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The dynamical matrix of a semiconductor is set up by evaluating the full dielectric matrix
«q + G, G + G’) to the lowest order in a Brillouin-Wigner perturbation scheme. The introduction in the
dynamical matrix of the nondiagonal elements of the dielectric matrix, which account for the lattice effects
on the electron screening, gives rise to noncentral forces between the atoms and restores the correct ¢ =0
limit for the longitudinal acoustic frequencies through the fulfillment of the acoustic sum rule. A calculation
of the phonon frequencies of Si is presented. The results, which are in reasonable agreement with
experimental data, show that the off-diagonal elements are responsible for the stability of the crystal against
shear and give real values for transverse acoustic frequencies. It is also shown that a third-order
Rayleigh-Schrodinger perturbation theory, with some correction to include higher-order effects, can provide
a good description of phonon spectrum of Si, but poorly reproduces the experimental elastic constants.

I. INTRODUCTION

The microscopic description of the dynamical
matrix of crystals can be given in terms of the
electron-ion potential and of the inverse dielectric
matrix of the electron gas.!? In nearly-free-elec-
tron (NFE) materials the screening properties of
the electron gas are usually accounted for by the
Lindhard dielectric function for metals® and by the
Penn dielectric function for semiconductors.* In
both cases the electron gas is considered as homo-
geneous gas, i.e., translational invariance is as-
sumed. As is well known, ° this is a good approxi-
mation for simple metals, but there are a number
of cases where it is bound to fail.

The breakdown of the uniform translational in-
variance due to the lattice periodicity requires the
replacement of the dielectric_function with a dielec-
tric matrix (DM) e(@+G, §+G’), with G and G’ re-
ciprocal-lattice vectors.® The effects associated
with the off-diagonal elements of the dielectric ma-
trix (ODEDM) are particularly important in the
calculation of the local field corrections to optical
spectra, ® of plasmon bands in metals, " and of va-
lence-electron density® and phonon frequencies in
semiconductors. ®!° In this paper weare concerned
with the last problem, dealing with the influence
of the ODEDM on the lattice vibrations in semicon-
ductors.

The usual pseudopotential formulation of lattice
dynamics of diamond-structure semiconductors
with the Penn dielectric function has failed for two
reasons: First, the incomplete screening gives
longitudinal-acoustic (LA)phonon frequencies which
do not go to zero at long wavelength; second, the
transverse-acoustic (TA) branches turn out to be
imaginary for any reasonable choice of the poten-
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tial, giving rise to an instability against shear.
One can circumvent the first difficulty by adding
an extra charge on the ion sites, in order to re-
store the charge neutrality of the crystal, so that
one obtains the correct q- 0 limit for LA. The
second point is more serious and it appears that,
without the introduction of non-central forces be-
tween pairs of atoms, the TA branches remain
imaginary. This fact is not surprising, if one con-
siders the difficulties of reproducing the experi-
mental phonon frequencies by a Born-von Karman
fitting!! or a shell model'? with a reasonable num-
ber of parameters.

Both of these problems are solved, if the dy-
namical matrix is set up, by including the effects
of the ODEDM in the dielectric screening. The
study of these effects is the primary purpose of
this paper.

Indeed the nondiagonal screening in the dynami-
cal matrix gives rise, in the direct space, to non-
central forces, which are responsible for the real
values of the TA frequencies, and restore the crys-
tal stability. Moreover we find that the introduc-
tion of the ODEDM can restore the correct 4~ 0
limit for the LA frequencies, through the fulfill-
ment of the acoustical sum rule derived by Sham. 13

In order to prove that the use of DM explains the
lattice dynamics of diamond-structure semiconduc-
tors, we have to evaluate the ODEDM. This is a
formidable task since it requires a detailed knowl-
edge of the electron band structure. To avoid this
difficulty various phenomenological approaches
have been proposed. By adopting the bond-charge
model, * Martin!® simulated the effects of the exact
ODEDM in the dynamical matrix by the introduction
of point charges, located midway between neigh-
bors, which interact via Coulomb potential among
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themselves and with the ions, their charge being
appropriate to neutralize the system. The results
obtained in this paper indicate the deep connection
between the ODEDM and the pileup of the charge
along the bonds in covalent semiconductors.

In the approach proposed by Sinha, Gupta, and
Price, !* a separable expression of DM is taken,
leading to a parametrization, which reproduces
either the shell model or the bond-charge picture
according to the values of the parameters. More
recently, Soma and Morita'® carried out the calcu-
lation of the total energy and the phonon frequencies
of Si and Ge using a perturbative approach. In
their calculation, terms up to the fourth order in
the pseudopotential are retained, in order to re-
produce the contribution to the band gap coming
from second-order perturbation theory, i.e., the
effective enhancement of the V(220) component,
caused by the V(111) one.!” Even if inthis approach
the bond-charge model is introduced explicitly in
the effective potential, it seems that such an analy-
sis is closer to the microscopic description of lat-
tice vibration in terms of dielectric matrix and
electron-ion pseudopotential, than the previous one.

In this paper, by assuming that Si can be treated
in the NFE scheme, we obtain an explicit form of
the ODEDM as a perturbation expansion in the
electron-ion potential. In order to handle the de-
generacy at the zone boundary, which, as is well
known, makes finite the dielectric function of semi-
conductors for ~ 0, we use a Brillouin-Wigner
expansion. To render the problem feasible, the
energy denominators have been approximated with
a simple energy-band model, as discussed in Sec.
II. A further simplification is introduced with a
4 - P expansion around the point =0. In this way
simple analytical expressions for the ODEDM at
large wavelength, as well as for the acoustic sum
rule, are obtained. For comparison, the form
taken by the dielectric matrix in the case of metals,
i.e., when a Rayleigh-Schrédinger (RS) perturba-
tion expansion is used instead of the Brillouin-Wig-
ner theory, is also indicated.

We give in Sec. III the dynamical matrix, set up
in this approach, both in the case of semiconductor
and of metal. By a careful analysis of the nature
of the ion-ion forces, which originate in a complete
treatment of electron screening, we show that the
ODEDM introduce non-central-type forces in the
dynamical matrix. The connection between the
bond-charge model and the microscopic theory is
also indicated.

The phonon frequencies calculated with a suitable
pseudopotential are given in Sec. IV. The calcula-
tions are in good agreement with experimental val-
ues, especially at small g, the discrepancies at the
zone boundary owing to the use of the q - P approxi-
mation. The key result is that the introduction of
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the whole screening matrix makes real the TA
branches and also, through the fulfillment of the
acoustic sum rule, provides the correct q— 0 limit
for the LA branches.

In order to complete our analysis, and investi-
gate more precisely the effect of the band gap on
lattice dynamics, we have also calculated the pho-
non frequencies of Si with the DM appropriate to a
metal. This amounts to evaluating the total elec-
tron energy up to the third order in a RS pseudopo-
tential expansion. Although this approach does not
reproduce correctly the screening in a semiconduc-
tor at long wavelength, we expect that it gives a
good approximation to the total electron energy and
therefore to the dynamical matrix. In this case the
acoustical sum rule is automatically satisfied and
non-central-type forces are introduced via the
ODEDM.

A comparison between the two calculations shows
that for the LA frequencies in the q~ 0 region and
for the elastic constants c¢,; and c,3, the results
depend critically on the inclusion of the band gap
in the electron energies. In fact, we find better
agreement with experiment by using the semicon-
ductor screening. For the TA branches and cy,
which depend only upon the U processes (5 and
G’ #0), the use of a metallic or a semiconductor
dielectric matrix makes very little difference in
the results.

We conclude that the correct understanding of
the lattice vibrations in semiconductors can be ob-
tained only by including lattice effects in the dielec-
tric matrix.

11. DIELECTRIC MATRIX

The random-phase-approximation (RPA) expres-
sion for the static DM can be written in terms of
the electron Bloch energies E;; and of the periodic
part of the wave function® by, (¥) as

€«@+G, g+G=6ga -G +Gm@+G, 3+G"),

2.1
7@+G, §+6")= o TolBra) ~folBi) v
K’ Egg — Egy
X (bk'oi'l‘ e-ia-r'i bﬁ)

X (bk't I e‘a'.;l bi‘oi’t') )

where I and I’ are band indices, fy(E) is the Fermi
occupation number, and vc(q) = 4me?/¢%Q is the
Fourier transform of the Coulomb potential, &
being the normalization volume, which will be taken
equal to the unit-cell volume.

In a metal both the interband (I#1’) and the intra-
band (I=1") contributions are present; in a semi-
conductor only the former survives and the denomi-
nator Eg,s. — Eg, does not vanish. The difference
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in the screening properties is evident if the small-
q behavior of the DM is considered. By expanding

J

E fo(quz ) “fo(EU)
K11’ Eluql' -Eg [

"(q’ +(1_6”')

( q+G)- EfO(Ek-rql ) fO(Ekl) [

5y,0(bg ,e‘a
e Ekﬂﬂl _ Ek; 11 ki

7@+G,§)=m@ 3+G),

7’(6"'6, a+a' E fo(Er+qt ) fO(Ekl) [(b;,, ! e-:‘é-r“

K’ Eggr — Egy

For a semiconductor only the interband terms
survive and €(d, @) goes to a finite limit, €(d,q+G)
and e(q+G, q) go as 1/q and q, respectively, while
e +G q+G’) gives a finite limit. For the case of
metals, €(d,d)and €(d, d+G) go to infinity as 1/4%
whereas all the other matrix elements go to a fi-
nite limit.

These results are quite general and apply to any
kind of material, but in the following we restrict
our attention to the case of those semiconductors
and metals for which a pseudopotential description
of the electrons is adequate. Then we can write
both the energy and wave function as a Brillouin-

J

13+G,3+G)= Z_)fo(EbQ*«E) -folEz3) +0(u?)

kQ Ek+Q¢q0§ Eg +Q

SolEzgeaa) —fo(Eng)

1©

in a power series in d the matrix elements in Eq.
(2.1), one obtains

wbere| b g%+ 0(g")]

.;]b x)+q kax"bu) bUPe’G x.| by )1 =6y)+--- 1,

(2.2)

be)ber| €% [ bgp) + 0(g?)]

[

Wigner expansion in power of the electron-ion self-
consistent pseudopotential:

o e, s @i g
beg®)= @iy 3 1 TIulbeg) @i g g
s g+ Era-Exg, ’
QT 2
Eg= Eka+2 (e ”‘”’ Al” 2.4)

where u is the screened total potentlal of the ions
seen by an electron Q and Q are reciprocal-lat-
tice vectors, and Eka are free-electron energies
1K+Ql2.

To lowest order in u, the polarizability is

n(a+a,§+5')=2u(6—6') _Z_; ((
£a

where «(G) is the Fourier component of the poten-
tial consistently screened. It is evident that the
ODEDM are first-order terms in the potential,
while corrections in the diagonal terms appear only
in second order.

In the case of simple metals the approximation,
obtained by replacing the true Bloch energies by
their free-electron values EE, is adequate; this
means that one can use Rayleigh-Schrdédinger per-
turbation theory instead of the Brillouin-Wigner
one. In this way one obtains analytical expressions
for the off-diagonal elements in first order in
u(G).1®

For semiconductors, however, it is essential to
retain the true Bloch energies in order to repro-
duce the correct q— 0 limit. In this case, by in-
serting Egs. (2.3) and (2. 4) into Eq. (2.2) and re-
taining the leading terms in the q expansion of the
polarization part, one has for the ODEDM

Etge3d - Eng)(Eng - Efg.a-a7)

(2.5)
+term with G= 6’) ’
[
7@ §+G)=m@+G,§)=3-P@G),
=u*(G Evk(Ek*G_Ek)[fO(th) fo( )]
( ) ( ) (Ef+‘é E")(Ef_EhG ’
w(&+a,a+G)=ﬂ(G,G)+O(q), (2.6)

folEg) —folEp)
Egg - EQ)(E; - Egg-g)

"G, 8 -2 -5
k

+the same with G= 5') ,

where the sums over K are now extended to the
whole space so that fy(E;) is equal to 1, only inside
the Jones zone.

To evaluate Egs. (2. 6) we have to specify the en-
ergy Ep. For the diagonal terms the main contri-
bution arises from the upper valence band and from
the lowest conduction band, so that a two-band
model is appropriate. As shown in the work of
Walter and Cohen, !° €(d, q) depends weakly upon
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the direction of §, so that we approximate the diag-
onal part of the DM by the two-band isotropic model
for semiconductors, owing to Penn,*

For the off-diagonal terms, we approximate the
Jones zone by a sphere of the same volume, as in
the Penn model, and take the energy as

Ez=k+06(k-k)E, , 2.7)

where © is the step function, k; is the sphere ra-
dius, and E, is the energy gap. This is the sim-
plest approximation which accounts for the gap be-
tween occupied and unoccupied states and leads to
the correct ¢~ 0 limit in the DM.

Up to this point we have not given any expression
for the self-consistent screened potential . If the
validity of a perturbative approach is assumed, the
self-consistent potential can be written as a power
series in the bare electron-ion _Potential V(G) multi-
plied by the structure factor S(G). In our expres-
sion we retain only lowest-order terms for the ex-
pansion and write the self-consistent potential as

4(G)=V(@G)SG)/ @), (2.8)

where €(G) is the diagonal dielectric function of the
Penn model.

Since the self-consistent approach does not take
into account effects of exchange and correlation,
we have to modify the theory to allow for an evalua-
tion of these effects. This is an important point
since previous work on both metals and semicon-
ductors shows that phonon frequencies depend con-
siderably upon these corrections.?® The necessary
formalism to evaluate the contribution of exchange
and correlation in the total energy has been out-
lined, in a quite general way, in Ref. 21. In this

J
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paper we shall adopt the equivalent approach based
on the work of Singwi ef al.?® According to this ap-
proximation, the dielectric matrix which screens
the electron-ion interaction may be taken as in Eq.
(2.1), except that the Coulomb potential v, is modi-
fied in the following way:

ve@+G)~ @ +06)[1 -AG+0)], (2.9)
where
F@)=A(1 - eBWr?) | 2.10)

A and B being constants depending on the electron
density.

IIl. DYNAMICAL MATRIX

Within the Born-Oppenheimer and the harmonic
approximations, the effective potential of the ions
consists of two parts: (i) a direct Coulomb inter-
action between the ions, and (ii) an indirect inter-
action via the electrons. In this scheme, the dy-
namical matrix which describes the ionic motion
becomes

Dos(d; ss”) =D!4(G; ss’) + DE(q; ss”) (3.1)
where s and s’ are indices which label the ions in-
side the unit cell, and the superscripts I and E in-
dicate the direct and indirect interactions, respec-
tively.

The Coulomb term D%4(d, ss’) can be easily eval-
uated by Ewald’s method and is explicitly given for
the case of two atoms per unit cell in Ref. 23.

The Dfs((i, ss’) term contains the screening ef-
fect of the electron gas on lattice vibrations. It
can be expressed in terms of the inverse dielectric
matrix €1(q+G, §+G’) and the bare electron-ion
form factor V,(q) by

(MSMS')llsza(a; ss') =EZ> [(6*‘6)«(6 +6')5‘1>“'(5 +-é, a+a')ei3-ﬁse-i3'-ﬁ;

reld
=Bt E6,,6;@“"(6,5')e‘a'§se"a"§s"] , (3.2)
oy
with
855" (§+G, §+E')=Q°|a +z-(§l2 V,@+G)V,.(d+G) (1§ +G,§+8) - 6ag:], (3.3)

4re 1-£(@+G)

where Q, is the cell volume, M, and ﬁs are, re-
spectively, the mass and the position of the sth ion
in the cell.

To evaluate Eq. (3.3) we need an explicit form
of the inverse dielectric matrix. To invert the di-
electric matrix we follow the procedure given in
the work of Pick, Cohen, and Martin.? These au-
thors subdivide the DM into two square matrices

r

R and S, whose elements are, respectively, €(d, q)
and €(@+G, 3+G’), with G and G'#0, and row and
column matrices, respectively given by €@, 6+6)
and €(q+G,q). Inthis way, they separate blocks
of the DM having different analytical behavior for
large wavelength. By performing block inversions
they are able to obtain for the elements of the in-
verse DM, the following expressions:
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-, - - =) -1
xSH3+G,§+Ge(@+G/, q)] ,
€14, 3+6)=-€'q, 92 €@, q+C")
Y
x$YG+G,q+G),
(3.4)
-1/ -’-._ _1.._.Z;I - =) .
€(q+G,q)=-€"(q,q)2s €@@+G',q)
GI
xS 1G+G,q+G"),
€'@+G,§+G"=5"13+G,3+G)
+€1d+G, QG DI @ G+8)
Since the S matrix is obtained by striking out the
elements of DM which are not analytical for - 0,
its off-diagonal terms, which arise in first order
in the perturbation expansion, are small in com-
parison with the diagonal part. By writing any ele-
ment of the inverse matrix S°! as a power series

in the pseudopotential and retaining the leading
terms, we have

eel
€(d+G)

S'1(€+5, q+G)=

90989

Uc(q)
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€@+G,3+G)
—(1—533') E(a+§)€(q—+6l) . (3. 5)
By inserting Eq. (3.5) into Egs. (3. 4) and neglect-
ing higher-order terms, we get, in the small-q

limit,

€@, d)=1/¢lq),

- - oga’ , (ﬁ+5)n(§ a')
1> - N ———=— 1-56z2z. _c‘..—-»’—;_"-——_
€1@+G,q+G)= 7, ( aG)e(q+G)e(q+G')

i-P*@G) - P@")
€@+G) €d+G"

+'Uc(q)

(3.6)
ch(q."”a) %q) b
q-P*@G)
e@+8) e+
e = PO
€ l(q:q+G)=€(q)€(a+a) vc(Q) .

€'d+G, 9=

Inserting Eqgs. (3.6) into Eqs. (3.2) and (3. 3), the
long wavelength expression for the dynamical ma-
trix is obtained:

(M M) 2D35(G; 58") = = V(@) V,e(q) n

(o 2 s 6

geo €(d+G)

+ 2 [oaar@+ ), @+ BV, @+ BV, GO

11— €q)

V.@§+6)v,.@+G")

Vs((-l.*' a) (a

V(q) . -.g)
< G), P*(G)elS Bs
( &0 e(q+G) + )a u( )e Qudy

vc(q) au

E)BPX(E)e-"Ms')

1 _1) 1
(&*’G) Uc((-l."‘G)

+(1 - 553.){+G),@+GC),

-27"6... 2 (the same with g=0and s'~ s")e‘a'ﬁse"a"as" .
aa’ S§s

s’

In order to obtain, in our model, the fact that
the longitudinal-acoustic frequencies vanish for
d~ 0, we have to impose the extra condition

V.(d+G - = - 3
an = Gzo E((;;+a)) (@+G)4P, (G)e*¢ R - Z%q . (3.8)

This condition is the acoustic sum rule, derived
in a general way by Sham.® It shows the necessity
of including the ODEDM in the calculation of phonon
frequencies of semiconductors. In fact, a pure
diagonal screening does not give rise to LA modes
which vanish at large wavelength, because of the
finite limit of €(J, q). We note that the Eq. (3.8)

€({+C)e@+G)

(G, 6’)}eia'ﬁse"a"§8'

(3.7

can be viewed as a relation, which must be satis-
fied by the elements 7(q, @+G) of the polarization
part, given in Eq. (2.6). In the actual calculations,
formula (3. 8) has been used as a tool to ensure
general consistency for our DM and to overcome
the approximations involved in the model band
structure (2.9) and in the choice of the pseudopo-
tential. For this purpose, we multiply P@G) by a
constant factor o and require that it satisfy the
acoustic sum rule. With this choice of the ele-
ments ﬂ(ﬁ, q +6), we are led to multiply by the same
factor the off-diagonal elements 7(q+G, q+G'), so
that the elements of 7, evaluated to the same order
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of perturbation theory and using the same approxi-
mations, are consistent among them, as Eq. (2.5)
requires. This amounts to multiplying both the ef-
fective charge tensor Z;, and the double sums in
Eq. (3.7) by the same factor. As we discussed
previously, ® we find that the choice of a multiplica-
tive constant gives good results and allows us to
overcome, to a large extent, the approximations
used in the evaluation of our model DM.

In the case of a metal, where we can use RS per-
turbation expansion in the evaluating of DM, the
off-diagonal matrix elements are smaller than the
diagonal function, so that the block separation is
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not necessary. By retaining the leading term in «,
the elements of the inverse matrix are given by

1
«J+G)

€'@+G,§+6")= 553"
€d+G,3+G")
€@+G)e@+G" "
By inserting Eq. (3.9) in the dynamical matrix and
using expression (2. 5) for the polarizability, with
the true Bloch energies replaced by the free-elec-
tron values, we have by keeping only the lowest-
order terms in u:

(3.9)

- (1 - 56"’»

VG -G)S@G-G)

Q(d+G)? Vs(ﬁ+a)Vi,(§+a')[
1-fG+G)

GG’

(e@1+5)

—1)+(1—6-'-.) — ==
a¢ €(@+Gle(q+Ge(G-G")

x2§fo(E§)( : !

Ef-E%zza)ER- Eda.zr)

1

1 )]
+ + .
(E2- Edzra)(E&- Elzr 5) (E}- EX3.,3)(ER- Edgug

The same results may be derived by evaluating the
dynamical matrix from the expression of the total

energy given by a third-order RS perturbation ex-

pansion. 2*

We note that in a metal, by virtue of the behavior
of €(q, q) at large wavelength, the acoustic sum rule
is automatically satisfied and a pure diagonal
screening ensures, by itself, the correct limit for
the LA frequencies.

It is convenient at this point to discuss the nature
of the ion-ion forces, which originate from the in-
direct interaction, when electron screening is
treated by a DM. By Fourier-transforming Eq.
(3.7) or (3.10), it is easily seen that the diagonal
part of the DM gives rise in real space to a
pairwise central interaction between the ions. On
the other hand, the terms which involve three times
the electron-ion potential, introduced by the inclu-
sion of the ODEDM, originate in real space two-
bodies non-central forces, which arise from the
sum of three-body interactions via the electron
gas.? The inclusion of such non-central forces
should not change appreciably the phonon spectra
of simple metals, but is very important in a semi-
conductor with diamond structure. It is, in fact,
quite well established by the work of Dolling? and
Keating, 2 as well as from the calculation per-
formed by Martin, '° that purely central forces do
not give crystal stability, leaving the TA branches
imaginary.

Some more insight on the nature of the indirect
interaction can be obtained by considering the re-

(3.10)

r

lation between the DM and the electron charge den-
sity. Within the linear-response theory, it can be
shown® that the bond charge, which is the preemi-
nent feature of covalent crystals, arises from the
off-diagonal screening, the diagonal approximation
giving simply the superposition of spherically sym-
metric charge distributions centered on the ions.
Since semiconductors are essentially covalently
bonded materials, no NFE approach, which ne-
glects off-diagonal screening, adequately describes
their phonon frequencies. We can illustrate this
point in more detail by noting that a purely diagonal
screening with the dielectric function appropriate
for a semiconductor does not screen completely the
ionic potential, so that a net charge Z/¢€(0) remains
to be neutralized. One could restore the charge
neutrality either by adding the extra charge on the
ions or assuming a point charge Z/2¢(0) located
midway between nearest neighbors. In both cases
the dynamical matrix vanishes for q— 0, giving the
correct limit to LA branches. The first choice
gives rise to purely central forces and therefore
leaves the TA branches imaginary. In the second
case, one recovers the Phillips-bond charge model*
for covalent solids, which has been used by Mar-
tin!® in his work on lattice vibrations in Si. In this
model the inclusion of bond interaction as well as
bond-ion interaction in setting up the dynamical
matrix, gives rise to non-central bond-bending
forces. Such a model dynamical matrix furnishes
a fairly accurate description of lattice vibrations
in Si, indicating that the inclusion of bonding charge
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FIG. 1. Plot of the modified Heine-Abarenkov bare
form factor (full curve). The dashed curve gives theorig-
inal HA potential. gqp is the Fermi momentum.

can simulate the effect of the complete treatment
of dielectric screening.

IV. RESULTS AND DISCUSSION

We now present the phonon frequencies of Si,
calculated according to the theory of the previous
sections. To show the effects of the ODEDM, we
present various results which allow for a direct
comparisen between different types of screening.
We carried out all the calculations using a local
form of the Heine-Abarenkov (HA) model potential.
Since for large values of the momentum transfer q
any form factor is rather uncertain, we eliminate
the spurious oscillations of the HA potential by
making it go smoothly to zero at the second node.
The modified form factor together with the original
HA are given in Fig. 1. It was found that the final
results were rather insensitive to the detailed form
of the tail. In this way we also achieved a rapid
convergence in the sums over reciprocal lattice
vectors, so that we extend our sums up to 338 vec-
tors only.

To estimate the importance of the ODEDM, we
present in Fig. 2 the phonon frequencies calculated
with the Penn dielectric function without the intro-
duction of the ODEDM. We used the full Penn for-
mula with exchange and correlation corrections.
The main feature of these results is that the TA
branches are imaginary, leaving the crystal un-
stable against shear. Moreover, because of the
incomplete screening of the ions, the LA frequen-
cies go to a finite limit as q— 0. We note also that
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FIG. 2. Phonon dispersion curves of Si as calculated
using Penn dielectric function, Note that TA branches
are imaginary, The LA §—0 limit is Q,/€(0), where €,
is the plasma frequency. Experimental points from Ref.
12,

the optical modes are higher than the experimental
data, the disagreement at small d being about 20%.

The phonon frequencies calculated with the DM
appropriate to a semiconductor, as given in for-
mulas (2.6) and (2.7), are displayed in Fig. 3. The
parameter @, which lets the acoustic sum rule be
satisfied, has been evaluated via Eq. (3.8), and
turns out to be @ =3. No appreciable change of the
value of a was found by using different reasonable
form factors.

The most important conclusion which can be
drawn from the analysis of the calculated phonon
frequencies is that the replacement of the Penn di-
electric function with the whole DM gives rise to
real TA branches, which compare satisfactorily
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FIG. 3. Phonon dispersion curves given by the dielec-
tric matrix of a semiconductor. The misfit at the zone
boundary is due to the small-g expansion.
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FIG. 4. Phonon dispersion curves obtained by using
the dielectric matrix appropriate to a metal, i.e., RS
third-order perturbation theory. Exchange and correla-
tion are included.

with experimental data. We note that the agree-
ment with experiment is not substantially washed
out even for large g, where the small-g expansion
is very rough. This indicates that in spite of the
crudeness of the approximations, the essential fea-
ture of the electronic screening in semiconductors
is still present in our model. We also obtain a sub-
stantial improvement for LA frequencies, which
compare more favorably with experimental data
than the results in Fig. 2. As regards the optical
branches, there is an appreciable improvement with
respect to previous results, indicating that the
ODEDM cannot be neglected even in the calculation
of the Raman frequency.

All the sources of the outstanding quantitative
discrepancies between experiment andtheory, which
appear in Fig. 3, can be explained by considering
our rough approximation on the energy-band struc-
ture, our restriction to a small-g expansion, and
to the use of a local pseudopotential. The effects
of the q - P approximation are particularly evident
at the zone boundary, where the degenerations due
to the symmetry of the crystals are not respected.
On the other hand, the §-p approximation is also
responsible for the anomalous curvature of the LA
branch in the 100 direction. The high values of «
which comes out from our calculation can be im-
puted partly to the above-mentioned approximations
and partly to higher-order contributions, which
have been folded back into first-order termsthrough
the fulfillment of the acoustic sum rule. However,
the introduction of this multiplicative factor in the
ODEDM, beside giving consistency to our DM, al-
lows us to account fairly well for the role of non-
central forces in Si. This shows that our DM with
the off-diagonal elements evaluated to first order
and scaled by « in order to satisfy the acoustic sum
rule, provides a reliable description of the dielec-
tric screening in semiconductors and is appropriate
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to study the lattice dynamics of Si.

Having established the importance of the ODEDM
in the evaluation of the lattice vibrations in Si, it
remains to be seen whether these results can be
obtained from a calculation of the properties of
NFE semiconductors based on RS perturbation the-
ory, i.e., neglecting the band gap. It is generally
accepted® that naive perturbation theory can give an
excellent approximation to the total energy of a
metal, even if it furnishes a bad description of the
electron energy-band structure. In order to see
whether this argument remains appropriate to NFE
semiconductors, we have performed the calculation
of the phonon frequencies of Si with the dielectric
matrix of a metal. As pointed out before, if one
neglects corrections of order u? to the elements of
the DM, this corresponds to evaluating the total
energy up to third order in the pseudopotential. In
this way, non-central forces are introduced via the
ODEDM, and because of the absence of the band
gap, there is no need of the acoustic sum rule.

In the calculation of the DM using RS perturba-
tion theory, we found that in the g~ 0 limit the
ODEDM €(q +G, q+G’) with G and G different from
zero, differ within few percent from the corre-
sponding elements of the semiconductor DM. For
this reason, we expect the TA branches, which de-
pend only on these matrix elements, to be well de-
scribed if the ODEDM are multiplied by a factor a,
as in the case of the BW calculation. However,
while in the BW theory, the value of « is fixed un-
equivocally by the acoustic sum rule: in this case
it remains an adjustable parameter. We found that
a reasonable agreement with experiments is ob-
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FIG. 5. Full curve: phonon dispersion curves of Si
obtained using Lindhard dielectric function. Dashed curve:
with the inclusion of exchange and correlation,
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TABLE I. Elastic constants of Si: (a) experimental
data from Ref. 27; (b) calculated with Lindhard dielec-
tric function; (c) Lindhard dielectric function plus ex-
change and correlation; (d) with the dielectric matrix
appropriate to a metal; (e) with the DM of a semiconduc-
tor. The units are 10!! N/m?,

a b c d e
Cyy 1.66 1.89 1.97 2.44 1.15
Cyy 0.64 2.40 2,14 2,33 0.73
Cyy 0.79 -0.50 0.03 0.59 0.45

tained with 1.6 <a <3.0. The results of the calcu-
lations with @ =1.6, which is the lowest value giving
completely real TA branches, are displayed in

Fig. 4. Although the phonon frequencies are modi-
fied by increasing the value of @, we found that
there is not an appreciable improvement of the
agreement with experiments of the whole phonon
spectrum.

For comparison we give in Fig. 5 the dispersion
curves calculated in the diagonal scheme with the
Lindhard® dielectric function (dashed curve). The
full curve in the same figure shows the results ob-
tained by including the exchange and correlation
corrections. Once again the important feature
which distinguishes the frequencies obtained from
the full calculation with respect to the diagonal ap-
proximation, is the presence of real TA branches.
We note that the anomalous behavior of the phonon
curves calculated with BW perturbation theory, due
to the small-q expansion, is not present in this cal-
culation, because the q dependence of the matrix
element is taken into account exactly. We note also
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that the exchange and correlation correction con-
tribute to lift the imaginary branches, as shown in
Fig. 5.

As regards the deviation of the value of o from
1, we think that, even in this case, it represents
the effects of higher-order terms in RS perturba-
tion expansion, which can be simulated by our first-
order evaluation of the ODEDM. This is in agree-
ment with the remarks of Brovman and Kagan, %
who indicate that even fourth-order terms may be
important in the description of the lattice dynamics
and the elastic constants of NFE materials.

To gain some more insight on the effects of the
ODEDM on crystal dynamics in silicon, we give in
Table I the elastic constants calculated with differ-
ent forms of screening, together with experimental
data. We see that, both in the case of a semicon-
ductor screening and in the case of DM suitable for
a metal, the inclusion of the ODEDM improves
sensibly the c,4 elastic constant, leading to a good
agreement with experiment. We note that the ex-
change and correlation corrections give a contribu-
tion of the same magnitude as the correction due
to the ODEDM.

For the elastic constants ¢,; and ¢,, the screen-
ing appropriate to a semiconductor gives better re-
sults, while no appreciable improvement is found
using a third-order RS perturbative approach.

This can be understood, if we remember that while
the c44 elastic constant depends exclusively upon
Umklapp terms involving €(@+G, 3 +G’), with G and
G’ different from 0, the ¢y; and ¢y, constants de-
pend also upon €(q, q +G) and €(+G, q), whose be-
havior at long wavelength is strongly affected by
the presence of the band gap.
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