed). The matrix element of electron-lattice
scattering can be written in terms of the deforma-
tion potential

I
(R+q I

v'I tt}I'= „' (n-, +-,'+-,' 5n;}, (17)
2sdp~q

where

5n~= —1 for absorption,

5n~ =+ 1 for emission,

S~ is the effective deformation potential, p„ is the
mass density of the semiconductor, s is the surface
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area, and d is the width of the layer of lattice
atoms with which the electrons can interact. If
we assume the scattering to be dominated by acous-
tic phonons we may write

~;=u, /q/

where u, is the velocity of sound.
Substitution of Eq. (17) into Eq. (16) yields

(16)

af(R) 2)r S',
2 $ hz On +1)5(Sf—Sf;+h~;)f(k+q) [1-f(K)]+n~5(S)-,—Sf .—8(d;)f(f-q)[1-f(R)]

h 2sdp~2g q

—(n;+ 1)5(S); ~
—S), + h&u;)f(k) [1 —f('R —q)] —n;5(Sf,;—S„- —h(d;)f(k) [1 —f(k+ q}]j

The summation over the two-dimensional lattice
wave vector q can be transformed into the integral:

an expression for the channel mobility as a func-
tion of surface field. We consider two cases:

s
)2 /de

The integral

f(E+q) = f, 6(S-„S„-;,+h~;)da

(20)

(21)

A. High-temperature case

At high temperatures, the phonon can be as-
sumed to be fully excited, i. e. , n;=ksT/h(d;» 1,
and the electron distribution function may be writ-
ten

may be performed with the aid of the change of
variables

h(R +q)'
x = Sj —Sj~q+ ff(d~ = ~

—
~ + Rhode

mj} m

(22)
dx= sin Hd&

28 kq
m

/f

0

f(k+q) = f(S-„~h(u-„}= f'(S„-)~8(u;

Substitution of Eq. (25) into Eq. (24) yields

a f(k) Sqrn*„kr)T [f( ) fO(k)]
at huh

(26)

(26)

where 8 is the angle between R and q. Hence, 2'

«(e=~)

I(k+q) = 2 5(x) meed
«(a=o) j ln(( kgT

(27)

Treating the electron motion in the two dimensions
to be classical we may immediately write the re-
laxation time for acoustic-phonon scattering

X1 —
2 ~Q)q g

—X

Il-2kq 2k (23)

The effective mobility in the surface inversion
layer then becomes

e7„eP„u,Il d
m* gmmk Tu 1 u (( B

(28)

The last approximation is valid as long as Sco; is
small, where h~; is the energy of the acoustic pho-
non. The calculations of the other 5 functions in
Eq. (19) also yields the la.st expression of Eq. (23),
provided hw», is small. Under this condition the
scattering rate can be simplified to yield

af(k) 2m S& 2 rn"„u,
at h 2dp~, (27r)' hk

((n-+ 1)f(k+q) [1 —f(k)]

+ nf,f(k —q} [1 —f(k}]—(n~+ 1)f(k) [1 —f (k —q)]

—n;f(k) [1-f(k+q)]j
[ ],r, . (24)

where m*„ is the conduction-electron effective
mass. The expression of mobility given in Eq.
(28) is the same ' as that calculated by Kawaji ex-
cept that the conduction mass is used to define the
effective mobility.

B. Low-temperature case

At sufficiently low temperatures, the phonons
that can be excited are quite limited, hence,
1»n, = 0. In this case Eq. (24) can be written

af(k) 2nr*„S',
Bt 4pp„du, h k

2k

l+q), (»»i2

Equation (24) is valid at all temperatures if the
electrons are quantized to have only two-dimen-
sional free-electron motion. In order to compare
with experimental data, it is necessary to obtain

2k

f(i) I( -f(k --t()I (, (qr2() ) )
Further simplification results at high surface
fields, S)-, »h(, ~~, which means that f(S+h&u;)

(29)
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=f (Sg). Hence, the scattering rate can be approx-
imately by

Sf =4 'u~d'f'"'-f("" . (30)

Again, assuming that the electron motion in two
dimensions to be classical, the relaxation time can
be written

Combining Eqs. (34) and (8), we obtain

82 K~Ph K, 0 eNd„
F 0=m+~ e ~ K(f V s 0

(35)

The two-dimensional wave vector kF can be calcul-
ated by using Eqs. (35} and (5) i.e. ,

-1/2

en„' K,eoE,
7

' = 28',m~P/vp„u, k'd (31) or

m*„n„k~T SF- 8„N„, = " ", ln 1+exp ~ " (33)
gh B - n=O

For low temperature and high fields, (h~ —8,)/ks T
»1 and Eq. (33) becomes

m~p„
@z" (hz- bo)

ph
{34)

and the effective mobility can be written

p ff vp„ek u&d/28&m~m~ kz

where kF is the two-dimensional wave number eval-
uated at the Fermi energy.

There remains two variables to the determined
in Eq. (32): The width of the channel layer d over
which the electron can interact with the lattice
waves, and the two-dimensional wave vector kF.
If we assume that at low temperature only the low-
est electric subband is occupied, the total electron
density per unit area in the inversion layer con-
tained in the lowest electronic subband can be writ-
ten

k, =(2./n P~'X'" (38)

It should be noted that mks units are used through
out this paper. The width of inversion layer can
be calculated in several ways. One method is to
use the trial wave function of Howard. The width
of inversion layer d can be expressed (mks unit)

4e rnid

the other is the direct use of the relation eE,d =E»
the d can be expressed as (mks unit)

2 2 1/3
7f I if~to (~ ~ )128m*e23

inv + dey (38)

The ratio of the coefficients of Eqs. (37} and (38}
is about 1.015 75, so the expression in Eq. (37) or
Eq. (38) is almost the same for the lowest subband.
It has been shown by F. Stern, that the eigen-
values $„ in Eq. (4) are amazingly close to the self-
consistent results even for the lowest subband.
Hence, it is simpler to use Eqs. (4) and (38) rather
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FIG. 1. Theoretical calculations of the field-effect mobility p FE vs gate voltages Oog2 scale) for the (100), (111), and
(110) surfaces with the data from Ref. 6.
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(P n)a=CeE, T "

where

(3s)

than the self-consistent calculations to examine the
effort of the higher subband. We will use this
method in Sec IV. From Eqs. (36) and (38), the
effective mobility for high temperature and the
lowest electric subband can be written

g, s q-vv iov

2$v ---

Si ( I I I) SURFACE

---- EXP. REF. 8
THEORY

(p on)z=, Cz, E,
where the constant

(40)

evp„u, ff' Slv ha

8', m*„m)isa 2m3 e

For the low-temperature case the effective mobil-
ity can be written

15V ---

lS
O
X

R

50
I 4

Ioo 200 400
TEMPERATURE (4K)

V8- VTtO V

30V
SOY

Oov

800

8$ m*m* 2m3e 2' Eo

It is clear that the effective mobility at low tem-
perature and high surface electric field is a steeply
decreasing function of surface electric field.
Equation (40) predicts the mobility to be indepen-
dent of temperature. A more rapid decrease in the
mobility with respect to surface field is predicted
if g, increases with surface field as can be ex-
pected from the calculation in Sec. II. For ex-
ample, for the model used in the calculation of

Sec. II p, ,«would be proportional to E, when the

surface field is high enough so that the inversion
layer width is only a few lattice constants wide.

S& (IOO) SURFACE

-----EXP. REF. 6
THEORY

O
tD

&~ 0&

V8-+2dV

IOv

45V

vg v ~ I ov
tfv

2
50 F00 200 400 800

TEMPERATURE (~K )

FIG. 2. Theoretical calculations of the field-effect
mobility prz vs temperature (log& scale) for the (100) sur-
face with variable gate voltages, are compared with the
data from Ref. 6.

FIG. 3. Theoretical calculations of the field-effect
mobility @zan vs temperature (log2 scale) for the (111) sur-
face with variable gate voltages, are compared with the
data from Ref. 6.

For high temperatures, the calculation of the low-
est subband is not enough to predict the behavior of
the surface electric field and temperature depen-
dence of surface mobility.

C. Effects of surface orientations and
higher subbands

In Sec. III we assumed an isotropic deformation
potential constant hence the anisotropy of surface
mobility is due to the differences in the effective
mass for the difference crystalline directions.
For the (111) surface, m~ =m~~ m,"=-,'(m t+2~mf),
mf = 3m~~ mf/(m*+ 2m[), m*„= (W~mz) m*„

=2mfmz/(m~~+ mf), and the valley degeneracy n„
is 6. For the (100) surface, the six valleys are not
all equivalent; in two of the valleys: m,*, =m*„m3
=m*» m*„=m~' and for the other four valleys:
m*„= (m*, m"), mf =m*„m„*=2m*,mf/(m~+m*&),
with the two-valley degeneracy occupying lower sub-
bands than the four-valley degeneracy: For the
(110) surface, four valleys have m*„= [-, m~~

x(m~+mf)]'~, mf= 2m,* mf (/mf m+f), m„*=2m,*
x (m,*+ f)m/(3m, *+ f)m, and the other two valleys
have m~ = (mmmm*)' m~~ = m~~, m"„=2m*,mf/
(m*, +m*, ); in this case, the four-valley degeneracy
occupy a lower energy subband than the two-valley
degeneracy. If the intersubband scattering can be
neglected, the average mobility can be calculated
by

p ~~=+ p, )(N) )o Q(N) );~ (41)
fJ U

where p&& and (N„,)„are the effective mobility and
carrier concentration in ith subband with j the val-
ley degeneracy. The separation between electric
subband can be easily calculated by using Eq. (4).
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l4-
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and field-effect mobility can be written
BP effpzz(V~ —Vr) —p, „~ Vo —Vr)+(Vo —Vr)

(42)
IV. DISCUSSIONS
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For simplicity, we calculate the effect of non-
equivalent valley degeneracy in (100), (110), and
(111) surfaces. Comparisons between theoretical
calculations and experimental data are given in
Figs. 1-5. For the (100) surface the effect of the
higher subband (which is due to the nonequivalency
of valleys) is very important: The deviation from
the result of the lowest subband mobility is quite
prominant in temperature dependence, magnitude,
and carrier concentrations (or surface electric
fields); the temperature dependence is stronger
than T ' and the carrier concentrations is weaker
than (N„,+Nd„) ~ and the magnitude is smaller
than that of lowest subband mobility. For the (110)
surface, the total density of states for the higher
subband (two valleys) is smaller than the lowest
subband (four valleys), so the effect of higher sub-
band is less important than that of the (100) sur-
face, hence the temperature and carrier concen-
tration dependence are only slightly changed. For
the low-temperature case, the theoretical calcula-
tions predicts the mobility and surface electric
field relation to be p, ,«~E, for the lowest sub-
band in the (100) surface. It should be noted that
the relationship between the effective mobility p, ,ff

FIG. 4. Theoretical calculations of the field-effect
mobility pFE vs temperature (log2 scale) for the (110) sur-
face with variable gate voltages are compared with the
data from Ref. 6.

V~-V ~ lOV

Si ( I IO) SURfACE

-~-~EXP. REf. 6
(0 I I)LCO I 7)

- THEORY

Q) ~0
ho V~

Vv'lOV

30V
ov
ov

I I

IOO 200 400
TEMPERATURE (4K)

FIG. 5. Theoretical calculations of low-temperature
field-effect mobility pzE vs gate voltage (V& —V2) for
(100) surface, are compared with the data from Ref. 8.

From the above theoretical studies, the mobility
of the electrons in the inversion layer are calcu-
lated in detail for the effects of surface orientation
in the (100), and (111)and (110) surfaces and the
nonequivalent valley degeneracy is taken into ac-
count. We have shown that the inclusion of higher
subbands is very important, especially for the
(100) surface at higher temperature. Theory pre-
dicts that mobility's dependence on field is weaker
than E,' and its temperature dependence is stron-
ger than T for (100) surface. For the (111)and
(110) surfaces, the mobility can be approximately
written as kE,'i~ T ' [only slightly changed for the
(110)]. If we use the parameters m'I=0. 19mo,
mf =0. 98mo; p„=2.23x10 kg/ms, p, , =5.4x10s
m/sec, 8, =9.8 eV (isotropic deformationpotential),
the magnitude of mobility is in excellent agreement
with the experimental data ' for high-temperature
case. From Fig. 1, the experimental data show
that the theory predicts less field dependence than
experimental data indicates when the gate voltage
(Vo —Vr) is above approximately 20V [equivalent to
(N„,+N~, ~) =2x10 /cm ] for all surface orienta, —

tions. It might be expected that when the gate volt-
age is larger than 20 V, the mobility's field de-
pendence is stronger than E,' . For low tempera-
ture case, Eq. (40) predicts the mobility and sur-
face field relation to be p, FEccE, when the inver-
sion layer width d in Eq. (38) is used, the magni-
tude of p, FE of theoretical calculation is about 2. 12
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larger than the experimental data. In Fig. 4, the
theoretical calculation is normalized by the above
factor to a best fit. The discrepancy can be easily
found from the self-consistent calculation of
Stern. ' He shows that at low temperatures the in-
version layer width is indeed smaller than that for
room temperature by approximately this amount;
hence, the magnitude of the discrepancy between
the theoretical calculation and experimental data is
resolved. From Fig. 4 we clearly see that the
same situation happens at low-temperature case:
The mobility in the theoretical calculations is less
surface-field dependent (or gate voltage) than when
the gate (Vo - Vr) is larger than 20 V [equivalent
to carrier density (Nd„+N„,) =8. 4&&10"/cm2], that
is, the mobility has a stronger field dependence
than E,' . For low temperatures, the deviation
from the shifts in the theoretical calculations to the
lower electron densities is as expected, because
the inversion layer width is thinner than that at
high temperature. In Sec. II, we have shown that
when the surface electric field is very high, i.e. ,
the inversion layer width is only several lattice
constants, the deformation potential will not be
constant and will be surface-electric-field depen-
dent. Any such effect will, of course, be gradual
with respect to the surface-electric field, rather
than an abrupt change. Another possible way of
interpretation may be attributed to surface scat-
tering. 3'

The theory developed in this paper predicts a
mobility variation E," where n&1, yet experi-
mental observations at low temperatures and high
fields indicate a variation with n &1. An alterna-
tive explanation to the one given here (mainly, that
that 8, varies with surface field when the channel
thickness is only a few lattice constants thick) has
been suggested in Ref. 26. The surface of a semi-
conductor is never perfectly smooth. Pits in the
surface will tend to concentrate the surface field
and, hence, squeeze $„(z) closer to the surface.
The result will be a channel of nonuniform thick-
ness. It is quite reasonab1. e to assume that such a
constriction in the channel thickness would cause
scattering. Since the squeezing of the wave func-
tion to the surface would be most pronounced at
high fields, this scattering mechanism might dom-
inate at high fields. Our suggestion that the de-
formation potential varies with surface field is only
valid if the channel is confined to a few lattice con-

stants in thickness.
It should be noted that the temperature depen-

dence of surface mobility without consideration of
the optical-phonon scattering is good enough to in-
terpret the experimental data. In this paper we

show that the acoustic lattice scattering is still
dominant at low temperatures and high surface
fields. If the surface-impurity centers can be re-
duced, the maximum mobility can be very high
(higher than 10000 cm /V sec) and the position
of maximum mobility will shift to lower inversion-
layer electron concentrations. The theoretical
calculations presented are supported by the ex-
perimental measurements of N. Kotera et al. and
F. Fang et al. , i.e. , the surface state density of
N. Kotera et af. was of the order of 10' /cm, and
the maximum mobility wa, s more than 6800 cm /
V sec {inversion-layer electron density at max-
imum mobility was at about 2. 1X10"/cma). The
sample of F. Fang et al. had a surface-state den-
sity of the order of 10 /cm, which gave a max-
imum mobility of about 5000 cm /V sec (inversion-
layer electron density was about 5&&10~2/cm2).

Hence, the surface preparation was good, and the
maximum mobility tended to be higher and the posi-
tion of maximum mobility shifts to the lower elec-
tron density in the inversion layer, which is yet
another piece of evidence tending to confirm that
the lattice scattering is still dominant at low tem-
perature and high surface electric fields.

From classical calculations, " the effective mo-
bility for very high surface fields at room tempera-
ture is p. ,«=E, 'T and at low temperatures p, ,«
~E, ' and independent of temperature. ' It is
surprising that both classical and the quantum mod-
els give nearly the same field dependence. Both
models show that the effect of increasing the Fermi
energy with surface electric field (and hence the in-
crease in the number of electrons interacting witn
the lattice waves) has a greater effect on the
strength of lattice-wave scattering than the de-
crease in the number of lattice waves excited as
temperature decreases. It should be pointed out
that the rigid-ion model in Sec. II, is by no means
rigorous, and perhaps the effective-mass approxi-
mation fails at very high surface electric field,
i.e. , when the electron wave function is spread
over only several lattice constants. However, the
model presented tends to predict mobilities which

agree with experimental measurements.
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